首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ssyF29 mutation, originally selected as an extragenic suppressor of a protein export defect, has been mapped within the rpsA gene encoding ribosomal protein S1. Here, we examine the nature of this mutation and its effect on translation. Sequencing of the rpsA gene from the ssyF mutant has revealed that, due to an IS10R insertion, its product lacks the last 92 residues of the wild-type S1 protein corresponding to one of the four homologous repeats of the RNA-binding domain. To investigate how this truncation affects translation, we have created two series of Escherichia coli strains (rpsA(+) and ssyF) bearing various translation initiation regions (TIRs) fused to the chromosomal lacZ gene. Using a beta-galactosidase assay, we show that none of these TIRs differ in activity between ssyF and rpsA(+) cells, except for the rpsA TIR: the latter is stimulated threefold in ssyF cells, provided it retains at least ca. 90 nucleotides upstream of the start codon. Similarly, the activity of this TIR can be severely repressed in trans by excess S1, again provided it retains the same minimal upstream sequence. Thus, the ssyF stimulation requires the presence of the rpsA translational autogenous operator. As an interpretation, we propose that the ssyF mutation relieves the residual repression caused by normal supply of S1 (i.e., that it impairs autogenous control). Thus, the C-terminal repeat of the S1 RNA-binding domain appears to be required for autoregulation, but not for overall mRNA recognition.  相似文献   

2.
The translation initiation efficiency of a given mRNA is determined by its translation initiation region (TIR). mRNAs are selected into 30S initiation complexes according to the strengths of the secondary structure of the TIR, the pairing of the Shine-Dalgarno sequence with 16S rRNA, and the interaction between initiator tRNA and the start codon. Here, we show that the conversion of the 30S initiation complex into the translating 70S ribosome constitutes another important mRNA control checkpoint. Kinetic analysis reveals that 50S subunit joining and dissociation of IF3 are strongly influenced by the nature of the codon used for initiation and the structural elements of the TIR. Coupling between the TIR and the rate of 70S initiation complex formation involves IF3- and IF1-induced rearrangements of the 30S subunit, providing a mechanism by which the ribosome senses the TIR and determines the efficiency of translational initiation of a particular mRNA.  相似文献   

3.
The translation initiation region (TIR) of the Escherichia coli rpsA mRNA coding for ribosomal protein S1 is characterized by a remarkable efficiency in driving protein synthesis despite the absence of the canonical Shine–Dalgarno element, and by a strong and specific autogenous repression in the presence of free S1 in trans. The efficient and autoregulated E.coli rpsA TIR comprises not less than 90 nt upstream of the translation start and can be unambiguously folded into three irregular hairpins (HI, HII and HIII) separated by A/U-rich single-stranded regions (ss1 and ss2). Phylogenetic comparison revealed that this specific fold is highly conserved in the γ-subdivision of proteobacteria (but not in other subdivisions), except for the Pseudomonas group. To test phylogenetic predictions experimentally, we have generated rpsAlacZ translational fusions by inserting the rpsA TIRs from various γ-proteobacteria in-frame with the E.coli chromosomal lacZ gene. Measurements of their translation efficiency and negative regulation by excess protein S1 in trans have shown that only those rpsA TIRs which share the structural features with that of E.coli can govern efficient and regulated translation. We conclude that the E.coli-like mechanism for controlling the efficiency of protein S1 synthesis evolved after divergence of Pseudomona  相似文献   

4.
Transducing lambda phages have been isolated that carry segments of the Escherichia coli chromosome in the aspC region, 20.5 min on the E. coli map. One of these phages, lambda aspC2, carries rpsA, the structural gene for the ribosomal protein S1. A three kilobase fragment from this phage, cloned into either the plasmid pACYC184 or the plasmid pBR322, was found to express S1. In cells carrying the rpsA gene on the high copy number plasmid pBR322 the rate of rpsA mRNA synthesis was increased 40-fold, whereas the rate of protein S1 synthesis was doubled, in comparison with these rates in an rpsA haploid.  相似文献   

5.
Numerous data accumulated during the last decade have shown that the Shine-Dalgarno (SD) sequence is not a unique initiator of translation for Escherichia coli. Several other sequences, mostly of viral origin, have demonstrated their capability of either enhancing or initiating translation in vivo. A phage T7 gene 10 sequence, called "epsilon" (epsilon), has shown its high enhancing activity on translation in both Escherichia coli and Agrobacterium tumefaciens cells. In this study the epsilon, together with three other nucleotide sequences derived from the 5' non-translated regions of tobacco mosaic virus (TMV), papaya mosaic virus (PMV) and clover yellow mosaic virus (CYMV) RNAs are tested for translation initiation activity in A. tumefaciens cells. The obtained results indicate that none of them was capable of initiating translation in vivo of chloramphenicol acetyltransferase (CAT) mRNA. To determine whether their inactivity was related with structural differences in the ribosomal protein S1, the rpsA gene (coding for S1 protein in E. coli) was co-expressed in A. tumefaciens together with the cat gene placed under the translational control of the above sequences. Our results showed that the rpsA gene product did not make any of the four viral enhancers active in A. tumefaciens cells. The inability of A. tumefaciens ribosomes to translate mRNAs devoid of SD sequences indicates for a substantial difference in the ribosome structure of the two Gram negative bacteria E. coli and A. tumefaciens.  相似文献   

6.
Ribosomal protein S1, the product of the essential rpsA gene, consists of six imperfect repeats of the same motif. Besides playing a critical role in translation initiation on most mRNAs, S1 also specifically autoregulates the translation of its own messenger. ssyF29 is a viable rpsA allele that carries an IS10R insertion within the coding sequence, resulting in a protein lacking the last motif (S1DeltaC). The growth of ssyF29 cells is slower than that of wild-type cells. Moreover, translation of a reporter rpsA-lacZ fusion is specifically stimulated, suggesting that the last motif is necessary for autoregulation. However, in ssyF29 cells the rpsA mRNA is also strongly destabilized; this destabilization, by causing S1DeltaC shortage, might also explain the observed slow-growth and autoregulation defect. To fix this ambiguity, we have introduced an early stop codon in the rpsA chromosomal gene, resulting in the synthesis of the S1DeltaC protein without an IS10R insertion (rpsADeltaC allele). rpsADeltaC cells grow much faster than their ssyF29 counterparts; moreover, in these cells S1 autoregulation and mRNA stability are normal. In vitro, the S1DeltaC protein binds mRNAs (including its own) almost as avidly as wild-type S1. These results demonstrate that the last S1 motif is dispensable for translation and autoregulation: the defects seen with ssyF29 cells reflect an IS10R-mediated destabilization of the rpsA mRNA, probably due to facilitated exonucleolytic degradation.  相似文献   

7.
8.
9.
10.
A 7 kb chromosomal DNA fragment from R. melilotii was cloned, which complemented temperature-sensitivity of an E. coli amber mutant in rpsA, the gene for ribosomal protein S1 (ES1). From complementation and maxicell analysis a 58 kd protein was identified as the homolog of protein S1 (RS1). DNA sequence analysis of the R. melilotii rpsA gene identified a protein of 568 amino acids, which showed 47% identical amino acid homology to protein S1 from E. coli. The RS1 protein lacked the two Cys residues which had been reported to play an important role for the function of ES1. Two repeats containing Shine-Dalgarno sequences were identified upstream of the structural gene. Binding studies with RNA polymerase from E. coli and Pseudomonas putida located one RNA-polymerase binding site close to the RS1 gene and another one several hundred basepairs upstream. One possible promoter was also identified by DNA sequence comparison with the corresponding E. coli promoter.  相似文献   

11.
Molecular Genetics and Genomics - By applying the Southern blot technique we compared the structural gene rpsA for ribosomal protein S1 and its preceding sequence from Escherichia coli with nine...  相似文献   

12.
B Schauder  J E McCarthy 《Gene》1989,78(1):59-72
A range of translational initiation regions (TIR) was created by combining synthetic DNA fragments derived from the atpB-atpE intercistronic sequence of Escherichia coli with the cDNA sequence encoding mature human interleukin 2 (IL-2), the E. coli fnr gene, or an fnr::lacZ gene fusion. Both the overall rates of gene expression and the relative concentrations and stabilities of the corresponding mRNA species were estimated in strains bearing the constructs on plasmids. These measurements served as the basis for analyses of the relationship between the structure of the TIR and the true rates of translation that it promotes. The constructs involving the IL-2 cDNA were predicted to allow much less stable secondary structure within the TIR than those involving the N-terminal region of the fnr gene. Thus by combining one set of upstream sequences with two different types of N-terminal coding sequence, it was possible to distinguish between the respective influences of primary and secondary structure upon initiation. The data indicate that in the presence of a given Shine-Dalgarno (SD)/start codon combination, the decisive factor for translational initiation efficiency is the stability of base pairing involving, or in the vicinity of, this region. The sequences contributing to this secondary structure can be many bases upstream of the SD region and/or downstream of the start codon. There was no indication that the specific base sequence upstream of the SD region could, other than to the extent that it contributed to the local secondary structure, significantly influence the efficiency of translational initiation.  相似文献   

13.
The translational initiation region (TIR) of the Escherichia coli rpsA gene, which encodes ribosomal protein S1, shows a number of unusual features. It extends far upstream (to position -91) of the initiator AUG, it lacks a canonical Shine-Dalgarno sequence (SD) element, and it can fold into three successive hairpins (I, II, and III) that are essential for high translational activity. Two conserved GGA trinucleotides, present in the loops of hairpins I and II, have been proposed to form a discontinuous SD. Here, we have tested this hypothesis with the "specialized ribosome" approach. Depending upon the constructs used, translation initiation was decreased three- to sevenfold upon changing the conserved GGA to CCU. However, although chemical probing showed that the mutated trinucleotides were accessible, no restoration was observed when the ribosome anti-SD was symmetrically changed from CCUCC to GGAGG. When the same change was introduced in the SD from a conventional TIR as a control, activity was stimulated. This result suggests that the GGA trinucleotides do not form a discontinuous SD. Others hypotheses that may account for their role are discussed. Curiously, we also find that, when expressed at moderate level (30 to 40% of total ribosomes), specialized ribosomes are only twofold disadvantaged over normal ribosomes for the translation of bulk cellular mRNAs. These findings suggest that, under these conditions, the SD-anti-SD interaction plays a significant but not essential role for the synthesis of bulk cellular proteins.  相似文献   

14.
The translational initiation rates directed by the translational initiation regions (TIRs) of the atpB, atpH, atpA and atpG genes of Escherichia coli were investigated using lacZ fusions present on plasmids as well as integrated into the chromosome. This was the first investigation of the translational efficiency of the atpB gene, whose unfused product (subunit a) can be toxic to the cell. The specific mRNA levels, rates of in vivo protein synthesis and beta-galactosidase activities encoded by the atp::lacZ fusions were compared in order to obtain valid estimates of relative translation rates. The results indicate that in the E. coli atp operon, translation directed by the atpB, atpH and atpG TIRs is less efficient than that directed by the atpA TIR, and are thus consistent with earlier measurements of direct atp gene expression. Initiation is, however, to differing extents, controlled by coupling to the translation of upstream neighbours. There is particularly tight coupling between atpH and atpA. Increasing the distance between these two genes whilst maintaining the original atpA TIR structure decreased the degree of coupling. The influence of manipulations of the atpG TIR structure upon translational efficiency was quantitatively more pronounced when the atpG fusions were present as a single copy per chromosome. This is likely to be related to the mRNA binding characteristics of 30S ribosomal subunits and/or to the influence of other (trans-acting) factors. The control of independent and coupled initiation at the atp TIRs is discussed in relation to mRNA structure and possible cis and trans regulatory phenomena.  相似文献   

15.
16.
Gene 1 of bacteriophage T7 early region--the RNA polymerase gene--is very actively translated during the infectious cycle of this phage. A 29 base pair fragment of its ribosome binding site containing the initiation triplet, the Shine-Dalgarno sequence (S-D), 10 nucleotides (nt) upstream and 6 nt downstream of these central elements was cloned into a vector to control the expression of the mouse dihydrofolate reductase gene (dhfr). Although all essential parts of this translation initiation region (TIR) should be present, this fragment showed only very low activity. Computer analysis revealed a potentially inhibitory hairpin binding the S-D sequence into its stem base paired to vector-derived upstream sequences. Mutational alterations demonstrated that this hairpin was not responsible for the low activity. However, addition of 21 nt of the T7 gene 1 upstream sequence to the 29 base pair fragment were capable of increasing the translational efficiency by one order of magnitude. Computer analysis of this sequence, including nucleotide shuffling, revealed that it contains a highly unstructured region lacking mRNA secondary structures but with a hairpin at its 5' end, here formed solely by T7 sequences. There was not much difference in activity whether the mRNA included or lacked vector-derived sequences upstream of the hairpin. Such highly unstructured mRNA regions were found in all very efficiently expressed T7 genes without any obvious sequence homologies. The delta G values of these regions were higher, i.e. potential secondary structural elements were fewer, than in TIR of genes from E. coli. This is likely due to the fact that T7 as a lytic phage is relying for successful infection on much stronger signals which a cell cannot afford because of the indispensable balanced equilibria of its interdependent biochemical processes. When the 5' ends of efficient T7 gene mRNA are formed by the action of RNase III they generally start with an unstructured region. Efficiently expressed T7 genes within a polycistronic mRNA, however, always contain a hairpin preceding the structure free sequence. We suggest that the formation of this 5' hairpin is releasing enough energy to keep the unstructured regions free of secondary RNA structures for sufficient time to give ribosomes and factors a good chance for binding to the TIR. In addition, sequences further downstream of the start codon give rise to an additional increase in efficiency of the TIR by almost two orders of magnitude.  相似文献   

17.
Bacteriophage T7's gene 0.3, coding for an antirestriction protein, possesses one of the strongest translation initiation regions (TIR) in E. coli. It was isolated on DNA fragments of differing length and cloned upstream of the mouse dihydrofolate reductase gene in an expression vector to control the translation of this gene's sequence. The TIR's efficiency was highly dependent on nucleotides +15 to +26 downstream of the gene's AUG. This sequence is complementary to nucleotides 1471-1482 of the 16srRNA. Similar sequences complementary to this rRNA region are present in other efficient TIRs of the E. coli genome and those of its bacteriophages. There seems to be a correlation between this sequence homology and the efficiency of the initiation signals. We propose that this region specifies a stimulatory interaction between the mRNA and 16srRNA besides the Shine-Dalgarno interaction during the translation initiation step.  相似文献   

18.
Mori K  Saito R  Kikuchi S  Tomita M 《Bio Systems》2007,90(2):414-420
Although the machinery for translation initiation in Escherichia coli is very complicated, the translational efficiency has been reported to be predictable from upstream oligonucleotide sequences. Conventional models have difficulties in their generalization ability and prediction nonlinearity and in their ability to deal with a variety of input attributions. To address these issues, we employed structural learning by artificial neural networks to infer general rules for translational efficiency. The correlation between translational activities measured by biological experiments and those predicted by our method in the test data was significant (r=0.78), and our method uncovered underlying rules of translational activities and sequence patterns from the obtained skeleton structure. The significant rules for predicting translational efficiency were (1) G- and A-rich oligonucleotide sequences, resembling the Shine-Dalgarno sequence, at positions -10 to -7; (2) first base A in the initiation codon; (3) transport/binding or amino acid metabolism gene function; (4) high binding energy between mRNA and 16S rRNA at positions -15 to -5. An additional inferred novel rule was that C at position -1 increases translational efficiency. When our model was applied to the entire genomic sequence of E. coli, translational activities of genes for metabolism and translational were significantly high.  相似文献   

19.
20.
Translational riboswitches are bacterial gene regulatory elements found in the 5′-untranslated region of mRNAs. They operate through a conformational refolding reaction that is triggered by a concentration change of a modulating small molecular ligand. The translation initiation region (TIR) is either released from or incorporated into base pairing interactions through the conformational switch. Hence, initiation of translation is regulated by the accessibility of the Shine-Dalgarno sequence and start codon. Interaction with the 30S ribosome is indispensable for the structural switch between functional OFF and ON states. However, on a molecular level it is still not fully resolved how the ribosome is accommodated near or at the translation initiation region in the context of translational riboswitches. The standby model of translation initiation postulates a binding site where the mRNA enters the ribosome and where it resides until the initiation site becomes unstructured and accessible. We here investigated the adenine-sensing riboswitch from Vibrio vulnificus. By application of a 19F labelling strategy for NMR spectroscopy that utilizes ligation techniques to synthesize differentially 19F labelled riboswitch molecules we show that nucleotides directly downstream of the riboswitch domain are first involved in productive interaction with the 30S ribosomal subunit. Upon the concerted action of ligand and the ribosomal protein rS1 the TIR becomes available and subsequently the 30S ribosome can slide towards the TIR. It will be interesting to see whether this is a general feature in translational riboswitches or if riboswitches exist where this region is structured and represent yet another layer of regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号