首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1 Silicon can increase the resistance of plants to attack by herbivorous insects. The present study aimed to determine the effect of silicon and cultivar on mandibular wear in larvae of the sugarcane stalk borer Eldana saccharina Walker (Lepidoptera: Pyralidae).
2 Four sugarcane cultivars, resistant (N21, N33) and susceptible (N11, N26) to E. saccharina were grown in a pot trial in silicon deficient river sand, with (Si+) and without (Si−) calcium silicate. Individual third-instar larvae were confined on the sugarcane stalk at three known feeding sites (leaf bud, root band and internode) and left to feed for 21 days.
3  Eldana saccharina larval heads were mounted on stubs, with the mandibles oriented horizontally and photographed under a scanning electron microscope. Mandibular wear was measured from the digital images using a quantitative method.
4 Although there was a trend for increased wear in larvae that developed on Si+ cane, no significant effect of silicon, cultivar or site on mandibular wear of E. saccharina was shown.
5 This is the first study to accurately and quantitatively measure the mandibular wear of an insect fed on Si+ plants.  相似文献   

2.
Many plants grown in soils amended with silicon (Si) display increased levels of resistance to attack by insect herbivores. This study aimed to determine if Si treatment impeded Eldana saccharina Walker (Lepidoptera: Pyralidae) stalk penetration and subsequent damage, as well as borer mass gain, on the node and internode of a susceptible (N11) and a resistant (N33) sugarcane cultivar. Sugarcane [Saccharum spp. (Poaceae)] cultivars were grown in a pot trial in Si‐deficient river sand, with (Si+) and without (Si–) calcium silicate. Sugarcane was infested with 2‐week‐old E. saccharina larvae and harvested at four times, 24, 48, 72, and 96 h after infestation. Silicon‐treated plants showed significant increases in Si content compared to controls, and the external rind was significantly harder for Si+ cane than Si– cane. Silicon treatment significantly decreased borer penetration, stalk damage, and larval mass gain. The results are consistent with the hypothesis that Si contributes to sugarcane stalk borer resistance by impeding larval penetration. Silicon appears to contribute to the suppression of E. saccharina directly through reduced larval growth and feeding damage to the crop, and indirectly by delaying stalk penetration, resulting most likely in increased exposure time of young larvae to natural enemies, adverse climatic factors, or control measures that target young larvae (e.g., insecticides).  相似文献   

3.
Abstract:  Notwithstanding the introduction of several pest management tactics, the stalk borer Eldana saccharina Walker (Lep., Pyralidae) remains the most serious pest in South African sugarcane. A novel tactic for managing this pest in sugarcane would be the use of a dead-end trap crop that attracts moths for oviposition and curtails subsequent larval development, thereby reducing pest population size. Glasshouse bioassays, in which moths chose to oviposit on maize producing Bacillus thuringiensis Cry1Ab toxin ( Bt -maize), non- Bt -maize or sugarcane of two cultivars (borer-resistant and -susceptible), showed that E. saccharina laid significantly more eggs and egg batches per dry leaf and unit mass of dry leaf on maize ( Bt or non- Bt ) than on either of the cane cultivars. When moths had a choice of ovipositing on 2-, 3-, 4- or 5-month-old maize ( Bt and non- Bt ), dry leaf number and mass of dry leaf material was significantly correlated with number of eggs and egg batches, indicating that older plants, which carried larger amounts of dry leaf matter, were more attractive for oviposition. Finally, glasshouse assays in which hatching larvae fed on 2.5-, 3.5- and 4.5-month-old Bt and non- Bt -maize plants, showed that the Cry1Ab toxin was effective in killing E. saccharina larvae in all Bt -maize plant growth stages, confirming that Bt -maize fulfilled the third requirement (curtailing larval development) of a dead-end trap crop for this pest. We argue that Bt -maize warrants further testing in the field as a trap crop, both alone and as a component of a 'push–pull' or habitat management system for E. saccharina in sugarcane.  相似文献   

4.
The African sugarcane stalk borer, Eldona saccharina Walker (Lepidoptera: Pyralidae), is widely distributed throughout sub-Saharan Africa and is an important insect pest of maize and sugarcane. The insect shows significant variation in behaviour, host plant and natural enemy guild in different regions. Several attempts to redistribute the natural enemies of E. saccharina from West Africa to South Africa were unsuccessful. The significant behavioural, host plant and natural enemy variations as well as failures of biocontrol attempts evoked a hypothesis of genetic diversification. To evaluate this hypothesis a molecular analysis was conducted on geographically isolated populations of E. saccharina from East, North, South and West Africa, using the cytochrome c oxidase subunit I (COI) region of the mitochondrial genome. The results revealed that E. saccharina populations are separated into four major units corresponding to the West Africa, Rift Valley, South/East Africa and southern African populations. Mitochondrial DNA divergence among the four populations ranged from 1% to 4.98%. To examine the impact of the observed genetic variation on the fertility of inter-population crosses, a mating experiment was conducted between the Rift valley and South African population to produce an F1 generation, and these were backcrossed with the South African parent population. Fertility of eggs produced by the F1/parent population cross was significantly reduced when compared to fertility of the "true" South African line, and the F1/F1 cross. The contributions of the observed genetic differences and inter population incompatibility for the failure of previous biocontrol attempts are discussed and recommendations on future biocontrol practices are given.  相似文献   

5.
Silicon (Si) can improve resistance of plants to insect attack and may also enhance tolerance of water stress. This study tested if Si-mediated host plant resistance to insect attack was augmented by water stress. Four sugarcane cultivars, two resistant (N21, N33) and two susceptible (N26, N11) to Eldana saccharina Walker were grown in a pot trial in Si-deficient river sand, with (Si+) and without (Si-) calcium silicate. To induce water stress, irrigation to half the trial was reduced after 8.5 months. The trial was artificially infested with E. saccharina eggs after water reduction and harvested 66 days later. Silicon treated, stressed and non-stressed plants of the same cultivar did not differ appreciably in Si content. Decreases in numbers of borers recovered and stalk damage were not associated with comparable increases in rind hardness in Si+ cane, particularly in water-stressed susceptible cultivars. Overall, Si+ plants displayed increased resistance to E. saccharina attack compared with Si- plants. Borer recoveries were significantly lower in stressed Si+ cane compared with either stressed Si- or non-stressed Si- and Si+ cane. Generally, fewer borers were recovered from resistant cultivars than susceptible cultivars. Stalk damage was significantly lower in Si+ cane than in Si- cane, for N21, N11 and N26. Stalk damage was significantly less in Si+ combined susceptible cultivars than in Si- combined susceptible cultivars under non-stressed and especially stressed conditions. In general, the reduction in borer numbers and stalk damage in Si+ plants was greater for water-stressed cane than non-stressed cane, particularly for susceptible sugarcane cultivars. The hypothesis that Si affords greater protection against E. saccharina borer attack in water-stressed sugarcane than in non-stressed cane and that this benefit is greatly enhanced in susceptible cultivars is supported. A possible active role for soluble Si in defence against E. saccharina is proposed.  相似文献   

6.
Surveys for sugarcane stem borers were undertaken in Ethiopia to determine the prevalence and distribution of these and their natural enemies in crops and indigenous host plants. Eldana saccharina Walker was not recovered from sugarcane, but was present in three indigenous wetland sedges, Cyperus papyrus, C. fastigiatus and C. dives in the southern, central and northern part of the country. The latter indigenous host plant was present in waterways adjacent to sugarcane on the commercial sugar estates. The tachinids Schembria eldanae Barraclough and Actia sp. were common parasitoids of E. saccharina larvae in these indigenous sedges. The braconid Dolichogenidea sp. was recovered from E. saccharina larvae in C. dives. Pathogens comprising Beauveria bassiana, Bacillus thuringiensis and Entomophthora sp., were found to be important mortality factors of E. saccharina larvae in the indigenous sedges. The occurrence of E. saccharina in Ethiopia is reported for the first time, and the host plant preferences of the borer and its indigenous natural enemies found during the surveys are recorded. In addition, its potential threat to sugarcane production in Ethiopia is discussed.  相似文献   

7.
A novel F2 screening technique was developed for detecting resistance in sugarcane borer, Diatraea saccharalis (F.), to transgenic Bacillus thuringiensis (Bt)-maize expressing the Cry1Ab insecticidal protein. The F2 screening method involved (i) collecting larvae from maize fields; (ii) establishing two-parent families; (iii) screening F2 neonates for survival on Bt-maize leaf tissues; and (iv) confirming resistance on commercial Bt-maize plants. With the F2 screening method, 213 iso-line families of D. saccharalis were established from field collections in northeast Louisiana, USA and were screened for Bt resistance. One family was confirmed to carry a major Bt resistance allele(s). In a laboratory bioassay, larval mortality of the Bt-resistant D. saccharalis on Bt-maize leaf tissues was significantly lower than that of a Bt-susceptible strain. This Bt-resistant D. saccharalis population is the first corn stalk borer species that has completed larval development on commercial Bt-maize. The F2 screening protocol developed in this study could be modified for detecting Bt resistance alleles in other similar corn stalk borers, such as the European corn borer, Ostrinia nubilalis (Hübner), and the southwestern corn borer, D. grandiosella Dyar.  相似文献   

8.

Key message

A combination of in vitro culture and mutagenesis using ethyl methanesulfonate (EMS) followed by culture filtrate-mediated selection produced variant sugarcane plants tolerant and resistant to Fusarium sacchari.

Abstract

Eldana saccharina is a destructive pest of the sugarcane crop in South Africa. Fusarium sacchari PNG40 (a fungal strain harmful to E. saccharina) has the potential to be an endophytic biological control agent of the stalk borer. However, the fungus causes Fusarium stalk rot in sugarcane. In the current study, sugarcane plants tolerant and resistant to F. sacchari PNG40 were produced by exposing embryogenic calli to the chemical mutagen ethyl methanesulfonate (EMS), followed by in vitro selection during somatic embryogenesis and plantlet regeneration on media containing F. sacchari culture filtrates (CF). The incorporation of 100 ppm CF in the culture media at the embryo maturation stage, at germination, or at both, resulted in callus necrosis and consequent reduced plantlet yield. Subsequent trimming of the roots of regenerated plants and their exposure to 1,500 ppm CF served as a further selection treatment. Plants produced from EMS-treated calli displayed improved root re-growth in the presence of CF pressure compared with those from non-treated calli. The tolerance of CF-selected plants was confirmed in greenhouse tests by inoculation with F. sacchari PNG40, re-isolation of Fusarium spp. from undamaged tissue of asymptomatic plants and establishment of the identity of fungal isolates as PNG40 using molecular analysis. The restriction of PNG40 presence to the inoculation lesion in some plants suggested their resistance to the fungus. Genotypes exhibiting symptomless endophytic colonization by PNG40 were identified and will be utilised for testing biological control strategies against E. saccharina.  相似文献   

9.
The cry1Ac7 gene of Bacillus thuringiensis strain 234, showing activity against the sugarcane borer Eldana saccharina, was cloned under the control of the tac promoter. The fusion was introduced into the broad-host-range plasmid pKT240 and the integration vector pJFF350 and without the tac promoter into the broad-host-range plasmids pML122 and pKmM0. These plasmids were introduced into a Pseudomonas fluorescens strain isolated from the phylloplane of sugarcane and the endophytic bacterium Herbaspirillum seropedicae found in sugarcane. The ptac-cry1Ac7 construct was introduced into the chromosome of P. fluorescens using the integration vector pJFF350 carrying the artificial interposon Omegon-Km. Western blot analysis showed that the expression levels of the integrated cry1Ac7 gene were much higher under the control of the tac promoter than under the control of its endogenous promoter. It was also determined that multicopy expression in P. fluorescens and H. seropedicae of ptac-cry1Ac7 carried on pKT240 caused plasmid instability with no detectable protein expression. In H. seropedicae, more Cry1Ac7 toxin was produced when the gene was cloned under the control of the Nm(r) promoter on pML122 than in the opposite orientation and bioassays showed that the former resulted in higher mortality of E. saccharina larvae than the latter. P. fluorescens 14::ptac-tox resulted in higher mortality of larvae than did P. fluorescens 14::tox. An increased toxic effect was observed when P. fluorescens 14::ptac-tox was combined with P. fluorescens carrying the Serratia marcescens chitinase gene chiA, under the control of the tac promoter, integrated into the chromosome.  相似文献   

10.
Plant resistance is a useful component of integrated pest management for several insects that are economically damaging to maize, Zea mays L. In this study, 15 experimental lines of maize derived from a backcross breeding program were evaluated for resistance to corn earworm, Helicoverpa zea (Boddie); fall armyworm, Spodoptera frugiperda (J. E. Smith); southwestern corn borer, Diatraea grandiosella Dyar; and sugarcane borer, Diatraea saccharalis (F.). Experimental line 100-R-3 was resistant in the field to leaf feeding by fall armyworm and line 116-B-10 was resistant in the field to leaf feeding by fall armyworm and leaf and stalk feeding by southwestern corn borer. When corn earworm larvae were fed field harvested silks from experimental line 81-9-B in the laboratory, their pupal weights were significantly lower than the pupal weights of larvae that were fed silks from the resistant control, Zapalote Chico. Maysin levels lower than those commonly associated with corn earworm resistance were present in the resistant experimental line, 107-8-7, indicating a new basis confers resistance to corn earworm in this line. These resistant experimental lines will provide plant breeders with new sources of resistance to lepidopterous insects for the development of improved maize breeding populations.  相似文献   

11.
Abstract
  • 1 The stalk borer Eldana saccharina is the most destructive pest in sugarcane in South Africa. This study investigated: (1) the potential of applied silicon in enhancing plant resistance of sugarcane to E. saccharina, using calcium silicate as a carrier; (2) whether there was any interaction between cane variety (and stalk borer resistance) and silicon treatment.
  • 2 Six commercial varieties of sugarcane were treated in a pot‐plant trial with two levels (5000 and 10 000 kg/ha) of calcium silicate. After artificial infestation with E. saccharina, response to the treatments was assessed in terms of borer numbers and mass, and stalk damage.
  • 3 Calcium silicate significantly enhanced resistance at the higher rate compared with the control. Borer mass was reduced by 19.8% and stalk length bored by 24.4%. Lower treatment values were intermediate between those of the higher treatment and the control.
  • 4 The interaction between variety and Si treatment was not significant when varieties were examined individually in the analysis. However, the interaction was significant for borer mass when varieties were grouped according to their resistance characteristics. Susceptible varieties might benefit more from treatment with silicon than resistant ones, as resistant varieties showed no significant effect of silicon.
  • 5 All varieties had increased silicon content due to the treatments, but differed appreciably in stalk silicon content at the different treatment levels. Similarly, within varieties, stalk silicon content did not correspond consistently with borer response patterns and silicate application rates.
  相似文献   

12.
Abstract:  The effects of four silicon sources – a USA calcium silicate, a local (South African) calcium silicate, Slagment® and fly ash – on the resistance of sugarcane cultivars (two resistant and two susceptible) to Eldana saccharina Walker (Lepidoptera: Pyralidae) were studied in a potted sugarcane trial. Silicon sources were applied at 5000 or 10 000 kg/ha for the calcium silicates and Slagment; fly ash was applied at 15 000 or 30 000 kg/ha. The greatest increase in plant silicon content (particularly in stalks) was recorded for plants treated with local calcium silicate. Silicon uptake did not vary significantly between the susceptible and resistant cultivars, although the resistant cultivars had inherently higher silicon content than the susceptible ones. Treatment with silicon significantly reduced borer damage and borer performance at the higher treatment level. In general, borer damage and performance decreased with increasing rates of applied silicon and both variables were inversely related with per cent stalk silicon. On average, the higher silicon rate reduced damage by 34% in the susceptible cultivars and by 26% in the resistant cultivars, supporting the argument that susceptible cultivars benefit more from silicon treatments than resistant ones. We propose that calcium silicate amendments could be employed in the integrated, area-wide management of E. saccharina and in the management of soil acidity, both of which are widespread problems in the South African sugar industry.  相似文献   

13.
Fusarium species section Liseola namely F. fujikuroi, F. proliferatum, F. andiyazi, F. verticillioides, and F. sacchari are well-known plant pathogens on rice, sugarcane and maize. In the present study, restriction analysis of the intergenic spacer regions (IGS) was used to characterize the five Fusarium species isolated from rice, sugarcane and maize collected from various locations in Peninsular Malaysia. From the analysis, and based on restriction patterns generated by the six restriction enzymes, Bsu151, BsuRI, EcoRI, Hin6I, HinfI, and MspI, 53 haplotypes were recorded among 74 isolates. HinfI showed the most variable restriction patterns (with 11 patterns), while EcoRI showed only three patterns. Although a high level of variation was observed, it was possible to characterize closely related species and isolates from different species. UPGMA cluster analysis showed that the isolates of Fusarium from the same species were grouped together regardless of the hosts. We conclude that restriction analysis of the IGS regions can be used to characterize Fusarium species section Liseola and to discriminate closely related species as well as to clarify their taxonomic position.  相似文献   

14.
The ability of Fusarium species isolated from bananas to produce mycotoxins was studied with 66 isolates of the following species: F. semitectum var. majus (8 isolates), F. camptoceras (3 isolates), a Fusarium sp. (3 isolates), F. moniliforme (16 isolates), F. proliferatum (9 isolates), F. subglutinans (3 isolates), F. solani (3 isolates), F. oxysporum (5 isolates), F. graminearum (7 isolates), F. dimerum (3 isolates), F. acuminatum (3 isolates), and F. equiseti (3 isolates). All isolates were cultured on autoclaved corn grains. Their toxicity to Artemia salina L. larvae was examined. Some of the toxic effects observed arose from the production of known mycotoxins that were determined by thin-layer chromatography, gas chromatography, or high-performance liquid chromatography. All F. camptoceras and Fusarium sp. isolates proved toxic to A. salina larvae; however, no specific toxic metabolites could be identified. This was also the case with eight isolates of F. moniliforme and three of F. proliferatum. The following mycotoxins were encountered in the corn culture extracts: fumonisin B(inf1) (40 to 2,900 (mu)g/g), fumonisin B(inf2) (150 to 320 (mu)g/g), moniliformin (10 to 1,670 (mu)g/g), zearalenone (5 to 470 (mu)g/g), (alpha)-zearalenol (5 to 10 (mu)g/g), deoxynivalenol (8 to 35 (mu)g/g), 3-acetyldeoxynivalenol (5 to 10 (mu)g/g), neosolaniol (50 to 180 (mu)g/g), and T-2 tetraol (5 to 15 (mu)g/g). Based on the results, additional compounds produced by the fungal isolates may play prominent roles in the toxic effects on larvae observed. This is the first reported study on the mycotoxin-producing abilities of Fusarium species that contaminate bananas.  相似文献   

15.
A bioassay to screen fungal isolates for endophytic growth and antagonism against Fusarium verticillioides in maize was developed. The method was based on the commonly used toothpick inoculation method followed by measurement of stalk necrosis, and was designed to assure a direct introduction of the endophyte into the plant. Thirty-four fungal endophytes isolated from surface sterilized grass and maize stalks from Costa Rica, and four soil isolates, were tested for antagonism and endophytic growth. Six isolates gave less necrosis (P < 0.05) than the control treated with F. verticillioides alone, but only one isolate, Trichoderma koningii S8, reduced the stalk necrosis when the test was repeated. Reisolations from the stalk showed that none of the isolates were able to completely eliminate F. verticillioides from the maize stalk. It is concluded that F. verticillioides is a very strong competitor that is highly adapted to live in association with maize, and that an effective antagonist against F. verticillioides still remains to be found. The screening assay developed in this study may prove to be a useful tool to study the in vivo interactions between plant pathogens and antagonistic endophytes.  相似文献   

16.
A Louisiana strain of the sugarcane borer, Diatraea saccharalis (F.) (Lepidoptera: Crambidae), was selected for resistance to the CrylAb protein of Bacillus thuringiensis (Bt) by using an F2 screening procedure. Survival of Bt-resistant, -susceptible, and -heterozygous genotypes of sugarcane borer was evaluated on vegetative and reproductive stages of five non-Bt and seven Bt field corn, Zea mays L., hybrids in a greenhouse study. Larval survival was recorded 21 d after infestation of neonates on potted plants. Larval survival across the three sugarcane borer genotypes and five non-Bt corn hybrids after 21 d ranged from 23.6 +/- 5.2% (mean +/- SEM) to 57.5 +/- 5.2%. Mean survival of Cry1Ab-resistant larvae on vegetative and reproductive plant stages was 12 and 21%, respectively. During the vegetative stages, all seven Bt corn hybrids were highly efficacious against Cry1Ab-susceptible and -heterozygous genotypes of sugarcane borer, with a larval survival rate of <2% for the Bt-susceptible genotype and < or =5% for the heterozygotes. However, 8-18% of the heterozygous genotype survived on reproductive stage plants for four of the seven Bt corn hybrids tested. The variation in performance of Bt corn cultivars at vegetative and reproductive growth stages against Cry1Ab resistant sugarcane borer suggests differential seasonal expression that may hasten resistance in the field. Bt corn hybrids expressing a "high dose" for European corn borer, Ostrinia nubilalis (Hübner), may not produce a sufficient high dose for the sugarcane borer.  相似文献   

17.
《Fungal biology》2022,126(3):250-266
Many species in the Fusarium fujikuroi Species Complex (FFSC) have an affinity for grass species, with whom they live in an endophytic association or cause disease. We recovered isolates of Fusarium from agriculturally important grasses in Africa and Brazil, and characterized them with morphological markers, mating type, and Amplified Fragment Length Polymorphisms (AFLPs). We also conducted multi-locus phylogenetic analyses based on partial DNA sequences of translation elongation factor-1α (TEF1), β-tubulin (TUB), and the second largest subunit of RNA polymerase (RPB2) gene regions. Sexual cross fertility was used to test the biological species concept and the sexual stage of F. madaense is described. A novel species within the FFSC, Fusarium mirum, that is different from the other known species in the complex, was formally described. Fusarium mirum, F. madaense, and Fusarium andiyazi are a tightly intertwined species trio that are morphologically identical, but phylogenetically distinguishable, and amongst whom interspecific genetic exchange may still occur. These three species are so close that they cannot be reliably distinguished if only sequences of the TEF1 gene are used. In pathogenicity tests, all tested isolates of F. madaense from sugarcane, sorghum, maize, millet and Brachiaria could induce stalk rot in sorghum, maize and millet, and pokkah boeng in sugarcane. This study increases our understanding of the diversity of species within the FFSC that cause disease in tropical grasses or act as endophytes, and their geographic distributions. The genetically close relationship between F. mirum, F. madaense, and F. andiyazi provides an opportunity to study and identify factors underlying their limited inter-specific cross-fertility and sympatric speciation.  相似文献   

18.
Abstract:  In an attempt to set up habitat management strategy against Eldana saccharina Walker, an economically important graminaceous stem and cob borer, two laboratory experiments were carried out. The first experiment was designed to assess oviposition preference of E. saccharina for growth stages, plant parts and freshness of different host plants and between host plants species. Zea mays L., Sorghum arundinaceum (Desv.) Stapf, Andropogon gayanus Kunth, Panicum maximum Jacq., Pennisetum polystachion (Linn.) and Cyperus papyrus L. were assessed. Results showed that E. saccharina preferred wild grasses to maize for oviposition. More than 94% eggs were laid on wild grasses. Of all tested grasses, P. polystachion was the most attractive with more than 30% of collected eggs. For all plant species, post-tasseling stage was more attractive than the tasseling and pre-tasseling ones. More than 90% of total eggs were laid on dry leaves and sheaths and less than 10% on fresh leaves. Different characteristics relating to population dynamics of E. saccharina were assessed in the second experiment. Larval survival rate was 10% on Z. mays , 0.50% on S. arundinaceum and around 0% on the other wild grasses. Larval development length was longer on S. arundinaceum than on Z. mays . Females reared on Z. mays were three times more fecund than those reared on S. arundinaceum . Complete life table of females from larvae reared on Z. mays was studied.  相似文献   

19.

Background and aims

Soil amendment with silicon (Si) can significantly increase resistance of susceptible sugarcane cultivars grown in pots to stalk borer Eldana saccharina (Lepidoptera: Pyralidae). This study tested the hypothesis that a single application of silicate can increase resistance to E. saccharina and increase yield in field-grown sugarcane.

Methods

Two Si materials (Calmasil® and Slagment® at 4 and 8 t/ha) were applied at planting to a field trial extending over three successive crops and incorporating three sugarcane cultivars varying in borer susceptibility.

Results

Both materials, especially Slagment, significantly increased soil, leaf and stalk Si content, but leaf Si levels seldom exceeded 0.5 %. Silicon treatment significantly reduced percent stalks bored in all three crops and stalk length bored in the second ratoon crop, but did not affect borer numbers per 100 stalks (E/100) or increase cane or sucrose yield. Borer damage and E/100 were significantly and consistently reduced in the resistant cultivar.

Conclusions

We argue that if leaf Si% in field sugarcane can be elevated to or exceed 0.8 %, using materials that release Si slowly, substantial reductions in stalk damage and sucrose loss could be achieved in susceptible cultivars in low-Si soils.  相似文献   

20.
【目的】农作物间套作对害虫的影响很大程度上取决于害虫的行为反应,通过研究玉米/甘蔗套作系统中植物气味对亚洲玉米螟Ostrinia furnacalis(Guenee)行为的影响,将为利用化学生态手段防治套作田中的害虫提供依据。【方法】通过昆虫触角电位实验、成虫产卵和幼虫取食实验,测定了甘蔗、玉米植株及二氯甲烷漂洗物对亚洲玉米螟成虫产卵、幼虫取食的影响。【结果】亚洲玉米螟成虫在甘蔗植株上的落卵量(卵粒数、卵块数)与玉米植株差异不显著,取食甘蔗植株的幼虫数量显著低于玉米植株。亚洲玉米螟对甘蔗、玉米叶片漂洗物均可产生EAG反应,且在同一浓度下的反应值之间无显著差异。成虫产卵量(卵粒数、卵块数)在0.1 gE/mL浓度的甘蔗和玉米漂洗物间差异不显著;幼虫对经甘蔗叶片漂洗物处理过的饲料的相对取食率均低于65.00%,显著低于玉米漂洗物处理的饲料。【结论】甘蔗和玉米气味对亚洲玉米螟产卵的影响没有差异,但甘蔗气味会导致初孵幼虫表现出很强的逃逸行为。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号