首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of three kinds of selenide on Staphylococcus aureus growth was studied by means of microcalorimetry. Differences in their capacities to inhibit the metabolism of this bacterium were observed. The rate constant k (in the log phase) in the presence of the compounds decreased with increasing concentrations of the compounds. The relationship of k and c is nearly linear for the selenium compounds. Judged from the rate constant, k, and the half-inhibitory concentration IC50, the experimental results reveal that the sequence of antibiotic activity of the three tested selenides compounds is (2-hydroxy benzyl imino)ethyl n-hexyl selenide> n-butyl(2-hydroxy benzyl imino)ethyl selenide>bis[(2,4-dihydroxy benzyl imino)ethyl] selenide.  相似文献   

2.
The pH dependence for acylation of alpha-chymotrypsin by N-acetyltryptophan p-nitrophenyl-, p-nitrothiophenyl-, ethyl-, and thiolethyl esters has been studied by the stopped-flow technique. Values for the acylation rate constant, k2, and the binding constant, KS, were obtained by using measurements of phenolate release, for the p-nitrophenyl esters, and proflavin displacement, for the ethyl esters. The oxygen esters tested have slightly higher k2 values, and substantially higher KS values relative to the analogous thiol esters. Whereas k2/KS for the thiolethyl ester is higher than that for the analogous oxygen ester, the k2/KS values for oxy- and thio-p-nitrophenyl esters are nearly identical. These data are interpreted to indicate rate-determining formation of a tetrahedral intermediate in acylation of alpha-chymotrypsin by p-nitrophenyl esters, and rate-determining breakdown of such an intermediate in the case of the ethyl esters. It is also concluded that the oxygen to sulfur substitution causes a substantial increase in the proportion of nonproductive binding in these substrates. pH dependent k2 and KS values were used to calculate values for k1 and k-1, the binding and debinding rate constants for the two p-nitrophenyl compounds. This is the first such calculation based on experimentally determined acylation rate constants.  相似文献   

3.
The kinetics of the decomposition of H(2)O(2) catalyzed by Cu(II) has been studied by the initial-rate method in aqueous phosphate media at near physiological pH. The activity of the catalyst is increased by [Fe(CN)(6)](3-) and decreased by VO(3)(-), CrO(4)(2-) and Zn(II). Three reaction pathways are involved in the Cu(II)-H(2)O(2) reaction, the kinetic orders of the catalyst being 1 (rate constant k1), 2 (rate constant k2) and 3 (rate constant k3). The three pathways present fractional apparent orders (>1) in H(2)O(2) and base catalysis. The apparent activation energies associated to rate constants k1, k2 and k3 are 102+/-4, 65+/-8 and 61+/-5 kJ mol(-1). Free-radical chain mechanisms are proposed for the three pathways.  相似文献   

4.
采用石油醚、乙酸乙酯、乙醇浸提朱红栓菌 Trametes cinnabarina 子实体干粉,得到不同极性提取物;采用清除DPPH 自由基、羟自由基、超氧阴离子自由基能力,测定提取物的体外抗氧化活性;MTT法检测提取物对人肝癌细胞株HepG2细胞增殖的抑制作用。结果表明,朱红栓菌石油醚、乙酸乙酯、乙醇提取物均具有一定的抗氧化、抗肿瘤活性;各提取物在浓度为4-5mg/mL时,对DPPH自由基、羟自由基和超氧阴离子自由基清除能力大小依次为乙酸乙酯提取物>乙醇提取物>石油醚提取物;乙酸乙酯提取物对3种自由基的最高清除率分别为60.23%、74.49%、63.84%。各提取物对人肝癌细胞株HepG2细胞增殖抑制作用大小依次为乙酸乙酯提取物>乙醇提取物>石油醚提取物;乙酸乙酯提取物的抑制率最高达55.93%。采用硅胶和凝胶等柱色谱方法结合核磁、波谱和质谱等技术对乙酸乙酯提取物的化学组分进行分析,共分离纯化出11种化合物,分别鉴定为:麦角甾醇(1),邻苯二甲酸二丁酯(2),对羟基苯甲酸甲酯(3),麦角甾-7,22,二烯-3-酮(4),1-[(12E,16E)-12,16-二十碳二烯酰基]-2-[(E,E)-7,11-十八碳二烯酰基]-3-硬脂酰基甘油(5),cinnabarin(6),过氧麦角甾醇(7),尿嘧啶(8),甘露醇(9),腺嘌呤核苷(10),豆甾-7,22-二烯-3β,5α,6β-三醇(11)。除化合物6外均为首次从朱红栓菌子实体中分离得到。研究结果为开发利用朱红栓菌子实体提供了科学依据。  相似文献   

5.
The kinetics of rose bengal-sensitized photooxidation of tyrosine and several tyrosine-derivatives (tyr-D) named tyrosine methyl ester, tyrosine ethyl ester and tyrosine benzyl ester was studied in buffered pH 11 water, and buffered pH 11 micellar aqueous solutions of 0.01 M cetyltrimethylammonium chloride (CTAC) and 0.01 M-octylphenoxypolyethoxyethanol [triton X100 (TX100)]. Through time-resolved phosphorescence detection of singlet molecular oxygen (O(2)((1)Delta(g))) and polarographic determination of oxygen consumption, the respective bimolecular rate constants for reactive (k(r)) and overall (k(t)) quenching of the oxidative species by tyr-D were evaluated. Both rate constants behave in different fashion depending on the particular reaction medium. k(r)/k(t) values, increase in the sense CTAC相似文献   

6.
1. Kinetic relationships referring to multiple-turnover conditions have been derived for the slowest exponential transient appearing in two-substrate enzyme reactions proceeding by an ordered ternary-complex mechanism. The validity of these and previously derived theoretical relationships for this mechanism has been tested by application to the liver alcohol dehydrogenase reaction. 2. All essential features of the transient-state kinetics of alcohol oxidation by NAD+ in the liver alcohol dehydrogenase system can be qualitatively and quantitatively explained in view of the compulsory-order mechanism in the proposed scheme. There is no kinetic evidence for any half-of-the-sites reactivity of the enzyme. A consistent set of rate constants is reported for the enzymic oxidation of benzyl alcohol at pH 8.75. 3. Transient-state rate parameters for benzyl alcohol/benzaldehyde catalysis by liver alcohol dehydrogenase have been determined at different pH. The interpretation of such rate parameters is critically discussed with reference to their informative value for the purpose of determination of rate constants (k and k') for the process of ternary-complex interconversion in the proposed scheme. It is concluded that the apparent rate constant (k') for hydride transfer from benzyl alcohol to NAD+ is dependent on a proton dissociation step with a pKa of 6.4, whereas the rate constant (k) for hydride transfer from NADH to benzaldehyde exhibits no corresponding dependence on proton association. 4. The asymmetric pH dependence of the forward and reverse rate of ternary-complex interconversion during liver alcohol dehydrogenase catalysis appears to reflect an obligatory step of alcohol/alcoholate ion equilibration occurring at the ternary-complex level. It is suggested that the observed pKa 6.4 dependence of the transient rate of alcohol oxidation can be attributed to a coupled acid-base system involving minimally the enzyme-bound alcohol and the protein residues Ser-48 and His-51.  相似文献   

7.
In this study, the antifungal effects of six different isothiocyanate (ITCs) compounds (methyl, allyl, butyl, ethyl, benzyl and 2-phenylethyl ITCs) were investigated to be use against the citrus sour rot disease caused by Geotrichum citri-aurantii in vitro and semi-commercial (in vivo) conditions. Antifungal activities of the vapour phases of different ITC compounds were examined on the arthroconidia germination and mycelial growth of G. citri-aurantii. Mycelial growth of G. citri-aurantii was inhibited in a concentration-dependent way. The minimum inhibitory concentrations of benzyl, methyl, allyl and ethyl ITCs on mycelial growth were 0.06, 0.08, 0.10 and 0.10 µl/L, respectively. Arthroconidia germination of G. citri-aurantii was completely inhibited by benzyl, methyl, allyl and ethyl ITCs at concentrations of 0.05, 0.07, 0.07 and 0.07 µl/L, respectively. Light microscopy observations revealed that the ITC compounds, at completely inhibiting concentrations, caused considerable morphological changes in the fungal hyphae. Under in vivo conditions, the average rotting area caused by G. citri-arantii was inhibited 100% by ethyl, methyl and allyl ITC compounds at concentrations of 8.0, 12.0 and 12.0 µl/L, respectively. Results suggest that ITC’s may be useful and effective natural antifungal compounds to control the citrus sour rot disease agent.  相似文献   

8.
Terpene ligands (1S,2S,5S)-3-[{2-[(2-hydroxybenzylidene)amino]ethyl}imino]-2,6,6-trimethylbicyclo[3.1.1.]heptane-2-ol and 3-({2-[(2-hydroxy-2,6,6-trimethylbicyclo[3.1.1.]hept-3-ilidene)amino]ethyl}imino)-2,6,6-trimethylbicyclo[3.1.1.]heptane-2-ol have been synthesized for the first time. The efficiency of complexes based on terpene and salen ligands in asymmetric sulfoxidation has been compared. Catalytic systems based on terpene ligands have been used for the first time in the asymmetric oxidation of phenylphenacyl sulfide with the formation of sulfoxide with an enantiomeric excess of 47%.  相似文献   

9.
The title trisaccharide was synthesized from 6-O-acetyl-2,3,4-tri-O-benzyl-alpha-D-glucopyranosyl chloride (10), ethyl 2,4-di-O-benzyl-1-thio- (5) and benzyl 3,4-di-O-benzyl-alpha-L-rhamnopyranoside (9). The disaccharide 11 obtained from compounds 5 and 10 was used as the glycosyl donor to glycosylate the rhamnopyranoside derivative 9 having free OH-2 using the NIS-AgOTf-mediated glycosylation methodology. Zemplén deacetylation of the trisaccharide 12 resulted in the 6"-OH derivative (13), which was selectively oxidized with CrO3 to the uronic acid derivative 14. The benzyl groups were removed by catalytic hydrogenolysis to furnish the target trisaccharide (1).  相似文献   

10.
2-Nitropropane dioxygenase (EC 1.13.11.32) catalyzes the oxidation of nitroalkanes into their corresponding carbonyl compounds and nitrite. In this study, the ncd-2 gene encoding for the enzyme in Neurospora crassa was cloned, expressed in Escherichia coli, and the resulting enzyme was purified. Size exclusion chromatography, heat denaturation, and mass spectroscopic analyses showed that 2-nitropropane dioxygenase is a homodimer of 80 kDa, containing a mole of non-covalently bound FMN per mole of subunit, and is devoid of iron. With neutral nitroalkanes and anionic nitronates other than propyl-1- and propyl-2-nitronate, for which a non-enzymatic free radical reaction involving superoxide was established using superoxide dismutase, substrate oxidation occurs within the enzyme active site. The enzyme was more specific for nitronates than nitroalkanes, as suggested by the second order rate constant k(cat)/K(m) determined with 2-nitropropane and primary nitroalkanes with alkyl chain lengths between 2 and 6 carbons. The steady state kinetic mechanism with 2-nitropropane, nitroethane, nitrobutane, and nitrohexane, in either the neutral or anionic form, was determined to be sequential, consistent with oxygen reacting with a reduced form of enzyme before release of the carbonyl product. Enzyme-monitored turnover with ethyl nitronate as substrate indicated that the catalytically relevant reduced form of enzyme is an anionic flavin semiquinone, whose formation requires the substrate, but not molecular oxygen, as suggested by anaerobic substrate reduction with nitroethane or ethyl nitronate. Substrate deuterium kinetic isotope effects with 1,2-[(2)H(4)]nitroethane and 1,1,2-[(2)H(3) ethyl nitronate at pH 8 yielded normal and inverse effects on the k(cat)/K(m) value, respectively, and were negligible on the k(cat) value. The k(cat)/K(m) and k(cat) pH profiles with anionic nitronates showed the requirement of an acid, whereas those for neutral nitroalkanes were consistent with the involvement of both an acid and a base in catalysis. The kinetic data reported herein are consistent with an oxidasestyle catalytic mechanism for 2-nitropropane dioxygenase, in which the flavin-mediated oxidation of the anionic nitronates or neutral nitroalkanes and the subsequent oxidation of the enzyme-bound flavin occur in two independent steps.  相似文献   

11.
A sensitive competitive method was developed for assessing the reactivity of compounds toward glutathione and toward thiols in general. The method employs the reaction of the fluorogenic reagent fluorescein-5-maleimide (FM) with glutathione (GSH) to generate a large increase in fluorescence emission. When the reaction is measured in the presence of a compound that competes with FM toward GSH, the rate constant for fluorescent product formation increases while the total amount of product formed at the end of the reaction decreases. These changes in the presence of a series of competitor concentrations allow one to calculate the rate constant of the reaction of the competitor with GSH. At 23 degrees C, pH 7.40 in PBS buffer the second-order rate constant of the FM-GSH reaction is k2 = (1.67 +/- 0.32) x 10(4) M(-1) x s(-1). Two GSH-reactive compounds were evaluated: the second-order rate constant for the reaction of PNU-27707 with GSH under our experimental conditions is k(i) = 5660 +/- 266 M(-1) x s(-1), while that of PNU-37802 is k(i) = 21,200 +/- 1600 M(-1) x s(-1). The method is easily adaptable to a high-throughput screening format.  相似文献   

12.
《Carbohydrate research》1986,153(2):271-283
The ability of imidates, thioimidates, and dithioates to react with o-aminophenol (2) and 5,6-diamino-1,3-dimethyluracil (6) was studied, using non-saccharide model compounds, as well as saccharide derivatives. All of the model compounds gave 2-methylbenzoxazole, but only ethyl dithioacetate gave a purine derivative with 6. Methyl 2,5-anhydro-d-allonoimidate hydrochloride reacted with 2 to yield 2-β-d-ribofuranosylbenzoxazole, but failed to react with compound 6. On reaction with compound 6 such fully acylated thioimidates as ethyl and benzyl 2,5-anhydrotri-O-benzoyl- or tri-O-p-toluoyl-d-allonothiomidate hydrochloride yielded amidines that underwent aromatization of the furanose ring. Such monoacylated thioimidates as ethyl or benzyl 2,5-anhydro-6-O-benzoyl--d-allonothioimidate hydrochloride yielded, with compound 6, 8-(5-O-benzoyl-β-d-ribofuranosyl)-1,3-dimethylxanthine, without aromatization. Such dithioates as benzyl 2,5-anhydro-6-O-benzoyl-d-allonodithioate and ethyl 2,5-anhydrotri-O-benzoyl-d-allonodithioate were obtained by treating the corresponding thioimidate with H2S in pyridine. With compound 6, the first yielded 8-(5-O-benzoyl-β-d-ribofuranosyl)-1,3-dimethylxanthine, which afforded the free C-nucleoside 1,3-dimethyl-8-β-d-ribofuranosylxanthine on treatment with methanolic ammonia.  相似文献   

13.
The pH dependence of the maximum velocity of the reaction catalyzed by diphosphopyridine nucleotide (DPN) dependent isocitrate dehydrogenase indicates the requirement for the basic form of an ionizable group in the enzyme-substrate complex with a pK of 6.6. This pK is unaltered from 10 to 33 degrees C, suggesting the ionization of a carboxyl rather than an imidazolium ion. The enzyme is inactivated upon incubation with 1-cyclohexyl-3-(2-morpholinoethyl)carbodiimide in the presence of glycinamide or glycine ethyl ester. This inactivation is dependent on pH and the rate constant (k) increases as the pH is decreased in the range 7.3 to 6.25. A plot of 1/(H+) vs. 1/k suggests that the enzyme is inactivated as a result of the modification of a single ionizable group in this pH range. The coenzyme DPN and substrate alpha-ketoglutarate do not affect the rate of inactivation. In contrast, manganous ion (2 mM) and isocitrate (60 mM) produce a sevenfold decrease in the rate constant. The allosteric activator ADP (1 mM) does not itself influence the rate of inactivation; however, it reduces the concentration of Mn2+ (1 mM) and isocitrate (20 mM) required to produce the same decrease in the inactivation constant. These observations imply that the modification occurs at the substrate-binding site. Experiments employing [1-14C]glycine ethyl ester show a net incorporation of 2 mol of glycine ethyl ester per subunit (40 000), concomitant with the complete inactivation of the enzyme. The radioactive modified enzyme, after removal of excess reagent by dialysis, was exhaustively digested with proteolytic enzymes. High voltage electrophoretic analyses of the hydrolysate at pH 6.4 and 3.5 yield two major radioactive spots with approximately equal intensity, which correspond to gamma-glutamylglycine and beta-aspartylglycine, the ultimate products of reaction with glutamic and aspartic acids, respectively. Modification in the presence of manganous ion and isocitrate results in significant reduction in the incorporation of radioactivity into the two dipeptides. These results suggest that carbodiimide attacks one glutamyl and one aspartyl residue per subunit of the enzyme and that the integrity of these residues is crucial for the enzymatic activity.  相似文献   

14.
1. The pH-dependences of the second-order rate constant (k) for the reactions of papain (EC 3.4.22.2) with 2-(acetamido)ethyl 2'-pyridyl disulphide and with ethyl 2-pyridyl disulphide and of k for the reaction of benzimidazol-2-ylmethanethiol (as a minimal model of cysteine proteinase catalytic sites) with the former disulphide were determined in aqueous buffers at 25 degrees C at I 0.1. 2. Of these three pH-k profiles only that for the reaction of papain with 2-(acetamido)ethyl 2'-pyridyl disulphide has a rate maximum at pH approx. 6; the others each have a rate minimum in this pH region and a rate maximum at pH 4, which is characteristic of reactions of papain with other 2-pyridyl disulphides that do not contain a P1-P2 amide bond in the non-pyridyl part of the molecule. 3. The marked change in the form of the pH-k profile consequent upon introduction of a P1-P2 amide bond into the probe molecule for the reaction with papain but not for that with the minimal catalytic-site model is interpreted in terms of the induction by binding of the probe in the S1-S2 intersubsite region of the enzyme of a transition-state geometry in which nucleophilic attack by the -S- component of the catalytic site is assisted by association of the imidazolium ion component with the leaving group. 4. The greater definition of the rate maximum in the pH-k profile for the reaction of papain with an analogous 2-pyridyl disulphide reactivity probe containing both a P1-P2 amide bond and a potential occupant for the S2 subsite [2-(N'-acetyl-L-phenylalanylamino)ethyl 2'-pyridyl disulphide [Brocklehurst, Kowlessur, O'Driscoll, Patel, Quenby, Salih, Templeton, Thomas & Willenbrock (1987) Biochem. J. 244, 173-181]) suggests that a P2-S2 interaction substantially increases the population of transition states for the imidazolium ion-assisted reaction. 5. The overall kinetic solvent 2H-isotope effect at pL 6.0 was determined to be: for the reaction of papain with 2,2'-dipyridyl disulphide, 0.96 (i.e. no kinetic isotope effect), for its reaction with the probe containing only the P1-P2 amide bond, 0.75, for its reaction with the probe containing both the P1-P2 amide bond and the occupant for the S2 subsite, 0.61, and for kcat./Km for its catalysis of the hydrolysis of N-methoxycarbonylglycine 4-nitrophenyl ester, 0.67.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
E W Hafner  D Wellner 《Biochemistry》1979,18(3):411-417
The reactivity of the imino acids formed in the D- or L-amino acid oxidase reaction was studied. It was found that: (1) When imino acids reacted with the alpha-amino group of glycine or other amino acids, transimination yielded derivatives less stable to hydrolysis than the parent imino acids. In contrast, when imino acids reacted with the epsilon-amino group of lysine or other primary amines, transimination yielded derivatives more stable to hydrolysis than the parent imino acids. (2) Imino acids react rapidly with hydrazine and semicarbazide, forming stable hydrazones and semicarbazones. At pH 7.7, the rate of reaction of the imino acid analogue of leucine with semicarbazide was 10(4) times greater than that of the corresponding keto acid. The reaction of imino acids with these reagents is rapid enough to permit one to follow spectrophotometrically the amino acid oxidase reaction. Imino acids also reacted with cyanide to yield stable adducts. (3) The rate of hydrolysis of the imino acid analogue of leucine was independent of pH above pH 8.5. At lower pH values, the rate of hydrolysis increased with decreasing pH. At 25 degrees C and in the absence of added amino compounds, this imino acid had a half-life of 22 s at pH 8.5. Its half-life was 9.9 s at pH 7.9.  相似文献   

16.
The reaction of myeloperoxidase compound I (MPO-I) with chloride ion is widely assumed to produce the bacterial killing agent after phagocytosis. Two values of the rate constant for this important reaction have been published previously: 4.7 x 106 M-1.s-1 measured at 25 degrees C [Marquez, L.A. and Dunford, H.B. (1995) J. Biol. Chem. 270, 30434-30440], and 2.5 x 104 M-1.s-1 at 15 degrees C [Furtmüller, P.G., Burner, U. & Obinger, C. (1998) Biochemistry 37, 17923-17930]. The present paper is the result of a collaboration of the two groups to resolve the discrepancy in the rate constants. It was found that the rate constant for the reaction of compound I, generated from myeloperoxidase (MPO) and excess hydrogen peroxide with chloride, decreased with increasing chloride concentration. The rate constant published in 1995 was measured over a lower chloride concentration range; the 1998 rate constant at a higher range. Therefore the observed conversion of compound I to native enzyme in the presence of hydrogen peroxide and chloride ion cannot be attributed solely to the single elementary reaction MPO-I + Cl- --> MPO + HOCl. The simplest mechanism for the overall reaction which fit the experimental data is the following: MPO+H2O2 ⇄k-1k1 MPO-I+H2O MPO-I+Cl- ⇄k-2k2 MPO-I-Cl- MPO-I-Cl- -->k3 MPO+HOCl where MPO-I-Cl- is a chlorinating intermediate. We can now say that the 1995 rate constant is k2 and the corresponding reaction is rate-controlling at low [Cl-]. At high [Cl-], the reaction with rate constant k3 is rate controlling. The 1998 rate constant for high [Cl-] is a composite rate constant, approximated by k2k3/k-2. Values of k1 and k-1 are known from the literature. Results of this study yielded k2 = 2.2 x 106 M-1.s-1, k-2 = 1.9 x 105 s-1 and k3 = 5.2 x 104 s-1. Essentially identical results were obtained using human myeloperoxidase and beef spleen myeloperoxidase.  相似文献   

17.
The alpha-chymotryptic ydrolysis of glycine esters   总被引:6,自引:4,他引:2       下载免费PDF全文
1. The alpha-chymotrypsin-catalysed hydrolysis of N-acetylglycine ethyl and thiolethyl esters was investigated at pH7.90 and 25 degrees over a wide range of substrate concentrations. 2. The Lineweaver-Burk plots for these substrates are markedly curved, and it is shown that the curvature is due solely to the ;enzyme-blank' reaction. The rate of this reaction is proportional to free enzyme concentration in the range 10-100mum, with a pseudo-first-order rate constant of approx. 1x10(-3)sec.(-1). Correction for this reaction by the procedure described leads to linear plots. It is shown that the significance of the enzyme-blank reaction depends on the value of k(0)/K(m) for the substrate under investigation. 3. Interpretation of the curvature in the Lineweaver-Burk plots by previous workers in terms of activation by excess of substrate is shown to be erroneous. 4. Values of K(m) 387mm and k(0) 0.039sec.(-1), and K(m) 41mm and k(0) 0.23sec.(-1), were obtained for the ethyl and thiolethyl esters of N-acetylglycine respectively. The literature values for the methyl esters of N-acetyl- and N-propionyl-glycine have been corrected by the procedure described. The new values agree much better with current theories of alpha-chymotrypsin mechanism and specificity. 5. The kinetic parameters for the ethyl and thiolethyl esters indicate the absence of an electrophilic component in the catalytic mechanism of alpha-chymotrypsin, and the importance of the ester function in substrate binding.  相似文献   

18.
The competence of dopamine beta-monooxygenase (DBM) to process selenide substrates was investigated, in anticipation that the expected selenoxide products would exhibit unique reactivity and redox properties. The prototypical selenide phenyl 2-aminoethyl selenide (PAESe) was synthesized and shown to be a substrate for DBM with the characteristic e/O2 ratio of 2:1 for monooxygenation. The kinetic parameters for oxygenation of PAESe were found to be similar to those for the DBM-catalyzed sulfoxidation of the cognate sulfide phenyl 2-aminoethyl sulfide [May, S. W., & Phillips, R. S. (1980) J. Am. Chem. Soc. 102, 5981-5983], and selenoxidation was stimulated by fumarate in a manner similar to other well-characterized DBM monooxygenation reactions. Identification of phenyl 2-aminoethyl selenoxide (PAESeO) as the enzymatic product was accomplished by the demonstration of coincident elution of authentic PAESeO with the enzymatic product in three significantly different HPLC systems. PAESeO was found to oxidize ascorbic acid with the concomitant and stoichiometric reduction of PAESeO back to the selenide, PAESe. As a consequence of this nonenzymatic reaction, ascorbate-supported DBM turnover was prematurely terminated under standard assay conditions due to depletion of reduced ascorbate. The kinetics of the redox reaction between PAESeO and ascorbate were investigated with a spectrophotometric assay of ascorbate at 300 nm, and a second-order rate constant of 3.4 M-1 s-1 was determined at pH 5.0, 25 degrees C. Spectrophotometric assay of cytochrome c (cyt c) reduction at 550 nm during the oxidation of ascorbate by PAESeO demonstrated that no cyt c trappable semidehydroascorbate was produced in this nonenzymatic reaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
For (S)-thiirancarboxylic acid a second-order rate constant of k2nd = 222 M(-1) min(-1) for the irreversible inhibition of papain was determined. The ethyl and methyl ester do not inhibit the enzyme time-dependently. An improved synthesis of enantiomerically pure thiirancarboxylic acid is described. It is shown that thiirancarboxylates can be substrates for serine proteases (alpha-chymotrypsin) and esterases (pig liver esterase) and even for metallo proteases (thermolysin).  相似文献   

20.
The two phosphoenzymes (E1P and E2P) of Na+,K+-ATPase were measured as ADP-sensitive and K+-sensitive fractions. The sum of these fractions was nearly 1 in the range of 50 to 1,200 mM NaCl. The effects of Na+ on the levels of E1P and E2P, on the rate constant of E2P leads to E1P transition (k2), on the rate constant of E2P dephosphorylation (k3), on the rate constant of E1P leads to E2P transition (k1) and on the apparent equilibrium constant between E1P and E2P (Kapp) were examined. k1 was found to decrease with increasing Na+ concentration, whereas k2 increased. Kapp was found to be directly proportional to the third power of Na+ concentration. k3 increased with increasing Na+ concentration and saturated at about 1 M NaCl. These results are consistent with a simple model in which ATP hydrolysis occurs through effectively only two phosphoenzyme intermediates in the absence of K+ and three sodium ions are discharged cooperatively from the enzyme during the E1P leads to E2P conversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号