共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of endoproteinase Arg-C on the skeletal myosin head heavy chain was investigated through characterization of peptides and amino acid sequence analysis. The protease splits exclusively the 50 kDa-20 kDa junction at the lysine cluster spanning residues 639-641 and does not affect any other protease-sensitive region of the entire myosin heavy chain. The sensitivity of the cleavage to actin and nucleotide binding makes this protease a very specific conformational probe of S-1. The nicked S-1 derivative, containing an intact NH2-terminal 75 kDa fragment, may serve as a tool for gaining further insights into the domain structure and function of the myosin head. 相似文献
2.
T Hozumi 《Biochemistry》1983,22(4):799-804
3.
The thermal denaturation of the myosin subfragment 1 (S1) from rabbit skeletal muscle and of its derivatives obtained by tryptic digestion has been studied by means of differential scanning calorimetry. Two distinct thermal transitions were revealed in the isolated complex of the C-terminal 20 kDa fragment of the S1 heavy chain with the alkali light chain. These transitions were identified by means of a thermal gel analysis method. It has been shown that the thermal denaturation of the 20 kDa fragment of the S1 heavy chain correlates with the melting of the most thermostable domain in the S1 molecule. It is concluded that this domain is located in the C-terminal 20 kDa segment of the S1 heavy chain. 相似文献
4.
beta-cardiac myosin subfragment 1 (betaS1) tertiary structure and dynamics were characterized with proteolytic digestion, nucleotide analogue trapping kinetics, and intrinsic fluorescence changes accompanying nucleotide binding. Proteolysis of betaS1 produces the 25, 50, and 20 kDa fragments and a new cut within the 50-kDa fragment at Arg369. F-actin inhibits cleavage of the 50-kDa fragment and fails to inhibit cleavage at the 50/20 kDa junction, suggesting betaS1 presents an actoS1 conformation fundamentally different from skeletal S1. Time-dependent changes in Mg(2+)-ATPase accompanying proteolysis identifies cleavage points that lie within the energy transduction pathway. The nucleotide analogue trapping kinetics reveal the presence of a reversible weakly actin attached state. Comparison of nucleotide analogue induced betaS1 structures with the transient structures occurring during ATPase indicates analogue induced and transient structures are in a one-to-one correspondence. Tryptophan fluorescence enhancement accompanies the binding or trapping of nucleotide or nucleotide analogues. Isolation of Trp508 fluorescence shows it is an ATP-sensitive tryptophan and that its vicinity changes conformation sequentially with the transient intermediates accompanying ATPase. These studies elucidate energy transduction and suggest how mutations of betaS1 implicated in disease might undermine function, stability, or efficiency. 相似文献
5.
A Muhlrad A A Kasprzak K Ue K Ajtai T P Burghardt 《Biochimica et biophysica acta》1986,869(2):128-140
We have isolated two proteolytic fragments of subfragment 1 (S-1) of myosin from rabbit skeletal muscle. These fragments, identified by their molecular weights of 20 and 50 kDa, may be functional domains that, when isolated, retain their specific function. We have studied several structural and functional features of the 20 and 50 kDa fragments. Considerable secondary structure in both fragments has been observed in CD spectrum studies. Previously CD spectra showed 64% ordered structure for the 20 kDa fragment (Muhlrad and Morales, M.F. (1984) Proc. Natl. Acad. Sci. 81, 1003) and here we show 71% ordered structures for the 50 kDa fragment. Fluorescence lifetime studies of tryptophan residues in the 50 kDa fragment and 1,5-IAEDANS-labeled SH-1 in the 20 kDa fragment are used to investigate the tertiary structure of the fragments. We find the tertiary structure relating to this measurement of both fragments to be intact; however, the reaction of 1,5-IAEDANS with SH-1 on the isolated 20 kDa fragment is less specific than with S-1. Furthermore, the fragments showed a tendency to aggregate. The domain concept of S-1 was supported by the characteristic biochemical function of the isolated fragments. Both of the fragments were effective in competing with S-1 for binding to actin in acto-S-1 ATPase measurements. From these studies and in direct binding measurement the 20 kDa fragment proved to bind with higher affinity to actin than did the 50 kDa fragment. 相似文献
6.
Effects of tryptic digestion on myosin subfragment 1 and its actin-activated adenosinetriphosphatase 总被引:9,自引:0,他引:9
Myosin subfragment 1 (S-1) was fluorescently labeled at its rapidly reacting thiol ("SH1"). Short exposure to trypsin cuts the S-1 heavy chain into three still-associated fragments (20K, 50K, and 27K) [Balint, M., Wolf, L., Tarcsafalvi, A., Gergely, J., & Sreter, F.A. (1978) Arch. Biochem. Biophys. 190, 793-799] which bind F-actin to the same extent as does the uncut labeled S-1, as indicated by time-resolved fluorescence anisotropy decay (at 4 degrees C, pH 7, in 0.15 M KC1 and 5 mM MgC12, +/- 1 mM ADP). These results are thus in agreement with turbidity measurements on similar systems as reported by Mornet et al. [Mornet, D., Pantel, P., Audemard, E., & Kassab, R. (1979) Biochem. Biophys. Res. Commun. 89, 925-932]. The excited-state lifetime of the fluorescent label on cut S-1 is indistinguishable from that on normal S-1 (+/- ADP, +/- F-actin). F-Actin activation of MgATPase of cut S-1 is lower than that for normal S-1 at moderate concentrations of F-actin, as reported by Mornet et al. (1979). But as the F-actin concentration is increased, the MgATPase activities for cut S-1 approach those for uncut S-1. In terms of an eight-species steady-state kinetics scheme involving actin binding to free S-1, S-1 . ATP, S-1. ADP X P, and S-1 . ADP, actin affinity for the species S-1 . ADP X P was found to be 13.4 times greater for uncut S-1 than for cut S-1 [at 24 degrees C, pH 7.0, in 3 mM KC1, 1 mM ATP, 1 mM MgCl2, and 20 mM N-[tris(hydroxymethyl)methyl]-2-aminoethanesulfonic acid]. 相似文献
7.
The heavy chain of myosin's subfragment 1 (S1) was cleaved at two distinct sites (termed V1 and V2) after irradiation with UV light in the presence of millimolar concentrations of vanadate and in the absence of nucleotides or divalent metals. The V1 site cleavage appeared to be identical with the previously described active site cleavage at serine-180, which is effected by irradiation of a photomodified form of the S1-MgADP-Vi complex [Cremo, C. R., Grammer, J. C., & Yount, R. G. (1989) J. Biol. Chem. 264, 6608-6011]. The V2 site was cleaved specifically, without cleavage at the V1 site, first by formation of the light-stable S1-Co2+ADP-Vi complex at the active site [Grammer, J. C., Cremo, C. R., & Yount, R. G. (1988) Biochemistry 27, 8408-8415] and then by irradiation in the presence of millimolar vanadate. By gel electrophoresis, the V2 site was localized to a region about 20 kDa from the COOH terminus of the S1 heavy chain. From the results of tryptic digestion experiments, the COOH-terminal V2 cleavage peptide appeared to contain lysine-636 in the linker region between the 50- and 20-kDa tryptic peptides of the heavy chain. This site appeared to be the same site cleaved by irradiation of S1 (not complexed with Co2+ADP-Vi) in the presence of millimolar vanadate as previously described [Mocz, G. (1989) Eur. J. Biochem. 179, 373-378]. Cleavage at the V2 site was inhibited by Co2+ but was not significantly affected by the presence of nucleotides or Mg2+ ions. Tris buffer significantly inhibited V2 cleavage. From the results of UV-visible absorption, 51V NMR, and frozen-solution EPR spectral experiments, it was concluded that irradiation with UV light reduced vanadate +5 to the +4 oxidation state, which was then protected from rapid reoxidation by O2 by complexation with the Tris buffer. The relatively stable reduced form or forms of vanadium were not competent to cleave S1 at either the V1 or the V2 site. 51V NMR titration experiments indicated that a tetrameric species of vanadium preferentially bound to S1 and to the S1-MgADP-Vi complex, whereas no binding of either the monomeric or dimeric species could be detected. These results suggest that the vanadate tetramer was responsible for the photocleavage of S1 which occurred at both the V1 and V2 sites in the absence of nucleotides or divalent metals. 相似文献
8.
Polymerization of G-actin by myosin subfragment 1 总被引:3,自引:0,他引:3
The polymerization of actin from rabbit skeletal muscle by myosin subfragment 1 (S-1) from the same source was studied in the depolymerizing G-actin buffer. The polymerization reactions were monitored in light-scattering experiments over a wide range of actin/S-1 molar rations. In contrast to the well resolved nucleation-elongation steps of actin assembly by KC1 and Mg2+, the association of actin in the presence of S-1 did not reveal any lag in the polymerization reaction. Light scattering titrations of actin with S-1 and vice versa showed saturation of the polymerization reaction at stoichiometric 1:1 ratios of actin to S-1. Ultracentrifugation experiments confirmed that only stoichiometric amounts of actin were incorporated into a 1:1 acto-S-1 polymer even at high actin/S-1 ratios. These polymers were indistinguishable from standard complexes of S-1 with F-actin as judged by electron microscopy, light scattering measurements, and fluorescence changes observed while using actin covalently labeled with N-(1-pyrenyl)iodoacetamide. F-actin obtained by polymerization of G-actin by S-1 could initiate rapid assembly of G-actin in the presence of 10 mM KC1 and 0.5 mM MgCl2 and showed normal activation of MgATPase hydrolysis by myosin. 相似文献
9.
T Hozumi 《Biochemistry international》1988,17(1):171-178
Trypsin and chymotrypsin were used as probes of conformation of G-actin molecule. The pattern of fragments produced has been analyzed by sodium dodecyl sulfate gel electrophoresis. G-actin is known to be nonrefractory to proteolysis [Jacobson, G.R., and Rosenbusch, J.P. (1976) Proc. Natl. Acad. Sci. U.S.A. 73, 2742-2746]. It is really true that G-actin is cut easily into a 33-kDa fragment by trypsin or chymotrypsin, but only when free ATP is present in the medium. After the removal of free ATP from the medium, G-actin became more refractory to proteolysis. The amounts of degradation of G-actin depended on the ATP concentration in the medium with saturating at about 0.5 mM. epsilon-ADP also had the effect and its fluorescence spectrum was changed on the addition of G-actin. After the removal of free ATP, G-actin still bound 1 mol/mol of ATP. So, the present results suggest the presence of a second ATP interaction site on G-actin and that ATP interaction at this site induces conformational changes in G-actin molecule. 相似文献
10.
Structural changes in myosin subfragment 1 by mild denaturation and proteolysis probed by antibodies
The perturbations in the structure of myosin subfragment 1 (S1) by mild denaturation or proteolysis were investigated by measuring the inhibition of the binding of antibodies to immobilized S1 by treated S1 in a solution-phase competitive immunochemical assay. The structural changes in S1 were probed by using anti-50-kDa segment, anti-N-terminus, anti-27-kDa segment, and anti-A1 light chain monoclonal antibodies (MAbs). Methanol and heat denaturation increased MAb binding to the 50-kDa segment. MAb binding to regions in the 27-kDa segment was also promoted, slightly by methanol and more drastically by heat. Proteolysis also induced structural alterations in 50- and 27-kDa segments as shown by increased MAb binding to these regions in cleaved S1. These results indicate that mild denaturation and proteolysis induce structural perturbations which alter the epitope accessibility in 50- and 27-kDa segments of S1 and that antibody binding studies afford a sensitive probe to such perturbations. 相似文献
11.
12.
The molecular origin of birefringence in skeletal muscle. Contribution of myosin subfragment S-1. 下载免费PDF全文
The state of optical polarization of He-Ne laser light diffracted by single skinned frog skeletal muscle fibers has been determined after decoration of the thin filaments of rigor fibers with exogenous S-1. Light on the first diffraction order was analyzed using optical ellipsometry for changes occurring in total birefringence (delta nT) and total differential field ratio (rT) and the experimental results compared with theoretical predictions. Fibers were examined with SDS-gel electrophoresis and electron microscopy as independent assays of S-1 binding. The binding of S-1 to the thin filaments caused a significant increase in rT and a small but significant decrease in delta nT. Release of bound exogenous S-1 with magnesium pyrophosphate demonstrated that the effect of S-1 on the optical parameters was reversible and both electrophoresis and electron microscopy demonstrated the presence of S-1 specifically bound to the thin filaments. Model simulations based on the theory of Yeh, Y., and R. Baskin (1988. Biophys. J. 54:205-218) showed that the values of delta nT and rT were sensitive to the axial bonding angle of exogenous S-1 as well as to the volume fraction of added S-1. Analysis of the data in light of the model showed that an average axial S-1 binding angle of 68 degrees +/- 7 degrees best fit the data. 相似文献
13.
Modification of myosin subfragment 1 tryptophans by dimethyl(2-hydroxy-5-nitrobenzyl)sulfonium bromide 总被引:1,自引:0,他引:1
Modification of tryptophanyl residues (Trps) of myosin subfragments 1 (S-1) was performed with dimethyl(2-hydroxy-5-nitrobenzyl)sulfonium bromide (DHNBS). Under controlled conditions, pH 6 at 0 degrees C and 10-min reaction with 10-100-fold molar excess, K+(EDTA) activity was reduced down to less than half, whereas Ca2+-ATPase activity increased and acto-S-1-ATPase was not affected. The number of modified Trps (up to 2.5) agreed well with the number of 2-hydroxy-5-nitrobenzyl moieties incorporated in S-1. The thiol groups of S-1 were not affected up to 50-fold molar excess of DHNBS, thus indicating that the modification was selective for Trps. The modification of as few as one Trp caused a blue shift of the emission spectrum, accompanied by a reduction in the fluorescence quantum yield. The accessibility of Trps to the fluorescence quencher acrylamide is drastically reduced upon modification, indicating that DHNBS-reactive Trps are more "exposed" than the DHNBS-refractive ones. DHNBS modification did not seem to affect the ATP-induced tryptophan fluorescence enhancement of S-1. The effect of DHNBS modification of the intrinsic fluorescence of S-1 indicates that the modified Trps are located in a polar environment and that they may be identical with the long-lifetime Trps of Torgerson [Torgerson, P. (1984) Biochemistry 23, 3002-3007]. The most reactive Trp is located in the N-terminal 27-kDa fragment of the S-1 heavy chain. It might also be inferred from the above data that the nonexposed and ATP-perturbed Trp(s) is (are) located in the 50-kDa fragment. 相似文献
14.
T Hozumi 《Journal of biochemistry》1988,104(2):285-288
Trypsin was used as a probe of F-actin conformation. F-actin is known to be refractory to proteolysis [Jacobson, G.R. and Rosenbusch, J.P. (1976) Proc. Natl. Acad. Sci. U.S. 73, 2742-2746]. However, here it was found that F-actin could also be digested by trypsin to a 33-kDa fragment (like G-actin) when free MgADP is present in the medium. The amounts of degradation of F-actin depended on the ADP concentration; saturation occurred at about 0.5 mM. Elimination of divalent cations from the medium completely suppressed the effect of ADP on the digestion of F-actin. Other nucleotides were also examined. The effect decreased in the order ADP greater than ATP much greater than IDP greater than GDP = UDP. Adenine, adenosine, AMP, and PPi had no effect at all. epsilon-ADP had the effect, and its fluorescence was changed on the addition of F-actin. The intrinsic tryptophan fluorescence spectrum of F-actin was ADP-dependent. These results suggest the presence of a second nucleotide interacting site on actin and that ADP interaction at this site induces conformational changes in monomeric actin molecule in F-actin filaments. 相似文献
15.
The stability of myosin subfragment 1 (S1) to thermal denaturation has been followed by limited tryptic proteolysis. Digestions done during the thermal denaturation show that at temperatures at and above 37 degrees C there is a marked increase in the susceptibility of S1 to tryptic degradation, as evidenced by the loss of all bands corresponding to the normally trypsin-resistant fragments of 50, 27, and 21 kDa of the heavy chain and to the light chain. The enhanced digestion of S1 appears to be due to a general unfolding of all segments of S1, although the 50-kDa segment appears to unfold at a lower temperature than the remainder of the S1 structure. Digestions done after 30-min exposure to higher temperatures or after subsequent cooling to 25 degrees C show marked differences in the susceptibility of the S1 to trypsin. This suggests that, on cooling, a substantial portion of the S1, but not the 50-kDa segment, is capable of refolding to a state corresponding closely to that in the native S1. These data indicate that in terms of thermal denaturation the S1 behaves as though it is comprised of two domains--an unstable 50-kDa domain and a more stable domain comprised of the 27- and 21-kDa segments of the heavy chain interacting with the light chain, as proposed recently by Setton and Muhlrad [Setton, A., & Muhlrad, A. (1984) Arch. Biochem. Biophys. 235, 411-417]. The rates of thermal inactivation of the ATPase of S1 are found to correspond closely to the decay rates for the 50-kDa fragment, suggesting that this segment in S1 is closely associated with the ATPase function of the protein. 相似文献
16.
17.
18.
MgATP positively regulates the dimerisation reaction, resulting in an increase in the rate of MgATP splitting with increasing MgATP concentration. We investigated the stoichiometry of this dimerisation reaction and found that each subunit in the dimer bound one molecule of MgATP at the dimerisation site. We studied changes with temperature in the MgATPase activity of S1 in the dimeric form for temperatures of 18-25 degrees C. Between 18.0 and 21.2 degrees C, kcat increased steadily with temperature. Between 21.2 and 21.8 degrees C, there was a large decrease in kcat. A strong increase in kcat occurred at temperatures above 21.8 degrees C, corresponding to a new reversible conformation of S1, unable to dimerise. The steep decrease in kcat between 21.2 and 21.8 degrees C is due to a temperature transition in the monomer-dimer equilibrium. 相似文献
19.
The structure of myosin subfragment 1 (S1) in the weakly attached complex with actin was studied at three specific sites, at the 50-kDa/20-kDa and 27-kDa/50-kDa junctions, and at the N-terminal region, using tryptic digestion as a structure-exploring tool. The structure of S1 at the vicinity of the 50-kDa/20-kDa junction is pH dependent in the weakly attached state because the tryptic cleavage at this site was fully protected by actin at pH 6.2, but the protection was only partial at pH 8.0. Since the actin protection is complete in rigor at both pH values, the results indicate that the structure of S1 at the 50-kDa/20-kDa junction differs in the two states at pH 8.0, but not at pH 6.2. Actin restores the ADP-suppressed tryptic cleavage after Lys213 at the 27-kDa/50-kDa junction in the strongly attached state, but not in the weakly attached state, which indicates structural difference between the two states at this site. ATP and ADP open a new site for tryptic cleavage in the N-terminal region of the S1 heavy chain between Arg23 and Ile24. Actin was found to suppress this cleavage in both weakly and strongly attached states, which shows that, in the vicinity of this site, the structure of S1 is similar in both states. The results indicate that the binding of S1 to actin induces localized changes in the S1 structure, and the extent of these changes is different in the various actin-S1 complexes. 相似文献
20.
18 O-exchange properties of enzymically active proteolytic fragment of myosin molecule--subfragment 1 were studied. It was shown that 18O-exchange activity of subfragment 1 is similar to that of parental myosin and its other proteolytic fragment--heavy meromyosin. The experimental data suggest that the 18O-exchange activity is an integral property of myosin and is not determined by its contaminations. 相似文献