首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One-cell stage embryos, recovered from superovulated golden hamsters (8 to 12 weeks of age) 12 hours after egg activation, were cultured in HECM-1 medium at 37 degrees C and 5% CO(2) in air. The culture conditions investigated were the time and temperature required for embro recovery, the pH shift of the washing medium, and the oxygen concentration of the gas phase during and after embryo recovery. Each condition was assessed by the developmental efficiency of the embryo as determined by morphological criteria. As the time required for embryo recovery was reduced, the developmental rates of the embryos were improved: 2.3% (3 128 ) 26.9% (35 130 ) at 5 and 3 minutes, respectively, as determined by the number of embryos developed to the blastocyst stage. No blastocysts were obtained when more than 10 minutes were required for embryo recovery. As the oxygen concentration was reduced from 40 to 20% or to 5%, rather high developmental rates were obtained even when the time required for embryo recovery was prolonged: 6.9% (9 130 ) and 21.7% (28 129 ) of the embryos developed to the blastocyst stage when they were recovered under 5% oxygen within 10 and 5 minutes, respectively. Neither the temperature during embryo recovery (37 degrees C and 25 degrees C) nor the pH shift (pH 7.22 to 7.52) of the washing medium used in embryo recovery procedures influenced the development of the embryos. These findings suggest that the developmental block in hamster embryos may involve oxidative stress, which may result from exposure to high oxygen concentration and light during the manipulation of oocytes and embryos.  相似文献   

2.
Fresh eggs obtained from female Nematospiroides dubius were cultured at temperatures ranging from 5 degrees C to 33 degrees C. Hatching occurred between 5 degrees C and 30 degrees C; third stage larvae were obtained between five degrees C and 25 degrees C. The minimum time required from hatching to development to the third stage was 3-6 days (at 20 degrees C) and the maximum was seven days (at 5 degrees C). Larvae cultured at higher temperatures were smaller than those cultured at lower ones.  相似文献   

3.
The effects of temperature and inlet pH of the medium on the ethanol productivity and activity of the immobilized Z. mobilis cells during continuous fermentation of glucose have been studied at various temperatures and pH. On changing the temperature from one steady state level to a new one, 6-8 h were required in order to fully experience the effect of a change in temperature; whereas 8-20 h were required on changing the pH. The optimum temperature of 37 degrees C and a broad pH range of 4.4-6.0 were observed for maximum ethanol productivity and ethanol yield.  相似文献   

4.
The acyl carbonyl group of [3-(5-methyl-2-thienyl)acryloyl]chymotrypsin (5MeTA-chymotrypsin) has been investigated by using both resonance Raman (RR) and Fourier transform infrared (FTIR) spectroscopies. The spectrum of the acyl-enzyme carbonyl group has been obtained as a function of pH over the range 3.0-10.0 in the RR experiments and over the range 3.4-7.6 (p2H) in the FTIR experiments. The carbonyl spectral profiles obtained by using FTIR spectroscopy are substantially different from the carbonyl profiles obtained by using RR spectroscopy. The FTIR spectra were obtained by subtracting the spectrum of the free enzyme from that of the acyl-enzyme. Use of the active-site inhibitor phenylmethanesulfonyl fluoride demonstrates that part of the intensity observed in the FTIR spectra of 5MeTA-chymotrypsin is due to a subtraction artifact giving rise to enzyme-associated bands, probably from peptide groups perturbed by substrate binding. The enzyme bands can be removed by subtracting the FTIR spectrum of 13C=O acyl-enzyme from that of 12C=O acyl-enzyme. Additionally, this procedure reveals that one of the acyl-enzyme carbonyl bands observed at 1727 cm-1 using RR spectroscopy is absent in the FTIR acyl-enzyme spectrum. However, a feature near 1720 cm-1 can be induced in the FTIR spectrum by actinic light in the near-UV region. Thus, it is proposed that the 1727 cm-1 RR carbonyl band results from a population of acyl-enzymes which is generated by exposure to the laser beam during RR data collection. When both the RR and FTIR data are adjusted to remove artifacts, they provide essentially identical carbonyl stretching profiles.  相似文献   

5.
The resonance Raman spectrum of the carotenoid neurosporene is shown to be a sensitive monitor of absorption shifts, and thus changes in membrane potential, in chromatophores of the GlC mutant of Rhodopseudomonas sphaeroides. For a Raman excitation wavelength at 472.7 nm, the intensities of the two most prominent resonance Raman features (v1 and v2) respond very differently to small shifts in the absorption maxima. Thus, the ratio intensity v1/intensity v2 is a sensitive probe for absorption shifts. Changes in this ratio of approximately 20% were observed during a valinomycin induced diffusion potential. At 5 degrees C changes in the average intensity ratio of +6, -4 and -14% were brought about by oligomycin, FCCP and sodium deoxycholate, respectively. The changes in intensity ratio were temperature dependent and, in addition, effects due to the laser beam acting as an actinic light could be detected. Oscillatory changes were observed in absolute Raman and Rayleigh scattering intensities for chromatophores at 5 degrees C and for intact cells under growing conditions.  相似文献   

6.
The kinetic model of the hydrolysis of lactose with a beta-galactosidase from Kluyveromyces fragilis immobilized on a commercial silica-alumina (KA-3, from Südchemie) has been determined. A wide experimental range of the main variables has been employed: temperature, concentrations of substrate, and products and concentration of enzyme. The runs were performed in a complex buffer with the salt composition of milk. The effect of pH and temperature on the stability and the activity of the enzyme have been studied. The optimum pH for the enzyme activity was, approximately, seven. The immobilized enzyme was more stable than the free one at acidic pH, but more instable at basic pH. The maximum temperature used for the hydrolysis runs performed to select the kinetic model was 40 degrees C, so inactivation of the enzyme during the kinetic runs has been avoided. Agitation, concentration of enzyme in the solid and particle size were selected to ensure that the overall rate was that of the chemical reaction. Eleven kinetic models were proposed to fit experimental data, from first order to more complex ones, such as those taking into account inhibition by one of the compounds involved in the hydrolysis reaction. Applying statistical and physical criteria, a Michaelis-Menten model with a competitive inhibition by galactose has been selected. The model is able to fit the experimental data correctly in the wide experimental range studied. Finally, the model obtained is compared to the one selected in a previous work for the hydrolysis of lactose with the free enzyme.  相似文献   

7.
D W Bolen  M M Santoro 《Biochemistry》1988,27(21):8069-8074
The linear extrapolation method was used to evaluate the unfolding free energy changes (delta G degrees N-U) for phenylmethanesulfonyl chymotrypsin (PMS-Ct) at pH 6.0. The nonlinear least-squares fits of difference spectral data using urea and guanidinium chloride as denaturants gave identical values for delta G degrees N-U and delta epsilon degrees U, the latter being extinction coefficient differences between native and unfolded forms of the protein in the limit of zero concentration of denaturant. The independence of these parameters from the nature of solvent suggests strongly that they are characteristic properties of the protein alone. The delta G degrees N-U data at pH 6.0 and 4.0, which differ by more than 100-fold in stability of the protein, were incorporated into a thermodynamic cycle involving free energy changes for titration of native and unfolded PMS-Ct from pH 4.0 to 6.0. The purpose of the cycle was to test whether delta G degrees N-U obtained by use of the linear extrapolation method exhibits the characteristics required of a thermodynamic function of state. Within error, the thermodynamic cycle was found to accommodate the delta G degrees N-U quantities obtained at pH 4.0 and 6.0 for PMS-Ct.  相似文献   

8.
Inactivation of Giardia muris cysts by free chlorine.   总被引:3,自引:2,他引:1       下载免费PDF全文
The chlorine resistance of cysts of the flagellate protozoan Giardia muris was examined. This organism, which is pathogenic to mice, is being considered as a model for the inactivation of the human pathogen Giardia lamblia. Excystation was used as the criterion for cyst viability. Experiments were performed at pH 5, 7, and 9 at 25 degrees C and pH 7 at 5 degrees C. Survival curves were "stepladder"-shaped, but concentration-time data generally conformed to Watson's Law. Chlorine was most effective at neutral pH and was only slightly less so in acidic solutions. Comparison of inactivation data based on equivalent hypochlorous acid concentrations, which corrects for chlorine ionization, showed that the cysts have a pH-dependent resistance to inactivation. Concentration-time (C X t') products for free chlorine obtained at 25 degrees C ranged from a low of 50 mg min/liter at pH 5 to a high of 218 mg min/liter at pH 9 and were as high as 1,000 mg min/liter at 5 degrees C. It appears that G. muris cysts are somewhat more resistant to inactivation than G. lamblia cysts and rank among the microorganisms that are most resistant to inactivation by free chlorine.  相似文献   

9.
The chlorine resistance of cysts of the flagellate protozoan Giardia muris was examined. This organism, which is pathogenic to mice, is being considered as a model for the inactivation of the human pathogen Giardia lamblia. Excystation was used as the criterion for cyst viability. Experiments were performed at pH 5, 7, and 9 at 25 degrees C and pH 7 at 5 degrees C. Survival curves were "stepladder"-shaped, but concentration-time data generally conformed to Watson's Law. Chlorine was most effective at neutral pH and was only slightly less so in acidic solutions. Comparison of inactivation data based on equivalent hypochlorous acid concentrations, which corrects for chlorine ionization, showed that the cysts have a pH-dependent resistance to inactivation. Concentration-time (C X t') products for free chlorine obtained at 25 degrees C ranged from a low of 50 mg min/liter at pH 5 to a high of 218 mg min/liter at pH 9 and were as high as 1,000 mg min/liter at 5 degrees C. It appears that G. muris cysts are somewhat more resistant to inactivation than G. lamblia cysts and rank among the microorganisms that are most resistant to inactivation by free chlorine.  相似文献   

10.
The 1H NMR spectrum of the tetradeoxynucleotide d(TpCpGpA) was examined as a function of temperature, pH, and concentration. At pH 7 and above the solution conformation for this oligodeoxynucleotide appears to be a mixture of random coil and Watson-Crick duplex. At 25 degrees C, a pH titration of d(TpCpGpA) shows that distinct conformational changes occur as the pH is lowered below 7.0. These conformational changes are reversible upon readjusting the pH to neutrality, indicating the presence of a pH-dependent set of conformational equilibria. At 25 degrees C, the various conformational states in the mixture are in rapid exchange on the NMR time scale. Examination of the titration curve shows the presence of distinct conformational states at pH greater than 7, and between pH 4 and pH 5. At pH less than 4, a third conformational state is present. When the pH titration is repeated at 5 degrees C, the conformational equilibria are in slow exchange on the NMR time scale; distinct signals from each conformational state are observable. The stable conformational state present between pH 4 and pH 5 represents an ordered conformation of d(TpCpGpA) which dissociates to a less ordered structure upon raising the temperature. This ordered conformation does not result from an intramolecular rearrangement, as is shown by by spectra obtained by varying oligodeoxynucleotide concentration at constant pH. The ordered conformation differs from the Watson-Crick helix, as is shown from nuclear Overhauser enhancement experiments, as well as chemical shift data. An ordered conformation for d(TpCpGpA) was previously reported [Reid, D. G., Salisbury, S. A., Brown, T., & Williams, D. H. (1985) Biochemistry 24, 4325-4332].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
R S Norton  A I Cossins  W R Kem 《Biochemistry》1989,28(4):1820-1826
The solution properties of the polypeptide neurotoxin I from the sea anemone Stichodactyla helianthus (Sh I) have been investigated by high-resolution 1H nuclear magnetic resonance (NMR) spectroscopy at 300 MHz. The pH dependence of the spectra has been examined over the range 1.1-12.2 at 27 degrees C. Individual pKa values have been obtained for the alpha-ammonium group of Ala-1 (8.6) and the side chains of Glu-8 (3.7), Tyr-36 (10.9), and Tyr-37 (10.8). For the remaining seven carboxyl groups in the molecule (from five Asp, Glu-31, and the C-terminus), four pKa values, viz., 2.8, 3.5, 4.1 and 6.4, can be clearly identified. The five Lys residues titrate in the range 10.5-11, but individual pKa values could not be obtained because of peak overlap. Conformational changes associated with the protonation of carboxylates occur below pH 4, while in the alkaline pH range major unfolding occurs above pH 10. The molecule also unfolds at elevated temperatures, having a transition temperature of ca. 55 degrees C at pH 5.25. Exchange of the backbone amide protons has been monitored at various values of pH and temperature in the ranges pH 4-5 and 12-27 degrees C. Up to 18 slowly exchanging amides are observed, consistent with the existence of a core of hydrogen-bonded secondary structure, most probably beta-sheet.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
An unusual xylose isomerase produced by Thermoanaerobacterium strain JW/SL-YS 489 was purified 28-fold to gel electrophoretic homogeneity, and the biochemical properties were determined. Its pH optimum distinguishes this enzyme from all other previously described xylose isomerases. The purified enzyme had maximal activity at pH 6.4 (60 degrees C) or pH 6.8 (80 degrees C) in a 30-min assay, an isoelectric point at 4.7, and an estimated native molecular mass of 200 kDa, with four identical subunits of 50 kDa. Like other xylose isomerases, this enzyme required Mn2+, Co2+, or Mg2+ for thermal stability (stable for 1 h at 82 degrees C in the absence of substrate) and isomerase activity, and it preferred xylose as a substrate. The gene encoding the xylose isomerase was cloned and expressed in Escherichia coli, and the complete nucleotide sequence was determined. Analysis of the sequence revealed an open reading frame of 1,317 bp that encoded a protein of 439 amino acid residues with a calculated molecular mass of 50 kDa. The biochemical properties of the cloned enzyme were the same as those of the native enzyme. Comparison of the deduced amino acid sequence with sequences of other xylose isomerases in the database showed that the enzyme had 98% homology with a xylose isomerase from a closely related bacterium, Thermoanaerobacterium saccharolyticum B6A-RI. In fact, only seven amino acid differences were detected between the two sequences, and the biochemical properties of the two enzymes, except for the pH optimum, are quite similar. Both enzymes had a temperature optimum at 80 degrees C, very similar isoelectric points (pH 4.7 for strain JW/SL-YS 489 and pH 4.8 for T. saccharolyticum B6A-RI), and slightly different thermostabilities (stable for 1 h at 80 and 85 degrees C, respectively). The obvious difference was the pH optimum (6.4 to 6.8 and 7.0 to 7.5, respectively). The fact that the pH optimum of the enzyme from strain JW/SL-YS 489 was the property that differed significantly from the T. saccharolyticum B6A-RI xylose isomerase suggested that one or more of the observed amino acid changes was responsible for this observed difference.  相似文献   

13.
The effect of exposure of organisms to systemic hyperthermia on induction of tolerance to the lethal effect of subsequently assigned systemic hyperthermia was studied in mice. The length of time of the pretreatment at 42.0 +/- 0.2 degrees C (core body temperature) was 5, 10 or 15 mn. The temperature of the second systemic hyperthermia was 42.0 +/- 0.2 degrees C and 43.5 +/- 0.2 degrees C. In mice which had no experience of systemic hyperthermia, lethal dose required to kill 50% of animals at 42.0 degrees C and 43.5 degrees C, namely LD50, 42 degrees and LD50, 43 degrees 5 was 43 and 8.5 mn, respectively. While, in mice which had received the pretreatment at 42 degrees C for 10 mn, the LD50, 42 degrees was 97 mn one day after and 48 mn two days after the pretreatment. In mice which had received the pretreatment at 42 degrees C for 5, 10 or 15 mn, the LD50, 43 degrees 5 was 17, 20 and 19 mn one day after the pretreatment, and 10, 10 and 6 mn two days after the pretreatment, respectively. With the data obtained, thermotolerance ratio (TTR) was calculated. The maximum TTR of 2.35 was obtained in mice examined one day after the pretreatment at 42.0 degrees C for 10 mn.  相似文献   

14.
The influence of various parameters of fixation and incubation upon the oxidation of DAB by catalase have been analyzed. Crystalline beef liver catalase was fixed with different concentrations of glutaraldehyde and peroxidatic activity was determined spectrophotometrically using DAB as hydrogen donor. Although aldehyde fixation appeared to be important in elicitation of the peroxidatic activity of catalase, the final pigment production after 60 min incubation was optimal with the lowest concentration of glutaraldehyde (1%), after the shortest fixation period (30 min), and at the lowest temperature (5 degrees C) tested. Similarly cytochemical studies with rat kidney sections incubated for 10 min confirmed that the staining of peroxisomes in proximal tubules was strongest after the "mildest" fixation conditions. The pH and the temperature of incubation were closely interrelated, so that at room temperature (25 degrees C) the maximal pigment production was obtained at pH 10.5, but incubation at 45 degrees C gave the strongest staining at pH 8.5. The production of pigment increased with higher DAB concentrations which required larger amounts of H2O2 in the incubation medium. Cytochemical studies on renal peroxisomes were in agreement with these biochemical findings. The observations indicate that there are several options for the localization of catalase depending on the fixation and incubation conditions. Hence, these conditions should be selected according to the tissue and the purpose of the study. Examples for such selective applications are presented.  相似文献   

15.
Association constants, enthalpies, and stoichiometries of Bowman-Birk soybean inhibitor for trypsin and alpha-chymotrypsin were measured in the pH range 4-8 at 25 degrees, 0.01 M Ca2+. The results are quoted in terms of moles of protease active sites, from active site titration. Enthalpies were obtained from calorimetry. The inhibitor was modified by carboxyl group modification, and by tryptic and chymotryptic attack. Association thermodynamics and stoichiometries of the modified inhibitors with both proteases were also determined. There is one independent site for each protease on the inhibitor protein. Modification decreases association to some extent, but does not appear to change stoichiometry or protease binding site independency. In the pH 4 region the association enthalpies are endothermic, of the order 6 kcal/mol for both trypsin and chymotrypsin. With increasing pH, the enthalpies decrease and become exothermic at pH 8 for chymotrypsin. Positive entropies, 50 cal mol-1 deg-1, occur at pH 4-5. They decrease as pH increases, but are always positive in sign. The observed to accompany the overall reaction, such as H+ transfer steps. The enthalpies and entropies probably compensate over the pH range 4-8, with a characteristic temperature of 390 plus or minus 30 degrees K. Estimates were made of the macromolecular Coulomb charge products in inhibitor-protease interaction. These range from about +5 to -60, over pH range 4-8, depending on the protease. Although intermolecular Coulombic forces cannot be easily delineated at the specific side chain level, they may operate at the macromolecule level.  相似文献   

16.
In previous papers we used estimates of the composition of frog muscle and calculations involving the likely fixed charge density in myofibrils to propose bathing solutions for skinned fibers, which best mimic the normal intracellular milieu of intact muscle fibers. We tested predictions of this calculation using measurements of the potential across the boundary of skinned frog muscle fibers bathed in this solution. The average potential was -3.1 mV, close to that predicted from a simple Donnan equilibrium. The contribution of ATP hydrolysis to a diffusion potential was probably small because addition of 1 mM vanadate to the solution decreased the fiber actomyosin ATPase rate (measured by high-performance liquid chromatography) by at least 73% but had little effect on the measured potential. Using these solutions, we obtained force-pCa curves from mechanically skinned fibers at three different temperatures, allowing the solution pH to change with temperature in the same fashion as the intracellular pH of intact fibers varies with temperature. The bath concentration of Ca2+ required for half-maximal activation of isometric force was 1.45 microM (22 degrees C, pH 7.18), 2.58 microM (16 degrees C, pH 7.25), and 3.36 microM (5 degrees C, pH 7.59). The [Ca2+] at the threshold of activation at 16 degrees C was approximately 1 microM, in good agreement with estimates of threshold [Ca2+] in intact frog muscle fibers.  相似文献   

17.
Thirteen strains of a strict anaerobic, extreme thermophilic bacterium were isolated from soil samples of moderate temperature, from a sewage plant in Georgia, and from hot springs in Utah and Wyoming. They were identified as strains of Clostridium thermohydrosulfuricum. The guanosine + cytosine content (moles percent) was 37.6 (determined by buoyant density) and 34.1 (determined by melting temperature). All strains required a factor present in yeast extract or tryptone growth. Growth characteristics were as follows: a pH range of 5 to 9, with the optimum between 6.9 to 7.5, in a temperature range of 40 to 78 degrees C, with the optimum at 68 degrees C. The doubling time, when grown on glucose at temperature and pH optima, was 1.2 h. The main products of glucose fermentation were ethanol, lactate, acetate, CO2, and H2. The fermentation was inhibited by H2. Formation of spores occurred easily on glucose-agar medium or when cultures growing at temperatures above 65 degrees C were allowed to cool to temperature below 55 degrees C. C. thermohydrosulfuricum occurs widely distributed in the natural environment.  相似文献   

18.
1. The effect of temperature and pH was studied on the kinetics of inhibition of horse serum and human serum cholinesterase by four organophosphorus compounds and five carbamates. 2. For all compounds, and at each pH and temperature, the inhibition followed the kinetics of a bimolecular reaction with the inhibitor in excess, and with a negligible concentration of the Michaelis complex. 3. The second-order rate constants (k(a)) for inhibition of human serum cholinesterase by one organophosphate and one carbamate increased from 5 degrees to 40 degrees C with an apparent activation energy of 46kJ/mol (11kcal/mol). 4. The k(a) constant for inhibition of horse serum cholinesterase increased with temperature from 5 degrees to 30 degrees C, and then decreased from 30 degrees to 40 degrees C. The theoretical interpretation of such an unusual effect of temperature is derived. 5. The increase of k(a) with pH (human serum cholinesterase) followed the dissociation curve for a single group on the enzyme (pK7.5). 6. Rate constants for decarbamoylation (k(+3)) were determined, and the time-course of inhibition was calculated from the k(a) and k(+3) constants.  相似文献   

19.
The effect of temperature, pH, and sodium chloride concentration on the growth of the Ascomycetes fungus Monascus ruber van Tieghem, the main spoilage microorganism during storage of table olives, was studied by using the gradient plate technique. Gradients of NaCl (3 to 9%, wt/vol) at right angles to gradients of pH (2 to 6.8) were prepared for the plates, which were incubated at 25, 30, and 35 degrees C. Visible fungal growth, expressed in optical density units, was recorded by image analysis and graphically presented in the form of three-dimensional grids. Results obtained from the plates indicated that the fungus was salt and acid tolerant, being able to grow at NaCl concentrations of up to 9% (wt/vol) and pH values of as low as 2.2, depending on the incubation temperature. The inhibitory effect of NaCl increased as the pH decreased progressively at 25 and 30 degrees C but not at 35 degrees C. Growth was better at 30 and 25 degrees C as judged by the larger extent of the plates covered by mycelium compared with that at 35 degrees C, where no growth was observed at pHs below 3.7. Differentiation between vegetative (imperfect-stage) and reproductive (perfect-stage) growth was evident on all plates, providing useful information about the effect of environmental conditions on the form of fungal growth. When the growth/no-growth surface model was obtained by applying linear logistic regression, it was found that all factors (pH, NaCl, and temperature) and their interactions were significant. Plots of growth/no-growth interfaces for P values of 0.1, 0.5, and 0.9 described the results satisfactorily at 25 and 35 degrees C, whereas at 35 degrees C the model predicted lower minimum pH values for growth in the range of 7 to 10% NaCl than those observed on the plates. Overall, it is suggested that the fungus cannot be inhibited by any combination of pH and NaCl within the limits of the brine environment, so further processing is required to ensure product stability in the market.  相似文献   

20.
The conformation of the outer surface of the human red cell membrane has been studied under various conditions using the impermeant probe [125I]diazodiiodosulfanilic acid. At least seven polypeptides were labeled by the reagent, including the three extractable glycoproteins separable by the electrophoretic method employed. The Mr = 43,000 protein band was shown to contain two labeled species, one a glycoprotein, in addition to its major constituent, red cell actin. The extent and pattern of labeling were very sensitive to changes in pH and temperature. Total labeling increased with increasing pH and was greater at 4 degrees C than 37 degrees C. Binding of the probe to the Mr = 90,000 polypeptide and the major glycoprotein were relatively increased with increasing pH and temperature while opposite effects were observed for the Mr = 43,000 peptide(s). The pH effects on external membrane labeling were rapidly reversible. Results were similar in cells of different densities, suggesting that the pH and temperature effects were not related to cell age. The data presented emphasize the lability of membrane conformation and reactivity and thus the necessity to consider carefully the conditions of labeling in interpretation of studies using impermeant probes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号