首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regular fruit consumption lowers the risk of cardiovascular diseases and certain cancers, which has been attributed in part to fruit-derived antioxidant flavonoids. However, flavonoids are poorly absorbed by humans, and the increase in plasma antioxidant capacity observed after consumption of flavonoid-rich foods often greatly exceeds the increase in plasma flavonoids. In the present study, six healthy subjects consumed five Red Delicious apples (1037 +/- 38 g), plain bagels (263.1 +/- 0.9 g) and water matching the carbohydrate content and mass of the apples, and fructose (63.9 +/- 2.9 g) in water matching the fructose content and mass of the apples. The antioxidant capacity of plasma was measured before and up to 6 h after food consumption as ferric reducing antioxidant potential (FRAP), without or with ascorbate oxidase treatment (FRAPAO) to estimate the contribution of ascorbate. Baseline plasma FRAP and FRAPAO were 445 +/- 35 and 363 +/- 35 microM trolox equivalents, respectively. Apple consumption caused an acute, transient increase in both plasma FRAP and FRAPAO, with increases after 1 h of 54.6 +/- 8.7 and 61.3 = 17.2 microM trolox equivalents, respectively. This increase in plasma antioxidant capacity was paralleled by a large increase in plasma urate, a metabolic antioxidant, from 271 +/- 39 microM at baseline to 367 +/- 43 microM after 1 h. In contrast, FRAP and FRAPAO time-dependently decreased after bagel consumption, together with urate. Consumption of fructose mimicked the effects of apples with respect to increased FRAP, FRAPAO, and urate, but not ascorbate. Taken together, our data show that the increase in plasma antioxidant capacity in humans after apple consumption is due mainly to the well-known metabolic effect of fructose on urate, not apple-derived antioxidant flavonoids.  相似文献   

2.
Sen G  Mukhopadhaya R  Ghosal J  Biswas T 《Life sciences》2000,67(26):3181-3190
Visceral leishmaniasis (V.L.) is associated with enhanced lipid peroxidation along with impaired function of antioxidant defense system in erythrocytes. The effect of chronic treatment with ascorbate and alpha-tocopherol was studied on erythrocytes in hamsters infected with Leishmania donovani. Combination treatment with both antioxidants proved to be a potential suppressor of lipid hydroperoxide formation as well as hypotonic osmotic lysis during the leishmanial infection. Positive correlations between the depleted levels of erythrocyte ascorbate, GSH and alpha-tocopherol exhibit proportionate alterations in the nonenzymatic antioxidant levels at different stages of infection. Indirect measurement of transmembrane electron transfer as ferricyanide reduction suggests an active participation of endogenous contents of ascorbate and alpha-tocopherol in the protection against oxidative damage of membrane lipids. Cooperative behavior of both antioxidants in the ferricyanide reducing capacity was further evinced by resealing the ghosts in presence of exogenous ascorbate and alpha-tocopherol. Furthermore, intravesicular ascorbate serves in the defense of extravesicular ferricyanide induced oxidation of endogenous alpha-tocopherol. The results suggest an interacting role of ascorbate and alpha-tocopherol in maintaining the antioxidant reserve of erythrocytes during anemia in V.L.  相似文献   

3.
Abuja PM 《FEBS letters》1999,446(2-3):305-308
Uric acid and ascorbic acid are important low molecular weight antioxidants in plasma. Their interactions and combined effect on Cu(2+)-catalysed oxidation of human low density lipoprotein were studied in vitro. It was found that uric acid alone becomes strongly prooxidant whenever it is added to low density lipoprotein shortly after the start of oxidation (conditional prooxidant). Ascorbic acid, which is present in human plasma at much lower concentrations (20-60 microM) than urate (300-400 microM), is in itself not a conditional prooxidant. Moreover, ascorbate prevents prooxidant effects of urate, when added to oxidising low density lipoprotein simultaneously with urate, even at a 60-fold molar excess of urate over ascorbate. Ascorbate appears to have the same anti-prooxidant effect with other aqueous reductants, which, besides their antioxidant properties, were reported to be conditionally prooxidant. Such interactions between ascorbate and urate may be important in preventing oxidative modification of lipoproteins in the circulation and in other biological fluids.  相似文献   

4.
BACKGROUND: Much experimental evidence suggests that lipid oxidation is important in atherogenesis and in epidemiological studies dietary antioxidants appear protective against cardiovascular events. However, most large clinical trials failed to demonstrate benefit of oral antioxidant vitamin supplementation in high-risk subjects. This paradox questions whether ingestion of antioxidant vitamins significantly affects lipid oxidation within established atherosclerotic lesions. METHODS AND RESULTS: This placebo-controlled, double blind study of 104 carotid endarterectomy patients determined the effects of short-term alpha-tocopherol supplementation (500 IU/day) on lipid oxidation in plasma and advanced atherosclerotic lesions. In the 53 patients who received alpha-tocopherol there was a significant increase in plasma alpha-tocopherol concentrations (from 32.66 +/- 13.11 at baseline to 38.31 +/- 13.87 (mean +/- SD) micromol/l, p < 0.01), a 40% increase (compared with placebo patients) in circulating LDL-associated alpha-tocopherol (p < 0.0001), and their LDL was less susceptible to ex vivo oxidation than that of the placebo group (lag phase 115.3 +/- 28.2 and 104.4 +/- 15.7 min respectively, p < 0.02). Although the mean cholesterol-standardised alpha-tocopherol concentration within lesions did not increase, alpha-tocopherol concentrations in lesions correlated significantly with those in plasma, suggesting that plasma alpha-tocopherol levels can influence lesion levels. There was a significant inverse correlation in lesions between cholesterol-standardised levels of alpha-tocopherol and 7beta-hydroxycholesterol, a free radical oxidation product of cholesterol. CONCLUSIONS: These results suggest that within plasma and lesions alpha-tocopherol can act as an antioxidant. They may also explain why studies using < 500 IU alpha-tocopherol/day failed to demonstrate benefit of antioxidant therapy. Better understanding of the pharmacodynamics of oral antioxidants is required to guide future clinical trials.  相似文献   

5.
During exercise, the oxygen consumption and the production of free radicals increase and can lead to oxidative stress with a deleterious effect on cellular structures involved in physical activity. To evaluate the oxidative stress produced by exercise and the role of ascorbate as an antioxidant, venous blood samples were obtained from 44 thoroughbred racehorses, before and after a 1000+/-200-m race at maximum velocity. Fourteen of these horses were treated intravenously with 5 g of ascorbate before running. Antioxidant capacity (PAOC), endogenous and exogenous ascorbate concentration, total antioxidant reactivity (TAR), urate concentration, creatine kinase activity, protein concentration and thiobarbiturate reactive substances (TBAR) as oxidative stress indicators were measured in the plasma of some of these horses. PAOC, TAR and TBAR increased after the race, while plasma ascorbate and urate concentrations remained unchanged. Total plasma protein (TPP) concentrations increased in line with antioxidant capacity. As predicted, both the plasma ascorbate concentration and PAOC increased immediately after ascorbate administration, but was not modified after the race, such as TBAR. However, in both groups plasma creatine kinase activity increased after the race. These results would suggest that the administration of ascorbate could nullify the oxidative stress produced by exercise in thoroughbred racehorses, but could not prevent muscular damage.  相似文献   

6.
Chain-breaking antioxidants such as butylated hydroxytoluene, alpha-tocopherol, and probucol have been shown to decrease markedly the oxidative modification of low density lipoprotein (LDL). Their mechanism of action appears to involve scavenging of LDL-lipid peroxyl radicals. The purpose of this study was to investigate the occurrence of radical reactions produced during oxidation of LDL and LDL-containing probucol initiated by lipoxygenase or copper. In addition, we have investigated the possibility of a synergistic interaction between ascorbate and probucol in inhibiting the oxidation of LDL. Incubation of LDL-containing probucol and lipoxygenase produced a composite electron spin resonance (ESR) spectrum due to the endogenous alpha-tocopheroxyl radical and probucol-derived phenoxyl radical. The spectral assignment was further verified by chemical oxidation of alpha-tocopherol and probucol. In the presence of ascorbic acid, these radicals in the LDL particle were reduced to their parent compounds with concomitant formation of the ascorbate radical. In both the peroxidation of linoleic acid and the copper-initiated peroxidation of LDL, the antioxidant activity of probucol was significantly increased by low (3-6 microM) concentrations of ascorbate. The probucol-dependent inhibition of LDL oxidation was enhanced in the presence of ascorbic acid. We conclude that the reaction between the phenoxyl radical of probucol and ascorbate results in a synergistic enhancement of the antioxidant capacity of these two compounds and speculate that such reactions could play a role in maintaining the antioxidant status of LDL during oxidative stress in vivo.  相似文献   

7.
The combination of ascorbate, transition metal ions, and hydrogen peroxide (H(2)O(2)) is an efficient hydroxyl radical generating system called "the Udenfriend system." Although the pro-oxidant role of ascorbate in this system has been well characterized in vitro, it is uncertain whether ascorbate also acts as a pro-oxidant under physiological conditions. To address this question, human plasma, used as a representative biological fluid, was either depleted of endogenous ascorbate with ascorbate oxidase, left untreated, or supplemented with 25 microM-1 mM ascorbate. Subsequently, the plasma samples were incubated at 37 degrees C with 50 microM-1 mM iron (from ferrous ammonium sulfate), 60 or 100 microM copper (from cupric sulfate), and/or 200 microM or 1 mM H(2)O(2). Although endogenous and added ascorbate was depleted rapidly in the presence of transition metal ions and H(2)O(2), no cholesterol ester hydroperoxides or malondialdehyde were formed, i.e., ascorbate protected against, rather than promoted, lipid peroxidation. Conversely, depletion of endogenous ascorbate was sufficient to cause lipid peroxidation, the rate and extent of which were enhanced by the addition of metal ions but not H(2)O(2). Ascorbate also did not enhance protein oxidation in plasma exposed to metal ions and H(2)O(2), as assessed by protein carbonyl formation and depletion of reduced thiols. Interestingly, neither the rate nor the extent of endogenous alpha-tocopherol oxidation in plasma was affected by any of the treatments. Our data show that even in the presence of redox-active iron or copper and H(2)O(2), ascorbate acts as an antioxidant that prevents lipid peroxidation and does not promote protein oxidation in human plasma in vitro.  相似文献   

8.
The seasonal variation of CuCl2-mediated low density lipoprotein (LDL) oxidation (10 microM Cu2+, lag phase, rate of oxidation and maximum absorbance at 234 nm) were measured in 43 men and women on 4-6 occasions (mean 5.7 +/- 0.5) over a 12-month period. The lag phase averaged 52.7 +/- 0.6 min and did not differ by gender. Lag phase and rate of the rapid propagation phase of LDL oxidation showed a sinusoidal pattern over the year (increased and reduced oxidative susceptibility during January and June-July, respectively; both p < 0.001). Changes in plasma alpha-tocopherol, ascorbic acid, lycopene or beta-carotene concentrations did not explain seasonal differences in oxidative susceptibility of LDL in vitro. Nor did plasma lipid content of linoleic acid, the main substrate of lipid peroxidation, vary. However, the amount of hydroperoxy- plus hydroxy-fatty acids in plasma lipids varied according to season (p < 0.024) and was related to the lag phase (r = -0.26, p < 0.001). Seasonal variation in oxidative susceptibility was not significant after adjusting for hydroperoxy- plus hydroxy-fatty acids (p = 0.506). Isolated LDL is more vulnerable to Cu2+-induced lipid peroxidation during the winter and this may be due to the higher amount of oxidised lipids during that period.  相似文献   

9.
We have investigated vitamin C supplementation effects on immunoglobulin oxidation (carbonyls) and total plasma protein sulfhydryls in healthy human volunteers. After receiving placebo, plasma ascorbate and oxidation markers were unchanged. Following 5 weeks supplementation with vitamin C (400 mg/day), plasma ascorbate increased but no significant effect on protein oxidation was observed. At 10 and 15 weeks supplementation, carbonyl levels were significantly reduced (P < 0.01) in subjects with low baseline ascorbate (29.51 +/- 5.3 microM) but not in those with normal baseline ascorbate (51.81 +/- 2.3 microM). To eliminate any effect from seasonal variation in dietary antioxidant intake, a second phase was undertaken. Subjects on vitamin C for 15 weeks were randomly assigned to receive either placebo or vitamin C. No difference in plasma sulfhydryl content was observed. Subjects withdrawn from supplementation showed an increase in immunoglobulin carbonyl content (P < 0.01). This demonstrates that dietary vitamin C supplementation can reduce certain types of oxidative protein damage in subjects with low basal antioxidant.  相似文献   

10.
The aim of this study was to compare some bioactive compounds in apples, peaches and pears and their influence on lipids and antioxidant capacity in rats. The content of total polyphenols (g/100g) was 0.23 +/- 0.03; 0.22 +/- 0.03 and 0.68 +/- 0.1 in peeled fruits and 0.48 +/- 0.04, 0.47 +/- 0.04 and 1.2 +/- 0.12 in peels of peaches, pears and apples, respectively. Caffeic, p-coumaric and ferulic acids and the total radical-trapping antioxidative potential (TRAP) values in peeled apples and their peels were significantly higher than in peaches and pears, respectively. Contrarary, no significant differences in the content of dietary fiber among the studied fruits were found. The content of all studied indices in peels was significantly higher than peeled fruits (p < 0.05 ). A good correlation between the total polyphenols and the TRAP values was found in all fruits. Diets supplemented with apples and to a less extent with peaches and pears have improved lipid metabolism and increased the plasma antioxidant potential especially in rats fed with added cholesterol. The highest content of biologically active compounds and the best results in the experiment on rats makes apple preferable for dietary prevention of atherosclerosis and other diseases.  相似文献   

11.
Low density lipoprotein (LDL) oxidation by peroxynitrite is a complex process, finely modulated by control of peroxynitrite formation, LDL availability and free-radical scavenging by nitric oxide (*NO), ascorbate and alpha-tocopherol (alpha -TOH). In the presence of CO2, lipid targets are spared at the expense of surface constituents. Since surface damage may lead to oxidation-induced LDL aggregation and particle recognition by scavenger receptors, CO2 cannot be considered an inhibitor of peroxynitrite-dependent LDL modifications. Chromanols, urate and ascorbate cannot scavenge peroxynitrite in the vasculature, although intermediates of urate oxidation and high ascorbate concentrations may do soin vitro. Most if not all of the protection against peroxynitrite-induced LDL oxidation afforded by urate, ascorbate, chromanols and also*NO should be considered to depend on their free radical scavenging abilities, including inactivation of lipid peroxyl radicals (LOO),*NO2, and CO3*-; as well as their capacity to reduce high oxidation states of metal centers. Peroxynitrite direct interception by reduced manganese (II) porphyrins is possibly the most powerful although unspecific strategy to inhibit peroxynitrite reactions. In light of the recent demonstration of nitrated bioactive lipids in vivo, renewed interest in the mechanisms of peroxynitrite- and nitric oxide-mediated lipid nitration and nitrosation is guaranteed.  相似文献   

12.
Distribution of ascorbate into tissues is an essential process in ascorbate antioxidant defense. Hibernating animals are studied as a model of tolerance to ischemia-reperfusion because of their tolerance to fluctuations in blood flow associated with prolonged torpor and periodic arousal episodes. Throughout hibernation, plasma ascorbate concentration ([Asc](p)) repetitively increases during torpor, then falls during periodic arousal bouts. We previously proposed that high [Asc](p) provides a ready source of antioxidant protection for distribution to the central nervous system and peripheral tissues during arousal. Here we tested whether deliberate oxidation of plasma ascorbate by intravenous administration of ascorbate oxidase (AO), prior to arousal, compromised tissue levels of ascorbate or the other water-soluble antioxidants, glutathione (GSH) and urate. Although AO decreased [Asc](p) to below the level of detection during torpor and after arousal, ascorbate oxidation did not decrease post-arousal tissue levels of reduced ascorbate, glutathione, or urate in any tissue examined, except liver. The data imply that ascorbate is taken up equally well into brain and other tissues as either ascorbate or its oxidized product dehydroascorbate, with subsequent intracellular reduction of dehydroascorbate. Lack of effect of ascorbate oxidation on tissue levels of GSH or urate indicates that dehydroascorbate uptake and reduction do not compromise tissue concentrations of these other water-soluble antioxidants. Thus, we show equal availability of reduced and oxidized plasma ascorbate during metabolically demanding thermogenesis and reperfusion associated with arousal from hibernation.  相似文献   

13.
Turnera ulmifolia L. is used in Brazilian folk medicine as an anti-inflammatory. Since this activity may be correlated with the presence of antioxidant compounds, a leaf extract was evaluated for its radical scavenging capacity (RSC). The in vitro RSC of a 50% hydroethanolic (HE) extract was evaluated by beta-carotene/linoleic acid coupled oxidation system for the inhibition of oxidation and the lipid peroxidation inhibition in rat brain homogenates, using thiobarbituric acid reactive substances (TBARS) and chemiluminescence (CL). Results indicated, through peroxidation suppression, that this extract exhibited greater antioxidative activity (77.4% +/- 10%) than alpha-tocopherol (58.4% +/- 3.7%). TBARS and CL inhibition was concentration-dependent and Q(1/2) values were 8.2 and 6.0 microg/mL for TBARS and CL, respectively. For alpha-tocopherol these values were 7.1 microg/mL (TBARS) and 9.8 microg/mL (CL). Phenolic compounds may be responsible for this antioxidant capacity.  相似文献   

14.
Oxidation of low density lipoprotein (LDL) plays crucial roles in atherogenesis. We previously reported that green tea polyphenols (flavan 3-ols), especially epigallocatechingallate (EGCg) and epicatechingallate, exerted potent inhibitory effects on LDL oxidation in vitro. To examine whether intake of green tea polyphenols renders LDL resistant to ex vivo oxidation in humans, 22 male volunteers aged between 22 and 32 years were recruited and assigned the same dietary regimen for 2 weeks. After a 1-week baseline period, they were equally divided into two groups: control and tea. The tea group ingested 300 mg of green tea polyphenol extract twice daily for 1 week. Plasma EGCg concentration at the end of the experiment was 56 nmol/L on average (56% in free form) in the tea group; no EGCg was detected before the experiment. Plasma concentrations of lipids, ascorbate, alpha-tocopherol, and lipid peroxides did not change before and after the experiment in either group, but beta-carotene was higher in the tea group (P< 0.01 by paired Student'st-test). LDL (0.1 mg/mL) was incubated with 5 microM Cu(2+) and the oxidation was measured by absorbance at 234 nm. The lag time was significantly prolonged by 13.7 min in the tea group (P < 0.05 by paired Student'st-test, before versus after), whereas such a change was not observed in the control group. These results suggest that daily consumption of seven to eight cups (approximately 100 mL each cup) of green tea may increase resistance of LDL to in vivo oxidation, leading to reduction in the risk of cardiovascular diseases.  相似文献   

15.
The flavan-3-ols (-)-epicatechin (epicatechin) and (+)-catechin (catechin) and their related oligomers (procyanidins) isolated from cocoa were assayed for their capacity to inhibit the UVC-mediated formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (oxo(8)dG) in calf thymus DNA. The above-mentioned compounds inhibited oxo(8)dG production in a concentration- and time-dependent manner. After 30 min of irradiation (30 kJ/m(2)), 0.1, 1.0, 10, and 100 microM epicatechin inhibited oxo(8)dG formation by 20, 36, 64, and 74%, respectively. For the same dose of UVC, 0.1, 1.0, 10, and 100 microM catechin inhibited oxo(8)dG formation by 1, 23, 50, and 70%, respectively. Epicatechin was more efficient than catechin with respect to inhibiting oxo(8)dG formation (IC(50) 1.7 +/- 0.7 vs 4.0 +/- 0.7 microM). Monomer, tetramer, and hexamer fractions were equally effective in inhibiting oxo(8)dG formation when assayed at 10 microM monomer equivalent concentration. At similar concentrations (1-50 microM), the inhibition of the UVC-mediated oxo(8)dG formation by flavan-3-ols and procyanidins was in the range of that of alpha-tocopherol, Trolox, ascorbate, and glutathione. These results support the concept that flavan-3-ols and their related procyanidins can protect DNA from oxidation at concentrations that can be physiologically relevant. Both epimerism and degree of oligomerization are important determinants of the antioxidant activity of flavan-3-ols and procyanidins.  相似文献   

16.
Tea polyphenols have strong in vitro antioxidant activity. Due to their limited bioavailability, however, their contribution to in vivo antioxidant activity may depend on the form of administration. A human intervention study was performed to evaluate the bioavailability and antioxidant capacity of (-)-epigallocatechin-3-gallate (EGCG) administered as a single large dose in the form of either purified EGCG or as green tea extract (Polyphenon E). Plasma concentrations of tea polyphenols were determined by high-performance liquid chromatography (HPLC) analysis combined with coulometric array electrochemical detection (ECD). We found no differences in plasma EGCG concentrations and trolox equivalents determined by the trolox equivalent antioxidant capacity assay after administration of either form of EGCG. However, we found that the plasma antioxidant activity was significantly affected by changes in the plasma urate concentration, which may have interfered with the effect of tea polyphenols on the antioxidant activity. In addition, lymphocyte 8-hydroxydeoxyguanosine to deoxyguanosine (8-OHdG/10(6)dG) ratios were determined by HPLC with ECD. The 8-OHdG/10(6)dG ratios did not change significantly during the 24 h following both EGCG interventions but correlated significantly within individuals determined during the two interventions separated by 1 week. In summary, changes in plasma uric acid due to dietary intake were significantly correlated to the plasma antioxidant activity and exerted a stronger influence on the plasma antioxidant activity compared with the EGCG intervention. In future studies of dietary effects on the plasma antioxidant capacity, changes in plasma uric acid will need to be closely monitored.  相似文献   

17.
A total of 59 healthy male subjects (32 smokers and 27 nonsmokers) who had no reported systemic disease and did not take alcohol and vitamin supplementation were included. The levels of autoantibody to oxidized low-density lipoproteins (ox-LDL) in smokers and age-matched nonsmokers were compared. The plasma levels of antioxidants that can affect the formation of ox-LDL were also measured, and correlation analyses between anti ox-LDL IgG and plasma antioxidants, controlling for age and body mass index (BMI), were performed. Plasma alpha-tocopherol and uric acid concentrations of nonsmokers (2.78+/-1.09 microg/mg total lipid and 6.96+/-1.69 mg/dl, respectively) were significantly higher than those of smokers (1.68+/-0.48 microg/mg total lipid and 6.15+/-1.14 mg/dl, respectively) (P<0.05). Although plasma ascorbate and retinol levels were not significantly different between smokers and nonsmokers, smokers older than 45 years old had significantly lower plasma ascorbate levels (0.32+/-0.17 mg/dl) than age-matched nonsmokers (0. 53+/-0.14 mg/dl) (P=0.036). Higher level of plasma anti ox-LDL IgG was noted in the group of smokers compared with nonsmokers (515+/-409 mU/ml vs. 407+/-268 mU/ml, respectively) under the statistic method of Chi-Square test (P=0.049). A significant negative correlation was found between plasma anti ox-LDL IgG and alpha-tocopherol in the combined population as well as in the smoker group (r=-0.26, p=0.047; r=-0.48, p=0.006; respectively). However, there was no correlation between plasma anti ox-LDL IgG and the levels of other antioxidants. These results suggest that reduced concentrations of alpha-tocopherol are associated with cigarette smoking. The significantly negative correlation between plasma anti ox-LDL IgG and alpha-tocopherol in the entire study population as well as in the smoker group suggests that plasma alpha-tocopherol may be partially effective if not totally at protecting LDL from oxidative damage caused by cigarette smoking and dietary supplementation with alpha-tocopherol may provide a protective effect against LDL oxidation, especially in smokers.  相似文献   

18.
The lipophilic radical initiator (MeO-AMVN) and the fluorescent probe C11BODIPY581/591 (BODIPY) were used to measure the lipid compartment oxidizability of human plasma. Aqueous plasma oxidizability was initiated by the aqueous peroxyl radical generator, AAPH, and 2',7'-dichlorodihydrofluorescein (DCFH) was employed as the marker of the oxidative reaction. The distribution in aqueous and lipid compartments of the two radical initiators was determined by measuring the rate of consumption of the plasma hydrophilic and lipophilic endogenous antioxidants. In the presence of AAPH (20 mM), the order of consumption was: ascorbic acid > alpha-tocopherol > uric acid > beta-carotene, indicating a gradient of peroxyl radicals from the aqueous to the lipid phase. When MeO-AMVN was used (2mM), beta-carotene was consumed earlier than uric acid and almost at the same time as alpha-tocopherol, reflecting the diffusion and activation of MeO-AMVN in the lipophilic phase. The rate of BODIPY oxidation (increase in green fluorescence) significantly increased after the depletion of endogenous alpha-tocopherol and beta-carotene, whereas it was delayed for 180 min when AAPH was used instead of MeO-AMVN. The measurement of lipid oxidation in plasma was validated by adding to plasma the two lipophilic antioxidants, alpha-tocopherol and beta-carotene, whose inhibitory effects on BODIPY oxidation were dependent on the duration of the preincubation period and hence to their lipid diffusion. DCFH oxidation induced by AAPH only began after uric acid, the main hydrophilic plasma antioxidant, was consumed. In contrast, when MeO-AMVN was used, DCFH oxidation was delayed for 120 min, indicating its localization in the aqueous domain. In summary, the selective fluorescence method reported here is capable of distinguishing the lipophilic and hydrophilic components of the total antioxidant capacity of plasma.  相似文献   

19.
In order to survive in an oxygen environment, aerobic organisms have developed numerous mechanisms to protect against oxygen radicals and singlet oxygen. One such mechanism, which appears to have attained particular significance during primate evolution, is the direct scavenging of oxygen radicals, singlet oxygen, oxo-haem oxidants and hydroperoxyl radicals by uric acid. In the present paper we demonstrate that another important 'antioxidant' property of uric acid is the ability to form stable co-ordination complexes with iron ions. Formation of urate-Fe3+ complexes dramatically inhibits Fe3+-catalysed ascorbate oxidation, as well as lipid peroxidation in liposomes and rat liver microsomal fraction. In contrast with antioxidant scavenger reactions, the inhibition of ascorbate oxidation and lipid peroxidation provided by urate's ability to bind iron ions does not involve urate oxidation. Association constants (Ka) for urate-iron ion complexes were determined by fluorescence-quenching techniques. The Ka for a 1:1 urate-Fe3+ complex was found to be 2.4 X 10(5), whereas the Ka for a 1:1 urate-Fe2+ complex was determined to be 1.9 X 10(4). Our experiments also revealed that urate can form a 2:1 complex with Fe3+ with an association constant for the second urate molecule (K'a) of approx. 4.5 X 10(5). From these data we estimate an overall stability constant (Ks approximately equal to Ka X K'a) for urate-Fe3+ complexes of approx. 1.1 X 10(11). Polarographic measurements revealed that (upon binding) urate decreases the reduction potential for the Fe2+/Fe3+ half-reaction from -0.77 V to -0.67 V. Thus urate slightly diminishes the oxidizing potential of Fe3+. The present results provide a mechanistic explanation for our previous report that urate protects ascorbate from oxidation in human blood. The almost saturating concentration of urate normally found in human plasma (up to 0.6 mM) represents 5-10 times the plasma ascorbate concentration, and is orders of magnitude higher than the 'free' iron ion concentration. These considerations point to the physiological significance of our findings.  相似文献   

20.
Cigarette smoking is associated with increased oxidative stress and increased risk of degenerative disease. As the major lipophilic antioxidant, requirements for vitamin E may be higher in smokers due to increased utilisation. In this observational study we have compared vitamin E status in smokers and non-smokers using a holistic approach by measuring plasma, erythrocyte, lymphocyte and platelet alpha- and gamma-tocopherol, as well as the specific urinary vitamin E metabolites alpha- and gamma-carboxyethyl-hydroxychroman (CEHC). Fifteen smokers (average age 27 years, smoking time 7.5 years) and non-smokers of comparable age, gender and body mass index (BMI) were recruited. Subjects completed a 7-day food diary and on the final day they provided a 24 h urine collection and a 20 ml blood sample for measurement of urinary vitamin E metabolites and total vitamin E in blood components, respectively. No significant differences were found between plasma and erythrocyte alpha- and gamma-tocopherol in smokers and non-smokers. However, smokers had significantly lower alpha-tocopherol (mean+/-SD, 1.34+/-0.31 micromol/g protein compared with 1.94+/-0.54, P = 0.001) and gamma-tocopherol (0.19+/-0.04 micromol/g protein compared with 0.26+/-0.08, P = 0.026) levels in their lymphocytes, as well as significantly lower alpha-tocopherol levels in platelets (1.09+/-0.49 micromol/g protein compared with 1.60+/-0.55, P = 0.014; gamma-tocopherol levels were similar). Interestingly smokers also had significantly higher excretion of the urinary gamma-tocopherol metabolite, gamma-CEHC (0.49+/-0.25mg/g creatinine compared with 0.32+/-0.16, P = 0.036) compared to non-smokers, while their alpha-CEHC (metabolite of alpha-tocopherol) levels were similar. There was no significant difference between plasma ascorbate, urate and F2-isoprostane levels. Therefore in this population of cigarette smokers (mean age 27 years, mean smoking duration 7.5 years), alterations to vitamin E status can be observed even without the more characteristic changes to ascorbate and F2-isoprostanes. We suggest that the measurement of lymphocyte and platelet vitamin E may represent a valuable biomarker of vitamin E status in relation to oxidative stress conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号