首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of N-benzoyl 4-aminobutyric acid hydroxamate analogs were synthesized and evaluated as matrix metalloproteinase inhibitors. Synthetic work was focused on the chemical modification of the 4-aminobutyric acid part using easily available starting materials. As such, chemical modification was carried out using commercially available starting materials such as 4-aminobutyric acid, (+)- and (-)-malic acid, and D- and L-glutamic acid derivatives. Among the compounds tested, N-[4-(benzofuran-2-yl)benzoyl] 4-amino-4S-hydroxymethylbutyric acid hydroxamates derived from L-glutamic acid demonstrated more potent inhibitory activity against MMP-2 and MMP-9 compared with the corresponding 2S-hydroxy analogs or 3S-hydroxy analogs, respectively, which were derived from (-)-malic acid. Structure-activity relationship study is presented.  相似文献   

2.
A unique sialic acid-binding lectin, achatininH (ATNH) was purified in single step from the haemolymph of the snail Achatina fulica by affinity chromatography on sheep submaxillary-gland mucin coupled to Sepharose 4B. The homogeneity was checked by alkaline gel electrophoresis, immunodiffusion and immunoelectrophoresis. Amino acid analysis showed that the lectin has a fairly high content of acidic amino acid residues (22% of the total). About 1.3% of the residues are half-cystine. The glycoprotein contains 21% carbohydrate. The unusually high content of xylose (6%) and fucose (2.7%) in this snail lectin is quite interesting. The protein was subjected to various chemical modifications in order to detect the amino acid residues and carbohydrate residues present in its binding sites. Modification of tyrosine and arginine residues did not affect the binding activity of ATNH; however, modification of tryptophan and histidine residues led to a complete loss of its biological activity. A marked decrease in the fluorescence emission was found as the tryptophan residues of ATNH were modified. The c.d. data showed the presence of an identical type of conformation in the native and modified agglutinin. The modification of lysine and carboxy residues partially diminished the biological activity. The activity was completely lost after a beta-elimination reaction, indicating that the sugars are O-glycosidically linked to the glycoprotein's protein moiety. This result confirms that the carbohydrate moiety also plays an important role in the agglutination property of this lectin.  相似文献   

3.
During the coupling reaction between 3-alkoxy-7-amino-4-chloroisocoumarin and N-acyl alanine dipeptide, an unexpected deamidation reaction was observed. The proposed mechanism for this reaction involved the formation of an imide intermediate which after cleavage led to the release of amino acid moiety. The described deamidation reaction represents the first chemical model involving a non-peptidic moiety, which mimics biological and chemical deamidation processes occurring in proteins or peptides incorporating an asparagine or a glutamine residue.  相似文献   

4.
Substrate activity screening (SAS) is a fragment-based method for the rapid development of novel substrates and their conversion into non-peptidic inhibitors of Cys and Ser proteases. The method consists of three steps: (i) a library of N-acyl aminocoumarins with diverse, low-molecular-weight N-acyl groups is screened to identify protease substrates using a simple fluorescence-based assay; (ii) the identified N-acyl aminocoumarin substrates are optimized by rapid analog synthesis and evaluation; and (iii) the optimized substrates are converted into inhibitors by direct replacement of the aminocoumarin with known mechanism-based pharmacophores. This protocol describes a general procedure for the solid-phase synthesis of a library of N-acyl aminocoumarin substrates and the screening procedure to identify weak binding substrates.  相似文献   

5.
Enzymes from extreme environments possess highly desirable traits of activity and stability for application under process conditions. One such example is l-aminoacylase (E.C. 3.5.1.14) from Thermococcus litoralis (TliACY), which catalyzes the enantioselective amide hydrolysis of N-protected l-amino acids, useful for resolving racemic mixtures in the preparation of chiral intermediates. Variants of this enzyme with improved activity and altered substrate preference are highly desirable. We have created a structural homology model of the enzyme and applied various two different directed evolution strategies to identify improved variants. Mutants P237S and F251Y were 2.4-fold more active towards N-benzoyl valine relative to the wild type at 65 °C. F251 mutations to basic residues resulted in 4.5-11-fold shifts in the substrate preference towards N-benzoyl phenylalanine relative to N-benzoyl valine. The substrate preference of wild type decreases with increasingly branched and sterically hindered substrates. However, the mutant S100T/M106K disrupted this simple trend by selectively improving the substrate preference for N-benzoyl valine, with a >30-fold shift in the ratio of kcat values for N-benzoyl valine and N-benzoyl phenylalanine. Mutations that favoured N-benzoyl-phenylalanine appeared at the active site entrance, whereas those improving activity towards N-benzoyl-valine occurred in the hinge region loops linking the dimerization and zinc-binding domains in each monomer. These observations support a previously proposed substrate induced conformational transition between open and closed forms of aminoacylases.  相似文献   

6.
A novel series of N-aryl salicylamides with a hydroxamic acid moiety at 5-position were synthesized efficiently. Their activities against EGFR kinase and HDACs were evaluated. All compounds displayed inhibitory activity against EGFR and HDACs. The antiproliferative activities of synthesized compounds were evaluated by MTT method against human cancer cell lines A431, A549 and HL-60. Compound 1o showed the most potent inhibitory activity against A431 and A549. Compounds 1k and 1n exhibited higher potency against HL-60 than gefitinib and SAHA. N-Aryl salicylamides with a hydroxamic acid moiety at 5-position is another new HDAC-EGFR dual inhibitors.  相似文献   

7.
A series of omega-alkoxy ethers were prepared with variation of the length of the aliphatic chain of suberoylanilide hydroxamic acid (SAHA, vorinostat). Eight carbon long chain analogues showed the best activity, among which several substituted benzyl ether derivatives exhibited inhibitory activity on HDAC comparable to SAHA, and antiproliferative activity on three human cell lines (NB4, H460, and HCT-116) better than SAHA. However, no significant difference in antiproliferative activity was observed between two enantiomers bearing the benzyl ether moiety.  相似文献   

8.
The crystal structure of RNase Rh, a new class of microbial ribonuclease from Rhizopus niveus, has been determined at 2.5 A resolution by the multiple isomorphous replacement method. The crystal structure was refined by simulated annealing with molecular dynamics. The current crystallographic R-factor is 0.200 in the 10-2.5 A resolution range. The molecular structure which is completely different from the known structures of RNase A and RNase T1 consists of six alpha-helices and seven beta-strands, belonging to the alpha+beta type structure. Two histidine and one glutamic acid residues which were predicted as the most probably functional residues by chemical modification studies are found to be clustered. The steric nature of the active site taken together with the relevant site-directed mutagenesis experiments (Irie et al.) indicates that: (i) the two histidine residues are the general acid and base; and (ii) an aspartic acid residue plays a role of recognizing adenine moiety of the substrate.  相似文献   

9.
Several unnatural N-acyl neuraminic acids (N-propionyl, N-hexanoyl, N-benzoyl, N-trifluoroacetyl, N-chloroacetyl, N-difluoroacetyl) were prepared enzymatically using immobilised sialic acid aldolase. N-Trifluoroacetyl-, N-chloroacetyl- and N-difluoroacetyl neuraminic acids were shown to enhance up to 10-fold the rate of association of influenza virus A to a sialoglycolipid neomembrane by surface plasmon resonance, and were found to act as weak inhibitors (K(iapp) 0.45-2.0 mM) of influenza virus neuraminidase. The N-propionyl, N-chloroacetyl- and N-difluoroacetyl neuraminic acids were found to be substrates for recombinant Escherichia coli CMP sialate synthase, to give the corresponding CMP-N-acyl-neuraminic acids. CMP-N-propionyl neuraminic acid was found not to be a substrate for CMP-N-acetyl neuraminic acid hydroxylase from pig submandibular gland.  相似文献   

10.
The enzymatic activity of the vitamin K-dependent proteins requires the post-translational conversion of specific glutamic acids to gamma-carboxy-glutamic acid by the integral membrane enzyme, gamma-glutamyl carboxylase. Whether or not cysteine residues are important for carboxylase activity has been the subject of a number of studies. In the present study we used carboxylase with point mutations at cysteines, chemical modification, and mass spectrometry to examine this question. Mutation of any of the free cysteine residues to alanine or serine had little effect on carboxylase activity, although C343A mutant carboxylase had only 38% activity compared with that of wild type. In contrast, treatment with either thiol-reactive reagent 4-acetamido-4'-maleimidylstilbene-2,2'-disulfonic acid, disodium salt, or sodium tetrathionate, caused complete loss of activity. We identified the residues modified, using matrix-assisted laser desorption/ionization time of flight mass spectrometry, as Cys(323) and Cys(343). According to our results, these residues are on the cytoplasmic side of the microsomal membrane, whereas catalytic residues are expected to be on the lumenal side of the membrane. Carboxylase was partially protected from chemical modification by factor IXs propeptide. Although all mutant carboxylases bound propeptide with normal affinity, chemical modification caused a >100-fold decrease in carboxylase affinity for the consensus propeptide. We conclude that cysteine residues are not directly involved in carboxylase catalysis, but chemical modification of Cys(323) and Cys(343) may disrupt the three-dimensional structure, resulting in inactivation.  相似文献   

11.
The galactose-binding lectin from the seeds of the jequirity plant (Abrus precatorius) was subjected to various chemical modifications in order to detect the amino acid residues involved in its binding activity. Modification of lysine, tyrosine, arginine, histidine, glutamic acid and aspartic acid residues did not affect the carbohydrate-binding activity of the agglutinin. However, modification of tryptophan residues carried out in native and denaturing conditions with N-bromosuccinimide and 2-hydroxy-5-nitrobenzyl bromide led to a complete loss of its carbohydrate-binding activity. Under denaturing conditions 30 tryptophan residues/molecule were modified by both reagents, whereas only 16 and 18 residues/molecule were available for modification by N-bromosuccinimide and 2-hydroxy-5-nitrobenzyl bromide respectively under native conditions. The relative loss in haemagglutinating activity after the modification of tryptophan residues indicates that two residues/molecule are required for the carbohydrate-binding activity of the agglutinin. A partial protection was observed in the presence of saturating concentrations of lactose (0.15 M). The decrease in fluorescence intensity of Abrus agglutinin on modification of tryptophan residues is linear in the absence of lactose and shows a biphasic pattern in the presence of lactose, indicating that tryptophan residues go from a similar to a different molecular environment on saccharide binding. The secondary structure of the protein remains practically unchanged upon modification of tryptophan residues, as indicated by c.d. and immunodiffusion studies, confirming that the loss in activity is due to modification only.  相似文献   

12.
A series of hydroxamic acid based histone deacetylase inhibitors 615, containing an isoxazole moiety adjacent to the Zn-chelating hydroxamic acid, is reported herein. Some of these compounds showed nanomolar activity in the HDAC isoform inhibitory assay and exhibited micro molar inhibitory activity against five pancreatic cancer cell lines.  相似文献   

13.
Spatial localization of antigenic determinants of trophoblast-specific beta I-glycoprotein (TSG) has been elucidated using chemical modifications of the sugar and protein moieties of the molecule. Various deglycosylation procedures of TSG afforded fragments slightly soluble even in the presence of powerful detergents. Treatment of TSG with boric acid and its salts, accompanied with a conformational change of the sugar moiety, failed to alter conformation of the protein portion as evidenced by CD spectral data. This modification was found to increase the antigenic activity of TSG only scarcely. Modification of tryptophane or tyrosine residues of TSG changed spatial structure of the protein portion to can be a considerable loss of the TSG antigenic activity. The data obtained led to the conclusion that antigenic determinants of TSG are localized at the protein portion of the molecule and are topographic. A tryptophane residue is an indispensable constituent of the antigenic determinants.  相似文献   

14.
Benzyl bromide is used as a reagent for the selective modification of methionine residues in proteins. We here explored the suitability of the bromobenzyl moiety as a reactive group for the targeted fluorescent labeling of methionine and selenomethionine residues in proteins. A novel labeling reagent (N,N',N'-trimethyl-N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)- N'-(p-bromomethylbenzyl)-ethylenediamine, NBD-BBr) was synthesized and tested for reactivity with two model proteins containing single methionine or selenomethionine residues. The amounts of reagent and reactions times required for modification of methionine resulted in side reactions with other amino acid residues, a finding which was also confirmed for benzyl bromide itself. However, with selenomethionine, lower concentrations and shorter reaction times were sufficient for NBD-BBr modification. Under these conditions, labeling was confined to selenomethionine residues with one but not the other model protein. Where applicable, the protein labeling strategy characterized here is rapid and efficient. It should be useful in combination with cysteine-specific labeling if dual site-specific modification is desired.  相似文献   

15.
HB-EGF Shedding inhibitors have been expected to become effective medicines for skin diseases caused by the proliferation of keratinocytes. In order to discover novel HB-EGF shedding inhibitors and clarify their structure-activity relationships, 5,6,7,8-tetrahydronaphthylidine-based hydroxamic acid and 5,6,7,8-tetrahydropyrido[3,4-b]pyrazine-based hydroxamic acids have been synthesized. Among the synthesized compounds, the ethoxyethoxy derivative 3o and the methoxypropoxy derivative 3p exhibited much more potent HB-EGF shedding inhibitory activity than CGS 27023A. The structural modification of 5,6,7,8-tetrahydropyrido[3,4-b]pyrazine-based hydroxamic acids enabled us to establish the following structure-activity relationships; the existence of the hydroxamic acid, the sulfonamide, and the phenyl moieties are crucial for a potent HB-EGF shedding inhibitory activity, and the stereochemistry of the alpha carbon of hydroxamic acid is also important. In addition, from the comparison of their HB-EGF shedding inhibitory activities with their MMPs inhibitory activities, we found that the S1' pocket of the responsible enzyme for HB-EGF shedding is deep unlike that of MMP-1.  相似文献   

16.
藏红花凝集素分子化学修饰与其活性的关系   总被引:1,自引:0,他引:1  
对甘露糖专一性结合藏红花凝集素 (Crocussativuslectin ,CSL)分子进行化学修饰 ,测定酿酒酵母 (S .cerevisiae)凝集活性和寡糖专一性结合活性的变化 .实验结果表明 ,Cys的修饰与活性无关 ,Arg、Tyr和His的修饰降低了CSL分子的酵母凝集活性和寡糖结合活性 ,但对CSL的CD光谱无显著影响 ,表明其为凝集素的活性氨基酸残基 .Glu和Asp的化学修饰可使CSL的凝集活性大幅度降低 ,与特异性寡糖的亲和力增大 ,CD光谱变化明显 ,提示CSL分子中的Glu和Asp对其空间结构影响较大 ,氨基酸羧基的修饰导致CSL构象改变 ,蛋白与寡糖的结合位点暴露 ,可有效结合的位点数增加  相似文献   

17.
A novel synthesis of the human leukocyte common antigen-related (LAR) phosphatase inhibitor, illudalic acid, has been achieved by a route more amenable to structure modifications. A series of simpler analogues of illudalic acid was synthesized and evaluated for potency in inhibiting LAR. The structure-activity relationship (SAR) study has shown that the 5-formyl group and the hemi-acetal lactone are crucial for effective inhibition of LAR activity, and are the key pharmacophores of illudalic acid. The fused dimethylcyclopentene ring moiety evidently helps to enhance the potency of illudalic acid against LAR. A preliminary study of the mechanism of action of illudalic acid against LAR was conducted using electrospray ionization mass spectrometry (ESI-MS) and molecular docking techniques. The results are in full agreement with the described mechanism.  相似文献   

18.
Kidney bean (Phaseolus vulgaris) alpha-amylase inhibitors, which are bivalent inhibitors with the subunit stoichiometry of (alphabeta)(2) complex, have been inferred to contain unique arginine, tryptophan, and tyrosine residues essential for the inhibitory activity. To test the validity of this inference, an attempt was made to identify the essential amino acid residues of a white kidney bean (P. vulgaris) alpha-amylase inhibitor (PHA-I) by using the chemical modification technique combined with amino acid sequencing and mass spectrometry. Exhaustive modification of the arginine residues by phenylglyoxal did not lead to a marked loss of activity, suggesting that no arginine residue is directly associated with the inhibitory activity. N-Bromosuccinimide treatment of PHA-I in the presence or absence of a substrate alpha-amylase revealed the involvement of two tryptophan residues in alpha-amylase inhibition, and they were identified as Trp188 of the beta-subunit by amino acid sequencing and mass spectrometry of lysylendopeptidase peptides. Further, two tyrosine residues were preferentially modified either by N-acetylimidazole or by tetranitromethane, resulting in a concomitant loss of most of the PHA-I activity. Amino acid sequencing of the lysylendopeptidase peptides from a tetranitromethane-modified PHA-I identified Tyr186 of the beta-subunit as an essential residue.  相似文献   

19.
Two natural piperamides (piperlonguminine and refrofractamide A) and their derivatives were synthesized and evaluated for inhibitory activity against histone deacetylases, as well as the HCT-116 human colon cancer cell line. The preliminary structure activity relationship was discussed. Compounds featuring a hydroxamic acid moiety exhibited moderate HDAC activity and in vitro cytotoxicity.  相似文献   

20.
Biosynthesis of mucin-type O-glycans is initiated by a family of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases, which contain several conserved cysteine residues among the isozymes. We found that a cysteine-specific reagent, p-chloromercuriphenylsulfonic acid (PCMPS), irreversibly inhibited one of the isozymes (GalNAc-T1). Presence of either UDP-GalNAc or UDP during PCMPS treatment protected GalNAc-T1 from inactivation, to the same extent. This suggests that GalNAc-T1 contains free cysteine residues interacting with the UDP moiety of the sugar donor. For the functional analysis of the cysteine residues, several conserved cysteine residues in GalNAc-T1 were mutated individually to alanine. All of the mutations except one resulted in complete inactivation or a drastic decrease in the activity, of the enzyme. We identified only Cys212 and Cys214, among the conserved cysteine residues in GalNAc-T1, as free cysteine residues, by cysteine-specific labeling of GalNAc-T1. To investigate the role of these two cysteine residues, we generated cysteine to serine mutants (C212S and C214S). The serine mutants were more active than the corresponding alanine mutants (C212A and C214A). Kinetic analysis demonstrated that the affinity of the serine-mutants for UDP-GalNAc was decreased, as compared to the wild type enzyme. The affinity for the acceptor apomucin, on the other hand, was essentially unaffected. The functional importance of the introduced serine residues was further demonstrated by the inhibition of all serine mutant enzymes with diisopropyl fluorophosphate. In addition, the serine mutants were more resistant to modification by PCMPS. Our results indicate that Cys212 and Cys214 are sites of PCMPS modification, and that these cysteine residues are involved in the interaction with the UDP moiety of UDP-GalNAc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号