首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
In this study we investigated the effect of environmental enrichment and handling on the acute physiological stress response caused by short periods of restraint in individually housed female mice. Heart rate (HR) and body temperature (BT) were measured by radiotelemetry and compared with plasma corticosterone (pCORT) levels. Also, postmortem thymus weight and tyrosine hydroxylase (TH) activity were assessed. The acute stress response was seen in both HR and BT. Enrichment and handling were found to increase rather than decrease this stress response, but pCORT values, measured 90 min after restraint, suggested a lower stress response in the enriched groups. No effect was found with thymus weight or TH as parameters.  相似文献   

2.
Performing stressful procedures in view of cage mates may cause stress in observer animals. However, it is not known if stressful procedures performed in close proximity to, but not in view of cage mates are stressful for the (observer) cage mates. Radiotelemetry and postmortem in vitro studies of the vas deferens were used to determine the effects of stress on observers. Heart rate (HR) and core body temperature (cBT) were recorded for 1 h following weighing of a cage mate or 1 h during restraint of a cage mate and the hour following return of the restrained mouse to the cage. This procedure was repeated daily for 15 days. HR and cBT were increased in observers during both restraint and weighing of cage mates. Analysis of the area under the curve showed that HR and cBT in observers were significantly higher during restraint of a cage mate than after weighing of a cage mate. When mice were returned to the cage after weighing or restraint, HR and cBT were significantly higher in the cage mates of restrained animals. Comparison between days 1, 3, 7 and 14 found that, as the experiment progressed, HR and cBT were significantly reduced in the observer mice during the hour following return of the cage mates after restraint. Results from previous studies have shown that chronic stress causes the vas deferens to become hypersensitive to exogenous application of noradrenaline (NAd). In this study, vas deferens from observers of restraint had a significantly increased response to NAd. These results indicate that stressful procedures should be conducted in isolation from other mice.  相似文献   

3.
M S Erskine  E Kornberg 《Life sciences》1992,51(26):2065-2071
The present experiments were carried out to determine what physiological conditions are responsible for the acute increases in serum levels of 5 alpha-androstane-3 alpha, 17 beta-diol (3 alpha-androstanediol, 3 alpha-Adiol) which are seen in the intact estrous female rat within 15-30 min after mating. Blood samples were obtained from proestrus rats immediately before and 20 min after injection of exogenous hormones or initiation of stress procedures, and plasma concentrations of 3 alpha-Adiol and/or progesterone (P) were measured in these samples by RIA. Intravenous injections of ovine LH (5, 15, or 45 micrograms) or saline resulted in equivalent significant increases in plasma 3 alpha-Adiol 20 min after injection. In contrast, dose-dependent increases in 3 alpha-Adiol were seen after intravenous injection of 0 (acidic saline vehicle), 2, 4, or 8 ng ACTH1-24 to dexamethasone-pretreated rats. The highest ACTH1-24 dose also resulted in a significant increase in plasma P concentration. In a third experiment, a significant increase in 3 alpha-Adiol concentration above baseline was seen at 20 min after onset of restraint stress; in this case plasma P concentrations did not increase significantly. Finally, blood samples were obtained after onset of ether/jugular venipuncture stress two days after ovariectomy (ovx), adrenalectomy (adx), or ovx+adx on diestrus. The plasma 3 alpha-Adiol response to stress was normal in intact sham-operated and non-operated groups of controls, but was significantly diminished in the ovx and the adx groups to 28.4% of that shown by the intact animals. Circulating 3 alpha-Adiol concentrations were undetectable in 22/26 samples obtained in the ovx+adx group. These data demonstrate that plasma concentrations of 3 alpha-Adiol increase in response to stress or ACTH but not LH, and that both the ovary and the adrenal contribute to this increase.  相似文献   

4.
In mammals, procedures such as handling, restraint, or exposure to open spaces induces an increase in body temperature (T(b)). The increase in temperature shares some characteristics with pyrogen-induced fever and so is often called "stress fever." Birds also respond to acute handling with a stress fever, which may confound thermoregulatory studies that involve animal restraint. We have measured the T(b) responses of Pekin ducks on days when they were restrained and compared them to days when the birds remained unrestrained. Restraint induced a 0.5 degrees C increase in T(b) that was sustained for the entire 8 h of restraint. To determine whether the restraint-induced increase in T(b) is mediated by prostaglandins (PGs) we compared the T(b) responses during restraint after intraperitoneal injection with saline to the responses during restraint after injection with diclofenac sodium (15 mg/kg). There was no difference in response, suggesting that restraint affects T(b) by a PG-independent mechanism. We also compared the T(b) response to intramuscular injection of lipopolysaccharide (LPS; 100 microg/kg), a bacterial pyrogen, when the ducks were restrained or unrestrained. Despite T(b) being higher at the time of LPS injection when the ducks were restrained, the maximum temperature reached after LPS injection was higher, and the period that T(b) remained elevated was longer when the ducks were unrestrained. We conclude that restraint should be considered as a potential confounder in thermoregulatory studies in birds and presumably other species too.  相似文献   

5.
Some experimental procedures are associated with placement of animals in wire-bottom cages. The goal of this study was to evaluate stress-related physiological parameters (heart rate [HR], body temperature [BT], locomotor activity [LA], body weight [BW] and food consumption) in rats under two housing conditions, namely in wire-bottom cages and in bedding-bottom cages. Telemetry devices were surgically implanted in male Sprague-Dawley rats. HR, BT and LA were recorded at 5 min intervals. Analysis under each housing condition was performed from 16:00 to 08:00 h of the following day (4 h light, 12 h dark). During almost all of the light phase, the HR of rats housed in wire-bottom cages remained high (371 ± 35 bpm; mean ± SD; n = 6) and was significantly different from that of rats housed in bedding-bottom cages (340 ± 29 bpm; n = 6; P < 0.001; Student's t-test). In general, BT was similar under the two housing conditions. However, when rats were in wire-bottom cages, BT tended to fluctuate more widely during the dark phase. LA decreased when animals were housed in wire-bottom cages, in particular during the dark phase. Moreover, there was a significant difference with respect to the gain in BW: BW of rats housed in bedding-bottom cages increased 12 ± 2 g, whereas that of rats in wire-bottom cages decreased by 2 ± 3 g (P < 0.001). Our results demonstrate that housing rats in wire-bottom cages overnight leads to immediate alterations of HR, BW and LA, which might be related to a stress response.  相似文献   

6.
Many studies have shown that housing mice individually over a long period significantly alters their physiology, but in most cases measurement has required human interference and restraint for sampling. Using a radio-telemetry system with implantable transmitters, we recorded heart rate (HR), motor activity (ACT) and body temperature (BT) of freely moving male mice (NMRI) housed either individually or in pairs with an ovarectomized female. Data for each parameter were collected at 5 min intervals for two consecutive 24 h periods. Even after several weeks of habituation to the social conditions, HR was increased in mice housed individually compared with mice housed in pairs, although their measured ACT did not differ. Additionally, BT tended to be reduced in individually-housed mice. When the data were analysed according to different ACT levels, HR was increased in individually-housed mice during phases of low and high, but not intermediate, motor activity. Furthermore, individually-housed mice had more, but shorter, resting bouts, indicating disruption of the normal circadian sleep pattern. Enhanced HR in individually-housed mice does not necessarily indicate stress, but might be an important physiological indicator of discomfort. The fact that individual housing alters basic physiological parameters in laboratory mice highlights the need to control for housing-dependent variation, especially in experiments that are sensitive to changes in these parameters.  相似文献   

7.
Routine laboratory procedures, such as handling or transporting animals or carrying out injections on animals, are stressful for animals but are necessary in many pre-clinical studies. Here, the authors show that multiple injections of the non-toxic vehicle cyclodextrin moderately increased plasma corticosterone concentrations in female BALB/c mice. Additionally, male BALB/c mice that had received a single intraperitoneal injection of harmless saline had an increased glucocorticoid response to a second saline injection. The authors found that female mice that had been exposed to an acute psychological stress session had a decreased glucocorticoid response to a second homotypic stressor. In contrast, multiple psychological stress sessions led to increased glucocorticoid release in female mice. Acute injection(s) of saline in male mice and of cyclodextrin in female mice led to transient lymphocytopenia. Further analysis showed that repeated stress-induced lymphocytopenia is glucocorticoid-dependent. The authors conclude that laboratory stress can affect physiological parameters in mice, potentially altering study results.  相似文献   

8.
Abstract: Previous studies have shown that fetal ethanol exposure (FEE) may have long-term effects on the function of catecholaminergic neurons in different regions of the CNS. The present study is the first to examine the effects of FEE on regional brain catecholamine responses following acute stress (a single 60-min restraint stress), repeated stress (single periods of restraint stress on 1, 5, or 10 consecutive days), and recovery from stress (recovery for up to 60 min in the home cage following a single 60-min period of restraint stress). Both male and female offspring from FEE, pair-fed (PF), and ad libitum-fed control (C) groups were tested in adulthood to determine catecholamine content in the cortex, hypothalamus, and hippocampus. A single period of restraint reduced cortical norepinephrine (NE) content in FEE and PF animals compared with that in the cortex of C animals, and reduced hypothalamic NE content in FEE female offspring below that found in animals in all other groups. In contrast, hippo-campal NE content was higher in FEE than in C animals following a single period of restraint; PF animals had intermediate levels of hippocampus NE and did not differ significantly from either FEE or C animals. Following repeated periods of restraint, cortical NE content was lower in FEE than in C animals; PF animals once again had intermediate levels of NE. Importantly, basal (non stressed) NE content did not differ among groups in any brain area examined. In addition, several significant changes in regional brain catecholaminergic responses to acute stress were observed in animals across all treatment groups. Females generally had significantly lower cortical NE levels than males following both single and multiple exposures to restraint. In addition, the cortical NE content decreased below non-stressed levels in all groups following a single restraint period, and remained significantly below basal levels during the 60-min recovery period, whereas the hypothalamic NE content was significantly decreased immediately following the restraint period but showed some recovery toward basal levels by 60 min. There were no significant changes over time in hippocampal NE level or in cortical or hypothalamic dopamine (DA) content following a single restraint stress. Following multiple periods of restraint, hippocampal NE levels were significantly increased and hypothalamic DA levels were significantly decreased in all animals compared with basal levels. These data suggest that the brain noradrenergic response to acute stress is particularly sensitive to the effects of FEE, and that with regard to the hypothalamus, male and female offspring were differentially affected. Furthermore, nutritional effects appear to play some role in mediating the changes in regional brain catecholamine content that are observed. In addition, stress effects on brain catecholamine content across all treatment groups were found to be both region and sex specific.  相似文献   

9.
Genotyping of genetically modified mice and control of authenticity of the genetic background of congenic or coisogenic strains by polymerase chain reaction (PCR) is a routine procedure that can be performed with different tissue biopsies causing variable grades of trauma. In this study, some invasive and non-invasive sampling methods were compared, with the main focus on the impact on animal physiology. We compared ear punch, tail biopsy, hair plugging, mouth and rectum swabs and the simple restraint of the animals, scoring for the impact on heart rate (HR), core body temperature (BT) and motor activity by telemetry, during biopsy and for the following 6 h. Furthermore, in order to correlate the physiological impact with the practicability and reliability of the genotyping results, we performed a PCR analysis of the biopsy samples obtained by using the same collection procedures analysed by telemetry. All sampling methods and restraint induced significant increase in HR and BT and a slight increase in motor activity for 1 h, independent of the invasiveness of the method used. Genotyping of all biopsies allowed the proper identification of transgenic animals, tail biopsies, ear punches and hair follicles giving clear signals, the last method being fast, but also susceptible to cross contaminations during sampling by large numbers of animals. Restraint and all biopsy methods provoked similar physiological changes, indicating that the handling of the animals is of major importance and that the sampling procedure does not strongly influence the physiological parameters.  相似文献   

10.
The erythrocytes of Wistar rats, subjected to heating at 40 degrees C (4 times, each heating lasting 40 min.) were found to be more immunogenic in mice than the erythrocytes of intact rats. The immunization of intact Wistar rats, in a single injection, with syngeneic erythrocytes obtained from the heated animals did not induce immunological response reaction, whereas 5 injections of these erythrocytes caused an increase in the number of rosette-forming cells. The injection of syngeneic erythrocytes obtained from the heated rats to intact animals also stimulated the development of immune response to sheep erythrocytes.  相似文献   

11.
Atrial natriuretic peptide (ANP) is a hormone secreted in response to atrial or ventricular volume expansion and pressure overload, respectively. However, it has been found in studies with animals and patients an increase in ANP plasma concentration, during advanced septic shock, despite the fall in mean arterial pressure (MAP).

Several studies support the hypothesis that NO may be involved in the regulation of ANP release. Since NO may have an effect on ANP release, we hypothesized that NO pathway may participate in the control of the ANP release induced by the endotoxemic shock. Thus, the purpose of the present study was to assess the effect of the intravenous (i.v.) and intracereboventricular (i.c.v.) administration of aminoguanidine, an iNOS blocker, on plasma ANP levels and MAP during experimental endotoxemic shock.

Experiments were performed on adult male Wistar rats weighing 180–240 g. Rats were injected i.v. by bolus injection with 1.5 mg/kg of Lipopolysaccharide (LPS) or saline (0.5 mL) and were decapitated 2, 4 and 6 h after LPS injection for ANP determination by radioimmunoassay. In a separate set of experiments, rats received intravenous (i.v.) (100 mg/kg) or intracerebroventricular (i.c.v.) (250 μg in a final volume of 2 μL) injection of aminoguanidine (AG). Thirty minutes after the i.c.v. or i.v. injections, animals received LPS and were decapitated 2, 4 and 6 h later to determine plasma ANP concentration. In the two set of experiments MAP and heart rate (HR) were measured each 15 min for a period of 6 h using a polygraph.

When animals were injected with LPS, a reduction (p < 0.01) in MPA and an increase in HR occurred. A significant increase in plasma ANP concentration occurred, coinciding with the period of drop in blood pressure.

We found a significant increase in plasma ANP concentration after AG plus LPS injection, when compared to the rats treated with LPS plus saline. Further, the administration of AG plus LPS attenuated the decrease in the MAP after LPS and attenuated the increase in the HR when compared to the rats treated with LPS plus saline.

Our study suggests that inducible NOS pathway may activate an inhibitory control mechanism that attenuates ANP secretion, which is not regulated by the changes in blood pressure.  相似文献   


12.
1. The aim of this study was to compare the effects of acute amphetamine (AMPH) treatment and restraint stress on plasma level of prolactin (PRL) and PRL mRNA expression in the adenohypophysis in Sprague–Dawley and Lewis male rats, the latter known to have a deficient hypothalamo–pituitary-adrenal (HPA) axis.2. Both restraint stress and AMPH treatment (i.p. in a dose of 8 mg/kg of b.w.) were applied 15 or 30 min before termination of the experiment. Plasma PRL and corticosterone (CORT) were determined by radioimmunoassay. PRL mRNA expression was estimated by a dot-blot hybridization.3. Restraint stress and AMPH treatment induced a significant increase in theCORT plasma level, as an indicator of stress response. Compared to Sprague–Dawley rats, the magnitude of CORT increase after both stimuli was significantly lower in Lewis rats.4. Although restraint stress significantly increased the PRL plasma levels in both rat strains, AMPH treatment reduced the PRL levels in both rat strains. However, the changes of PRL plasma levels had another pattern in Lewis rats than in Sprague–Dawley rats. Control plasma PRL levels were significantly higher in Lewis rats, and in this rat strain AMPH treatment for 30 min increased the PRL levels as compared to the values obtained after AMPH treatment for 15 min.5. Expression of PRL mRNA in adenohypophysis by restraint stress and AMPH treatment had a similar pattern. After a 15-min lasting restraint stress, the expression of PRL mRNA was decreased insignificantly in both rat strains. AMPH treatment induced in Sprague–Dawley rats a significant decrease of PRL mRNA after a 15-min interval while after 30 min there was a significant increase. However, in Lewis rats AMPH failed to significantly change PRL mRNA.6. The results from the present study indicate that the mechanisms mediatingthe effects of acute restraint stress and acute AMPH treatment differ in PRL response in Sprague–Dawley and Lewis male rat strains. Differences in the observed responses in Lewis rats could be related to the deficient activity of HPA axis in this rat strain.  相似文献   

13.
Chronic stress produces deficits in cognition accompanied by alterations in neural chemistry and morphology. Medial prefrontal cortex is a target for glucocorticoids involved in the stress response. We have previously demonstrated that 3 weeks of daily corticosterone injections result in dendritic reorganization in pyramidal neurons in layer II-III of medial prefrontal cortex. To determine if similar morphological changes occur in response to chronic stress, we assessed the effects of daily restraint stress on dendritic morphology in medial prefrontal cortex. Male rats were exposed to either 3 h of restraint stress daily for 3 weeks or left unhandled except for weighing during this period. On the last day of restraint, animals were overdosed and brains were stained using a Golgi-Cox procedure. Pyramidal neurons in lamina II-III of medial prefrontal cortex were drawn in three dimensions, and the morphology of apical and basilar arbors was quantified. Sholl analyses demonstrated a significant alteration of apical dendrites in stressed animals: overall, the number and length of apical dendritic branches was reduced by 18 and 32%, respectively. The reduction in apical dendritic arbor was restricted to distal and higher-order branches, and may reflect atrophy of terminal branches: terminal branch number and length were reduced by 19 and 35%. On the other hand, basilar dendrites were not affected. This pattern of dendritic reorganization is similar to that seen after daily corticosterone injections. This reorganization likely reflects functional changes in prefrontal cortex and may contribute to stress-induced changes in cognition.  相似文献   

14.
The hypothalamic-pituitary-adrenal (HPA) axis is important in regulating energy metabolism and in mediating responses to stressors, including increasing energy availability during physical exercise. In addition, glucocorticoids act directly on the central nervous system and influence behavior, including locomotor activity. To explore potential changes in the HPA axis as animals evolve higher voluntary activity levels, we characterized plasma corticosterone (CORT) concentrations and adrenal mass in four replicate lines of house mice that had been selectively bred for high voluntary wheel running (HR lines) for 34 generations and in four nonselected control (C) lines. We determined CORT concentrations under baseline conditions and immediately after exposure to a novel stressor (40 min of physical restraint) in mice that were housed without access to wheels. Resting daytime CORT concentrations were approximately twice as high in HR as in C mice for both sexes. Physical restraint increased CORT to similar concentrations in HR and C mice; consequently, the proportional response to restraint was smaller in HR than in C animals. Adrenal mass did not significantly differ between HR and C mice. Females had significantly higher baseline and postrestraint CORT concentrations and significantly larger adrenal glands than males in both HR and C lines. Replicate lines showed significant variation in body mass, length, baseline CORT concentrations, and postrestraint CORT concentrations in one or both sexes. Among lines, both body mass and length were significantly negatively correlated with baseline CORT concentrations, suggesting that CORT suppresses growth. Our results suggest that selection for increased locomotor activity has caused correlated changes in the HPA axis, resulting in higher baseline CORT concentrations and, possibly, reduced stress responsiveness and a lower growth rate.  相似文献   

15.
In humans, anxiety disorders are often accompanied by an overactive autonomic nervous system, reflected in increased body temperature (BT) and heart rate (HR). In rodents, comparable effects are found after exposure to stress. These autonomic parameters can give important information on stress and anxiety responses in mice. In the present experiments, stress reactivity of three frequently used mouse strains [129 Sv/Ev, Swiss Webster (SW) and C57 BL/6] was assessed using their autonomic stress responses. BT, HR and activity were telemetrically measured. Undisturbed circadian rhythms already showed clear differences between the mouse strains. Hereafter, autonomic responses to stressors with increasing intensity were measured. Strain differences were found in magnitude and duration of the stress responses, especially after high-intensity stressors. Generally, C57BL/6 mice showed the largest autonomic response, SW the lowest and the 129Sv/Ev the intermediate response. Interestingly, the observed ranking in autonomic stress response does not match the behavioral stress responsivity of these strains. Finally, sensitivity to the anxiolytic diazepam (0, 1, 2, 4 and 8 mg/kg) was tested using the stress-induced hyperthermia paradigm. Pharmacological sensitivity to diazepam differed between the strains with the 129Sv/Ev being most sensitive. These studies show that simultaneous measurement of behavioral and autonomic parameters under stressful conditions contributes considerably to a better interpretation of anxiety and stress levels in mice.  相似文献   

16.
17.
In order to determine the mechanism by which stress may affect the secretion and function of luteinizing hormone (LH) in primates, the response of the adrenal and gonadal axes was followed in male rhesus monkeys during brief restraint in primate chairs and during various hormone treatments. To further assess the responsiveness of the gonadal axis, gonadotropin releasing hormone (GnRH) was administered during the experiments. Corticosteroid levels were elevated throughout the first restraint trial as compared to those in subsequent trials. LH was elevated in the first sample of the first trial as compared to that in the following trials. The responses of LH to GnRH were equivalent in all trials, while the testosterone response to GnRH was attenuated in the first trial. A single injection of adrenocorti-cotropin (ACTH, 40 IU), while increasing circulating corticosteroids similarly to that observed during the first restraint trial, failed to cause an acute initial release of LH. However, ACTH did lower the testosterone response to GnRH. Following 5 days of ACTH treatment (40 IU twice daily), basal LH was suppressed, and the testosterone response to GnRH was decreased. Following 5 days of cortisol injections (100 mg twice daily), basal LH and testosterone were suppressed, but again only the testosterone response to GnRH was attenuated. Acute restraint stress, acting by some mechanism other than the activation of adrenal axis, stimulates a transient release of LH. While the stress-stimulated release of corticosteroids failed to affect the LH response following GnRH administration, it did act directly on the testes to prevent the normal release of testosterone. Finally, chronic elevation of corticosteroids, produced by ACTH or cortisol administration, suppressed basal serum LH and attenuated the response of testosterone to GnRH.  相似文献   

18.
Pain perception in non-mammalian vertebrates such as fish is a controversial issue. We demonstrate that, in the fish Leporinus macrocephalus, an imposed restraint can modulate the behavioral response to a noxious stimulus, specifically the subcutaneous injection of 3% formaldehyde. In the first experiment, formaldehyde was applied immediately after 3 or 5 min of the restraint. Inhibition of the increase in locomotor activity in response to formaldehyde was observed, which suggests a possible restraint-induced antinociception. In the second experiment, the noxious stimulus was applied 0, 5, 10 and 15 min after the restraint, and both 3 and 5 min of restraint promoted short-term antinociception of approximately 5 min. In experiments 3 and 4, an intraperitoneal injection of naloxone (30 mg.kg−1) was administered 30 min prior to the restraint. The 3- minute restraint-induced antinociception was blocked by pretreatment with naloxone, but the corresponding 5-minute response was not. One possible explanation for this result is that an opioid and a non-preferential μ–opioid and/or non-opioid mechanism participate in this response modulation. Furthermore, we observed that both the 3- and 5- minutes restraint were severely stressful events for the organism, promoting marked increases in serum cortisol levels. These data indicate that the response to a noxious stimulus can be modulated by an environmental stressor in fish, as is the case in mammals. To our knowledge, this study is the first evidence for the existence of an endogenous antinociceptive system that is activated by an acute standardized stress in fish. Additionally, it characterizes the antinociceptive response induced by stress in terms of its time course and the opioid mediation, providing information for understanding the evolution of nociception modulation.  相似文献   

19.
《Life sciences》1994,55(19):PL379-PL382
Laboratory rats injected daily with a moderate dose of cocaine hydrochloride (30 mg/kg, i.p.) showed increased fatalities when cocaine injections were followed by 30 min of restraint stress. The 5-day mortality rate was 58% for the cocaine-plus-stress group, while 17% of the animals receiving cocaine without restraint stress died. This finding suggests that stress can augment the toxic effect of cocaine and that minimizing stress may be an important consideration in the clinical management of cocaine overdose.  相似文献   

20.
Tail docking of piglets is a routine procedure on farms to control tail-biting behaviour; however, docking can cause an acute stress response. The objectives of this research were to determine the stress responses to tail docking in piglets and to compare two methods of tail docking; cautery iron (CAUT) and the more commonly used blunt trauma cutters (BT). At approximately 6 days of age, piglets were tail docked using CAUT (n = 20), BT (n = 20) or sham tail docked with their tails remaining intact (CON; n = 40). Blood samples were taken prior to tail docking and at 30, 60 and 90 min after tail docking to evaluate the effect of tail docking on white blood cell (WBC) measures and cortisol concentrations. The above experiment was repeated to observe behaviour without the periodic blood sampling, so as not to confound the effects of blood sampling on piglet behaviour. Piglet behaviour was recorded in the farrowing crate using 1 min scan-samples via live observations for 60 min prior to and 90 min after tail docking. Total WBC counts were reduced (P > 0.05) among BT and CAUT compared with CON piglets 30 min after tail docking. Cortisol concentrations were higher (P < 0.01) among BT compared with CON and CAUT piglets 60 min after tail docking. Cautery and BT-docked piglets spent more (P < 0.05) time posterior scooting compared with CON piglets between 0 and 15 min, and 31 and 45 min after tail docking. Piglets tail docked using CAUT and BT tended to spend more (P < 0.07) time sitting than CON piglets between 0 and 15 min post tail docking. Elevated blood cortisol can be reduced by the use of the CAUT rather than the BT method of tail docking. Although the tail docking-induced rise in cortisol was prevented by using CAUT, the behavioural response to BT and CAUT docking methods was similar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号