首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Erythrocyte diphosphoglycerate mutase (EC 2.7.5.4.) and 2,3-diphosphoglycerate phosphatase (EC 3.1.3.13.) activities of normal human adults, and DPG mutase deficient subject as well as of several animal species were subjected to electrophoretic study on starch gel. In U.V. light 2,3-diphosphoglycerate phosphatase activity was revealed as a band of fluorescence decrease on a fluorescent background, by the oxydation of NADH, whereas diphosphoglycerate mutase appeared as a fluorescent zone. It was found that the electrophoretic pattern of both DPG mutase and 2,3-DPG phosphatase activities was different from one species to the other, but that, in each species, 2,3-DPG phosphatase activity showed the same electrophoretic pattern as DPG mutase activity.  相似文献   

2.
Monophosphoglycerate mutase has been purified to homogeneity from outdated human erythrocytes as indicated by exclusion chromatography, polyacrylamide gel electrophoresis, and equilibrium centrifugation. Occasionally, the recommended purification procedure yields a small amount (3% or less) of a single extraneous protein which can be deleted from the enzyme preparation by employing an additional purification step. The native enzyme has a molecular weight of 54,000 to 56,000 as determined by equilibrium centrifugation and exclusion chromatography. Disc gel electrophoresis in the presence of sodium dodecyl sulfate yields a single protein band with a molecular weight of 28,600, indicating that the native macromolecule is a dimer composed of subunits of similar mass. Homogeneous monophosphoglycerate mutase is free of diphosphoglycerate mutase, enolase, and nonspecific phosphatase activities; however, the enzyme manifests intrinsic 2,3-diphospho-D-glycerate phosphatase activity as shown by thermal denaturation studies. The diphosphatase activity is stimulated by PPi and glycolate-2-P, but is inhibited by Cl-, HSO3-, and Pi. The pH optimum for both the diphosphatase and the mutase is 6.8. The Km for 2,3-diphospho-D-glycerate in the phosphatase reaction is 82 muM at 37 degrees and pH 7.2. The amino acid composition of homogeneous monophosphoglycerate mutase is given.  相似文献   

3.
1. Four enzyme fractions which may be involved in the synthesis and breakdown of glycerate-2,3-P2 have been isolated from extracted skeletal muscle by gel-filtration and ion-exchange chromatography. 2. One of the fractions, corresponding to the glycerate-2,3-P2 dependent phosphoglycerate mutase, has been purified to homogeneity. In addition to the main enzymatic activity, it shows intrinsic glycerate-2,3-P2 synthase activity and glycerate-2,3-P2 phosphatase activity stimulable by glycolate-2-P. Its synthase activity represents about 10% of the total synthase activity of the tissue, and its phosphatase activity corresponds to about 60% of the total phosphatase activity. 3. Two of the fractions have glycerate-2,3-P2 synthase, glycerate-2,3-P2 phosphatase and phosphoglycerate mutase activities in a ratio similar to that of the glycerate-2,3-P2 synthase described in mammalian skeletal muscle. Their synthase activity corresponds to about 90% of the total synthase activity, and their phosphatase activity represents about 1% of the total phosphatase activity of the tissue. 4. The fourth fraction shows only glycerate-2,3-P2 phosphatase activity and represents about 40% of the total activity of the tissue. 5. It is suggested that in chicken skeletal muscle the metabolism of the glycerate-2,3-P2 is regulated in a way similar to that described in mammalian skeletal muscle.  相似文献   

4.
Bisphosphoglycerate mutase (EC 5.4.2.4.) is an erythrocyte-specific enzyme whose main function is to synthesize 2,3-diphosphoglycerate (glycerate-2,3-P2) an effector of the delivery of O2 in the tissues. In addition to its main synthase activity the enzyme displays phosphatase and mutase activities both involving 2,3-diphosphoglycerate in their reaction. Using a prokaryotic expression system, we have developed a recombinant system producing human bisphosphoglycerate mutase in E coli. The expressed enzyme has been extracted and purified to homogeneity by 2 chromatographic steps. Purity of this enzyme was checked with sodium dodecyl sulfate polyacrylamide gel and Cellogel electrophoresis and structural studies. The bisphosphoglycerate mutase expressed in E coli was found to be very similar to that of human erythrocytes and showed identical trifunctionality, thermostability, immunological and kinetics' properties. However, the absence of a blocking agent on the N-terminus results in a slight difference of the electrophoretic mobility of the enzyme expressed in E coli compared to that of the erythrocyte.  相似文献   

5.
W K Kappel  L F Hass 《Biochemistry》1976,15(2):290-295
Diphosphoglycerate mutase has been purified to homogeneity from outdated human erythrocytes. The native enzyme has a molecular weight of 57 000 as determined by equilibrium centrifugation and exclusion chromatography. Disc gel electrophoresis in the presence of sodium dodecyl sulfate yields a single protein band with a molecular weight of about 26 500, indicating that diphosphoglycerate mutase is comprised of two subunits of similar mass. The enzyme exhibits the following intrinsic activities: diphosphoglyceratemutase, monophosphoglycerate mutase, and 2,3-diphosphoglycerate phosphatase. The latter activity is enhanced in the presence of either organic or inorganic anions. Glycolate-2-P, particularly, has a profound activating effect. Nonspecific phosphatase and enolase activities are absent. The enzyme has an extinction coefficient at 280 nm of 1.65 cm2/mg. The amino acid composition of the homogeneous protein has been determined.  相似文献   

6.
The microdetermination of 2,3-diphosphoglycerate   总被引:1,自引:0,他引:1  
A procedure for microestimation of 2,3-diphosphoglycerate, utilizing its role as coenzyme in the phosphoglycerate mutase reaction is described. The coenzymic activity was determined by assaying phosphoglycerate mutase polarimetrically without a coupled enzyme. This method is applicable to samples containing as little as 0.002 μmole of 2,3-diphosphoglycerate/ml. The content in various biological extracts was determined.  相似文献   

7.
2,3-Bisphosphoglycerate synthase-phosphatase and the hybrid phosphoglycerate mutase/2,3-bisphosphoglycerate synthase-phosphatase have been partially purified from pig brain. Their 2,3-bisphosphoglycerate synthase, 2,3-bisphosphoglycerate phosphatase and phosphoglycerate mutase activities are concurrently lost upon heating and treatment with reagents specific for histidyl, arginyl and lysyl residues. The two enzymes differ in their thermal stability and sensitivity to tetrathionate. Substrates and cofactors protect against inactivation, the protective effects varying with the modifying reagent. The synthase activity of both enzymes shows a nonhyperbolic pattern which fits to a second degree polynomial. The Km, Ki and optimum pH values are similar to those of the 2,3-bisphosphoglycerate synthase-phosphatase from erythrocytes and the hybrid enzyme from skeletal muscle. The synthase activity is inhibited by inorganic phosphate and it is stimulated by glycolyate 2-P.  相似文献   

8.
When soluble extracts of the extreme acidothermophilic archaeon Sulfolobus solfataricus were incubated with [gamma-(32)P]ATP, several proteins were radiolabeled. One of the more prominent of these, which migrated with a mass of approximately 46 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), was purified by column chromatography and SDS-PAGE and subjected to amino acid sequence analysis via both the Edman technique and mass spectroscopy. The best match to the partial sequence obtained was the potential polypeptide product of open reading frame sso0417, whose DNA-derived amino acid sequence displayed many features reminiscent of the 2,3-diphosphoglycerate-independent phosphoglycerate (PGA) mutases [iPGMs]. Open reading frame sso0417 was therefore cloned, and its protein product was expressed in Escherichia coli. Assays of its catalytic capabilities revealed that the protein was a moderately effective PGA mutase that also exhibited low levels of phosphohydrolase activity. PGA mutase activity was dependent upon the presence of divalent metal ions such as Co(2+) or Mn(2+). The recombinant protein underwent autophosphorylation when incubated with either [gamma-(32)P]ATP or [gamma-(32)P]GTP. The site of phosphorylation was identified as Ser(59), which corresponds to the catalytically essential serine residue in bacterial and eucaryal iPGMs. The phosphoenzyme intermediate behaved in a chemically and kinetically competent manner. Incubation of the (32)P-labeled phosphoenzyme with 3-PGA resulted in the disappearance of radioactive phosphate and the concomitant appearance of (32)P-labeled PGA at rates comparable to those measured in steady-state assays of PGA mutase activity.  相似文献   

9.
We present in this paper the first report about identification of several fractions of phosphoglycerate mutase (PGlyM) activity using starch gel electrophoresis and two different buffer systems. A typical muscle form of PGlyM was detected. It is also shown that isozymes of phosphoglycerate kinase (PGK) can be separated through the buffer system used by Spencer et al; (1964) for the phosphogluco mutase.  相似文献   

10.
Dissociation of the human erythrocyte into cytoplasmic and membranous components, shows that all of the cell's intrinsic 2,3-diphosphoglycerate phosphatase activity is associated with the soluble component. Further fractionaction of the cytoplasm on DEAE cellulose illustrates that both 1,3-diphosphoglycerate mutase and 2,3-diphosphoglycerate phosphatase activities occur coincidently within one peak. Thermal denaturation of the peak proteins at 60° results in a parallel loss in phosphatase and mutase activity. The identical phenomenon is observed in the presence of the 2,3-diphosphoglycerate phosphatase activator, 2-phosphoglycolate. Homogeneous 1,3-diphosphoglycerate mutase, which quantitatively accounts for all of the intrinsic 2,3-diphosphoglycerate phosphatase within the red cell, also exhibits thermal instability at 60°. These findings suggest that the phosphoglycerate bypass in erythrocytes is under the control of a single, bifunctional enzyme.  相似文献   

11.
Type M phosphoglycerate mutase and skeletal muscle bisphosphoglycerate synthase-phosphatase from pig are similarly affected by Hg2+. Both enzymes lose the phosphoglycerate mutase and the glycerate-2,3-P2 synthase activities, and increase the glycerate-2,3-P2 phosphatase activity upon Hg2+-treatment. In contrast, bisphosphoglycerate phosphatase from pig skeletal muscle is inactivated by Hg2+. These results confirm the similarity between phosphoglycerate mutase and bisphosphoglycerate synthase-phosphatase. In addition they support the existence of separate binding sites for monophosphoglycerates and for bisphosphoglycerates at the phosphoglycerate mutase active site.  相似文献   

12.
Rare genetic variants of human red cell 2,3-diphosphoglycerate mutase (DPGM) and monophosphoglycerate mutase (MPGM) were compared by starch gel electrophoresis. The isozyme patterns showed that genetic variation of the enzymes were independent from each other, thus DPGM and MPGM must be controlled by two separate loci.  相似文献   

13.
Bisphosphoglycerate mutase is an erythrocyte-specific enzyme whose main function is to synthesize 2,3-diphosphoglycerate, the allosteric effector of hemoglobin. In addition to its main 2,3-diphosphoglycerate synthase activity, the enzyme displays phosphatase and mutase activities both involving 2,3-diphosphoglycerate in their reaction. The three activities have been demonstrated to be catalysed at a unique active site. To study the structure of such an active site we have developed a recombinant system producing mutants of human bisphosphoglycerate mutase in Escherichia coli, by site-directed mutagenesis. For this purpose the human bisphosphoglycerate mutase cDNA that we had previously cloned has been used to construct a procaryotic high level expression vector bearing the "tac" promoter. Human bisphosphoglycerate mutase produced in E. coli, a species which does not normally synthesize this enzyme, represented 8% of the total soluble bacterial protein and displayed the three catalytic activities (synthase, mutase, and phosphatase) characteristic of the enzyme. Since it has been suggested that the carboxyl-terminal region may be implicated in the catalytic activity of the enzyme, three variants deleted in this part of the protein were produced. Our results indicate that a minimal deletion of 7 amino acid residues in the carboxyl-terminal portion of the human bisphosphoglycerate mutase completely abolished the three catalytic activities of the enzyme. In contrast, the effects of the deletion of the last two lysine residues were limited to a 38% reduction in the synthase activity. These results show that the carboxyl-terminal amino acid residues are either directly or indirectly implicated in the three catalytic functions of the human bisphosphoglycerate mutase, and that the two terminal lysine residues are not essential for the major part of the enzymatic mechanism of the enzyme.  相似文献   

14.
A method is described for detecting the electrophoretic pattern of the enzyme 2,3-diphosphoglycerate mutase (2,3-DPGM) after starch gel electrophoresis. In addition, a genetic variant found in a Canadian Eskimo family is described. The pattern of this (presumably) heterozygous phenotype is consistent with a dimeric structure of the enzyme.This work was supported by PHS grant AM 09745.  相似文献   

15.
1. The three isozymes of glycerate-2,3-P2 dependent phosphoglycerate mutase present in tissues of mammals and reptiles were inactivated by both treatment with diethylpyrocarbonate and photooxidation with rose bengal. 2. Inactivation of type M isozyme purified from rabbit muscle was complete when two histidine residues per enzyme subunit were carboethoxylated. Hydroxylamine removed the carboethoxy groups, with partial recovery of the enzymatic activity. The cofactor protected the enzyme against inactivation. 3. The inactivation of rabbit muscle phosphoglycerate mutase by photooxidation with methylene blue and rose bengal was sharply pH dependent. The pH profile of enzyme inactivation followed the titration curve of histidine, suggesting that this amino acid was critical for enzyme activity. Glycerate-2,3-P2 did not protect phosphoglycerate mutase against photoinactivation.  相似文献   

16.
Phosphoglycerate mutase could be purified to over 95% homogeneity by a single step procedure involving elution from Cibacron Blue-Sepharose by a pulse of cofactor 2,3-bisphosphoglycerate. Although the enzyme has been isolated in only small quantities (c. 100 micrograms), gel filtration and sodium dodecylsulphate polyacrylamide gel electrophoresis indicated that it is monomeric with Mr approximately 23,000, an extremely low value for this enzyme. Preliminary investigations of the kinetic characteristics and the nature of important amino acid side chains have been undertaken.  相似文献   

17.
Low activity (about 4 mU/mg protein) of 5'-deoxyadenosylcobalamin-dependent methylmalonyl-CoA mutase (MCM; EC 5.4.99.2) was found in a cell homogenate of a photosynthetic coccolithophorid alga, Pleurochrysis carterae. Most of the enzyme occurred as the apo-enzyme, which was labile during purification. The holo-enzyme, which was converted from the apo-enzyme by incubation with 10 microM 5'-deoxyadenosylcobalamin at 4 degrees C in the dark, was purified to homogeneity and partially characterized. An apparent molecular mass for the enzyme of 150+/-5 kDa was calculated by Superdex 200 pg gel filtration. SDS-polyacrylamide gel electrophoresis of the purified enzyme gave a single protein band with an apparent molecular mass of 80+/-5 kDa, indicating that the P. carterae enzyme occurs as a homodimer. Some properties of methylmalonyl-CoA mutase from P. carterae were studied.  相似文献   

18.
The three isozymes of phosphoglycerate mutase from pig heart have been purified to homogeneity. The isozymes have a molecular weight of 57000 as determined by gel-filtration chromatography. Discontinuous gel electrophoresis in the presence of sodium dodecyl sulfate yields a single band with a molecular weight of 29000, indicating that the isozymes are dimers composed of subunits of similar mass. Hybridization experiments show that the three isozymes result from homodimeric and heterodimeric combinations of two different subunits. The two types of subunit differ in their heat lability and in the presence of -SH groups essential for enzymatic activity. No remarkable differences exist in the kinetic constants of the purified isozymes. The kinetic pattern is consistent with a 'ping-pong' mechanism. The homogeneous preparations of the three isozymes show intrinsic glycerate-2,3-P2 synthase activity and glycerate-2,3-P2 phosphatase activity which can be stimulated by glycolate-2-P.  相似文献   

19.
We have examined interactions between human methylmalonyl CoA mutase and two critical ligands, its cofactor adenosylcobalamin (AdoCbl) and its substrate methylmalonyl CoA, by performing in vitro experiments with preparations of mutase apoenzyme and holoenzyme from normal cultured human fibroblasts. When extracts are prepared from cells grown in medium containing high concentrations of hydroxocobalamin, a precursor of AdoCbl, mutase activity measured in Tris-containing buffers in the absence of added AdoCbl accounts maximally for only 50% of that activity measured in the presence of excess AdoCbl. A similar result is observed when mutase holoenzyme is formed in vitro by incubating cell extracts containing apoenzyme with AdoCbl and removing excess AdoCbl by gel filtration. When such holoenzyme preparations are heated at 45 °C and then assayed for activity, their thermostability is less than that of mutase holoenzyme heated in the presence of excess cofactor, but far greater than that of mutase apoenzyme. Methylmalonyl CoA modulates these enzyme-coenzyme interactions, since mutase holoenzyme formed in Triscontaining buffers is resolved to apoenzyme upon exposure to substrate. Qualitatively different data are obtained when buffers containing cations other than Tris are used. Under these conditions, mutase activity measured in the absence of added AdoCbl accounts for nearly 100% of the activity measured in the presence of excess cofactor, whether holoenzyme is formed in intact cells in culture or in cell extracts in vitro. Furthermore, holoenzyme formed in vitro in potassium phosphate buffer is not resolved to apoenzyme upon exposure to substrate. We suggest that the “holoenzyme” form of mutase obtained and assayed in Tris-containing buffers is that molecular species with only one of its two potential AdoCbl binding sites occupied in a catalytically active fashion, and that other ions can influence markedly the interactions between mutase, AdoCbl, and methylmalonyl CoA. These data are consistent, therefore, with the hypothesis that the dimeric mutase apoenzyme is characterized, under certain conditions, by nonequivalent active sites.  相似文献   

20.
R Rosa  I Audit  J Rosa 《Biochimie》1975,57(9):1059-1063
Electrophoresis of 3-phosphoglycerate mutase from erythrocytes of man and several animal species has been performed on cellulose acetate strips. In most cases the electrophoretic pattern of this enzymatic activity shows three bands. 2,3-diphosphoglycerate phosphatase and diphosphoglycerate mutase from erythrocytes of the same species have been revealed after migration during the same electrophoresis. We found that the band of 2,3-diphosphoglycerate phosphatase and the band of diphosphoglycerate mutase activities migrate at the same level as one of the bands corresponding to 3-phosphoglycerate mutase. Here, we discuss the possible existence of a single molecule carrying three enzymatic activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号