首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of ADP on the activity of the plasma membrane (PM) H+‐ATPase of red beet ( Beta vulgaris L.) parenchyma discs was evaluated by analyzing the effect of increasing concentrations of ADP on the kinetics of the reaction. When the PM H+‐ATPase activity was assayed at pH 6.3, ADP behaved as a simple competitive inhibitor. When the activity was assayed at pH 7.1, ADP not only increased the apparent Km for MgATP but also decreased the Vmax of the reaction. When the C‐terminal domain of the PM H+‐ATPase was cleaved by controlled trypsin treatment or displaced by addition of lysophosphatidylcholine, only the competitive component of inhibition by ADP of the activity assayed at pH 7.1 was evident. The results are discussed in relation to the physiological relevance of the activation of the PM H+‐ATPase by displacement of the autoinhibitory C‐terminal domain.  相似文献   

2.
Xyloglucan-oligosaccharides and cello-oligosaccharides, both of which are potential products of the action of cellulase on plant cell wail polysaccharides, inhibited acid-induced elongation in pea ( Pisum sativum L. cv. Alaska) stem segments. Xyloglucan-derived nonasaccharide (XG9; Glc4-Xyl3)Gal-Fuc) and decasaccharide (XG10; Glc4-Xyl3-Gal2-Fue) inhibited acid-induced growth at 1.0 and 0.1 n M , respectively, whereas the heptasaccharide (XG7; Glc4-Xyl3) and octasaccharide (XG8; Glc4-Xyl3-Gal)2 which lack L-fucose, did not. XG9 at 1 n M inhibited acid-induced growth as effectively as it inhibits auxin-induced elongation. This suggests that XG9's effect as an inhibitor of auxin action is not mediated by a suppresion of H+-efflux, but rather that XG9 blocks some step that is common to the action of both auxin and H+ on growth. Cello-oligosaccharides (degree of polymerisation 4–7) also inhibited acid-induced growth at 10 n M ; these are therefore a new class of possible oligosaccha-rin. The inhibitory effect of xyloglucan- and cellooligosaccharides on acid-induced growth was rapidly reversed by washing.  相似文献   

3.
Na+ transport across the tonoplast and its accumulation in the vacuoles is of crucial importance for plant adaptation to salinity. Mild and severe salt stress increased both ATP- and PPi-dependent H+ transport in tonoplast vesicles from sunflower seedling roots, suggesting the possibility that a Na+/H+ antiport system could be operating in such vesicles under salt conditions (E. Ballesteros et al. 1996. Physiol. Plant. 97: 259–268). During a mild salt stress, Na+ was mainly accumulated in the roots. Under a more severe salt treatment, Na+ was equally distributed in shoots and roots. In contrast to what was observed with Na+, all the salt treatments reduced the shoot K+ content. Dissipation by Na+ of the H+ gradient generated by the tonoplast H+-ATPase, monitored as fluorescence quenching of acridine orange, was used to measure Na+/H+ exchange across tonoplast-enriched vesicles isolated by sucrose gradient centrifugation from sunflower (Helianthus annuus L.) roots treated for 3 days with different NaCl regimes. Salt treatments induced a Na+/H+ exchange activity, which displayed saturation kinetics for Na+ added to the assay medium. This activity was partially inhibited by 125 μM amiloride, a competitive inhibitor of Na+/H+ antiports. No Na+/H+ exchange was detected in vesicles from control roots. The activity was specific for Na+. since K+ added to the assay medium slightly dissipated H+ gradients and displayed non-saturating kinetics for all salt treatments. Apparent Km for Na+/H+ exchange in tonoplast vesicles from 150 mM NaCl-treated roots was lower than that of 75 mM NaCl-treated roots, Vmax remaining unchanged. The results suggest that the existence of a specific Na+/H+ exchange activity in tonoplast-enriched vesicle fractions, induced by salt stress, could represent an adaptative response in sunflower plants, moderately tolerant to salinity.  相似文献   

4.
Abstract Washed cells of Rhodopseudomonas sphaeroides forma sp. denitrificans , grown under photodenitrifying conditions, exhibited K+ uptake dependent on the transmembrane proton gradient (Δ pH). These cells also acidified the suspension medium in response to K+ pulses both aerobically and anaerobically in light and in the dark. The results indicate that the photodenitrifier has a reversible K+/H+ exchange activity which reflects its role in regulating the intracellular K+ concentration, as well as intracellular pH. The acidification of the external medium resulting from K+ pulses was inhibited by carbonyl cyanide- m -chlorophenylhydrazone (CCCP) indicating that the antiporter is energy-dependent. Addition of KCl to washed cells depolarized the membrane potential (Δψ) with a concomitant increase in ΔpH, indicating that the K+/H+ antiporter was electrogenic.  相似文献   

5.
Erythrosin b, a potent inhibitor of the Ca2+‐ATPases and the Ca2+‐release channel (BCC1) in mechanosensitive tissue of Bryonia dioica Jacq., effectively suppresses a tendril's reaction to touch, suggesting that Ca2+‐transporters are involved in signal transduction in this organ. The Ca2+‐ATPase located in the endoplasmic reticulum (ER) represents a multiregulated enzyme that is stimulated by calmodulin (CaM), KCl and lysophospholipids. Limited proteolysis of ER‐membranes by trypsin results in an irreversible activation of the Ca2+‐ATPase and loss of the CaM sensitivity, presumably through removal of an autoinhibitory domain where CaM binds. Mild trypsination mimics the effects of CaM on Vmax and the affinity for Ca2+ and ATP. Irrespective of a trypsin treatment, the enzyme can be additionally stimulated by KCl and lysolipids, indicating that the sites of interaction for these effectors are not located in the domain removed by the protease. CaM‐stimulated ATPase activity was purified from microsomal and ER fractions using a combination of CaM‐affinity and anion‐exchange chromatography. The isolated polypeptide was enzymatically active, showed a calcium‐dependent mobility‐shift in SDS‐PAGE from 109 kDa in the absence of Ca2+ to 104 kDa in the presence of 10 m M CaCl2 and could be radiolabeled with [35S]‐CaM. The characteristics of the purified enzyme remained closely similar to those of the ER‐bound Ca2+‐transporting activity, including the enzymatic data, CaM stimulation, and the sensitivity towards a range of inhibitors.  相似文献   

6.
7.
The spinach (Spinacia oleracea L.) leaf plasma membrane Ca2+-ATPase is regulated by calmodulin (3-fold stimulation) and limited proteolysis (trypsin; 4-fold stimulation). The plasma membrane Ca2+-ATPase was identified as a 120-kDa polypeptide on western immunoblots using two different antibodies. During trypsin treatment the 120-kDa band diminished and a new band appeared at 109 kDa. The appearance of the 109-kDa band correlated with the increase in enzyme activity following trypsin treatment. The stimulations by calmodulin and trypsin were not additive, suggesting that the 109-kDa polypeptide represents a Ca2+-ATPase lackin a terminal fragment involved in calmodulin regulation. This was confirmed by 125I-calmodulin overlay studies where calmodulin labeled the 120-kDa band in the presence of Ca2+, while the 109-kDa band did not bind calmodulin. The effects of calmodulin and limited proteolysis on ATP-dependent accumulation of 45Ca2+ in isolated inside-out plasma membrane vesicles were studied, and kinetical analyses performed with respect to Ca2+ and ATP. Calmodulin increased the Vmax. for Ca2+ pumping 3-fold, and reduced Km for Ca2+ from 1.6 to 0.9 µM. The Km for ATP (11 µM) was not affected by calmodulin. The effects of limited proteolysis on the affinities for Ca2+ and ATP were similar to those obtained with calmodulin. Notably, however, limited proteolysis increased the Vmax. for Ca2+ pumping to a higher extent than calmodulin, indicating incomplete calmodulin activation, or removal of an additional inhibitory site by trypsin.  相似文献   

8.
A combination of fluorescein‐isothiocyanate (FITC), coumarin‐benzothiazol (BTC), and chlorotetracycline (CTC) fluorescence was used to simultaneously monitor apoplastic pH, apoplastic free Ca2+, and plasma membrane‐bound Ca2+. As early boron deficiency reactions supposedly include alterations of plasma membrane‐bound transport processes besides rapid effects on cell wall physical properties, the corresponding changes were followed in leaves and roots of Vicia faba L. cv. Troy.
Boron deficiency did not alter the apoplastic pH, but it reduced plasma membrane‐bound Ca2+ in roots at 4 h and leaves at 3 days after starting the deficiency treatment. The decrease in plasma membrane‐bound Ca2+ coincided with an increase in apoplastic free Ca2+ and K+, and occurred before the first visible symptoms were noticed.
It is proposed that less Ca2+ is bound to the plasma membrane due to a reduction of specific Ca2+‐binding sites (borate esters with vic ‐diols or polyhydroxy‐carboxylates) before plasma membrane integrity deteriorates.  相似文献   

9.
Abstract In 24-h-genninaled radish seedlings erythrosin B (EB), an effective inhibitor of microsomal as well as of partially purified vanadate-sensitive ATPase markedly inhibited the basal and the FC-stimulated proton extrusion, and induced a rapid depolarization of FC-hyperpolarized trans-membrane electric potential (PD) without causing any significant change of ATP level. The effects of EB on H+ extrusion were partially additive with those of vanadatc, another inhibitor of plasma membrane H+-ATPase. These effects are interpreted as due to a direct inhibition by EB on plasma membrane H+-ATPase involved in H+ electrogenic transport in the higher plants.  相似文献   

10.
Abstract An alkaliphilic cyanobacterium characterized as a Synechocystis species was purified from a soil sample taken from a village in Java, Indonesia, by its preferential growth at elevated pH; it grew optimally at pH 9.5. Phosphorus nuclear magnetic resonance studies showed that the organism can maintain a ΔpH of over 2 pH units at an external pH of 10. It was observed that the viability of the organism in the dark was dependent on sodium ions. Evidence from experiments in which the extrusion of Na+ was measured from cells subjected to an alkali shock suggests that the organism possesses a Na+ / H+ electrogenic antiporter which is used for the maintenance of pH homeostasis.  相似文献   

11.
The binding of [3H]nimodipine to purified synaptic plasma membranes (SPM) isolated from sheep brain cortex was characterized, and the effects of nimodipine, nifedipine, and (+)-verapamil on the [3H]nimodipine binding were compared to the effects on 45Ca2+ translocation under conditions that separate 45Ca2+ fluxes through Ca2+ channels from 45Ca2+ uptake via Na+/Ca2+ exchange. [3H]Nimodipine labels a single class of sites in SPM, with a KD of 0.64 +/- 0.1 nM, a Bmax of 161 +/- 27 fmol X mg-1 protein, and a Hill slope of 1.07, at 25 degrees C. Competition of [3H]nimodipine binding to purified SPM with unlabelled Ca2+ channel blockers shows that: nifedipine and nimodipine are potent competitors, with IC50 values of 4.7 nM and 5.9 nM, respectively; verapamil and (-)-D 600 are partial competitors, with biphasic competition behavior. Thus, (+)-verapamil shows an IC50 of 708 nM for the higher affinity component and the maximal inhibition is 50% of the specific binding, whereas for (-)-verapamil the IC50 is 120 nM, and the maximal inhibition is 30%; (-)-D 600 is even less potent than verapamil in inhibiting [3H]nimodipine binding (IC50 = 430 nM). However, (+)-verapamil, nifedipine, and nimodipine are less potent in inhibiting depolarization-induced 45Ca2+ influx into synaptosomes in the absence of Na+/Ca2+ exchange than in competing for [3H]nimodipine binding. Thus, (+)-verapamil inhibits Ca2+ influx by 50% at about 500 microM, whereas it inhibits 50% of the binding at concentrations 200-fold lower, and the discrepancy is even larger for the dihydropyridines. The Na+/Ca2+ exchange and the ATP-dependent Ca2+ uptake by SPM vesicles are also inhibited by the Ca2+ channel blockers verapamil, nifedipine, and d-cis-diltiazem, with similar IC50 values and in the same concentration range (10(-5)-10(-3) M) at which they inhibit Ca2+ influx through Ca2+ channels. We conclude that high-affinity binding of the Ca2+ blockers by SPM is not correlated with inhibition of the Ca2+ fluxes through channels in synaptosomes under conditions of minimal Na+/Ca2+ exchange. Furthermore, the relatively high concentrations of blockers required to block the channels also inhibit Ca2+ translocation through the Ca2+-ATPase and the Na+/Ca2+ exchanger. In this study, clear differentiation is made of the effects of the Ca2+ channel blockers on these three mechanisms of moving Ca2+ across the synaptosomal membrane, and particular care is taken to separate the contribution of the Na+/Ca2+ exchange from that of the Ca2+ channels under conditions of K+ depolarization.  相似文献   

12.
Two Ca2+ transport systems were investigated in plasma membrane vesicles isolated from sheep brain cortex synaptosomes by hypotonic lysis and partial purification. Synaptic plasma membrane vesicles loaded with Na+ (Na+i) accumulate Ca2+ in exchange for Na+, provided that a Na+ gradient (in leads to out) is present. Agents that dissipate the Na+ gradient (monensin) prevent the Na+/Ca2+ exchange completely. Ca2+ accumulated by Na+/Ca2+ exchange can be released by A 23187, indicating that Ca2+ is accumulated intravesicularly. In the absence of any Na+ gradient (K+i-loaded vesicles), the membrane vesicles also accumulate Ca2+ owing to ATP hydrolysis. Monovalent cations stimulate Na+/Ca2+ exchange as well as the ATP-dependent Ca2+ uptake activity. Taking the value for Na+/Ca2+ exchange in the presence of choline chloride (external cation) as reference, other monovalent cations in the external media have the following effects: K+ or NH4+ stimulates Na+/Ca2+ exchange; Li+ or Cs+ inhibits Na+/Ca2+ exchange. The ATP-dependent Ca2+ transport system is stimulated by increasing K+ concentrations in the external medium (Km for K+ is 15 mM). Replacing K+ by Na+ in the external medium inhibits the ATP-dependent Ca2+ uptake, and this effect is due more to the reduction of K+ than to the elevation of Na+. The results suggest that synaptic membrane vesicles isolated from sheep brain cortex synaptosomes possess mechanisms for Na+/Ca2+ exchange and ATP-dependent Ca2+ uptake, whose activity may be regulated by monovalent cations, specifically K+, at physiological concentrations.  相似文献   

13.
Plasma membranes from the green alga Chlamydomonas reinhardtii were purified by differential centrifugation and two-phase partitioning in an aqueous polymer system. The isolated plasma membranes were virtually free from contaminating chloroplasts, mitochondria, endoplasmic reticulum and Golgi membranes as shown by marker enzyme and pigment analysis. The isolated plasma membranes exhibited vanadate sensitive ATPase activity, indicating the presence of a P-type ATPase. This was verified by using antibodies against P-type ATPase from Arabidopsis , which crossreacted with a protein of 109 kDa. The ATPase activity was inhibited to more than 90% by vanadate (Ki= 0.9 μ M ) but not affected by inhibitors specific for F- or V-type ATPases. demonstrating the purity of the plasma membranes. Mg-ATP was the substrate, and the rate of ATP-hydrolysis followed simple Michaelis-Menten kinetics giving a Km= 0.46 m M . Free Mg2+ stimulated the activity, K1/2= 0.68 m M . Maximal activity was obtained at pH 8. The ATPase activity was latent but stimulated 10 to 20-fold in the presence of detergents. This indicates that the isolated plasma membrane vesicles were tightly sealed and mostly right-side-out, making the ATPase inaccessible to the hydrophilic substrate ATP. In the presence of the Brij 58, the isolated plasma membranes performed ATP dependent H+-pumping as shown by the optical pH probe acridine orange. H+-pumping was dependent on the presence of valinomycin and K+ ions and completely abolished by vanadate. Addition of Brij 58 has been shown to produce 100% sealed inside-out vesicles of plant plasma membranes (Johansson et al. 1995, Plant J. 7: 165–173) and this was also the case for plasma membranes from the green alga Chlamydomonas reinhardtii.  相似文献   

14.
Abstract. Rates of proton extrusion and potassium (86Rb) influx by intact roots of barley ( Hordeum vulgare cvs . Fergus, Conquest and Betzes) plants were simultaneously measured in short-term (15min) experiments. The nature and extent of apparent coupling between these ion fluxes was explored by manipulating conditions of temperature, pH and cation composition and concentration during flux determinations. In addition, the influence of salt status upon these fluxes was examined. At low K+ concentrations (0.01 to 1 mol m−3), H+ efflux and K+ influx were strongly correlated in both low- and high-K+ roots, although K+: H+ exchange stoichiometries were almost consistently greater than 2:1. At higher concentrations (1 to 5 mol m−3), H+ efflux was either reduced or remained unchanged while K+ influxes increased. In the presence of Na2SO4, rates of H+ extrusion demonstrated similar cation dependence, although below 10 mol m−3 Na2SO4, H+ fluxes were generally 50% lower than in equivalent concentrations of K2SO4. These observations are considered in the context of current hypotheses regarding the mechanisms of k+/H+ exchange.  相似文献   

15.
A low-density fraction of pea ( Pisum sativum L. cv. Alaska) stem microsomes, obtained from a discontinuous sucrose gradient, possessed an H+-ATPase able to generate a proton gradient and an electrical potential. The proton pumping was insensitive to monovalent cations, to vanadate and oligomycin, required a permeant anion and was inhibited by nitrate, N, N'-dicyclohexylcarbodiimide and diethylstilbestrol. The H+-ATPase had a pH optimum around 6.0–6.5 and was saturable with respect to the substrate Tris-ATP (Km≅ 0.4 m M ). Ca2+ (0.05–1 m M ) induced a dissipation of the ATP-generated δpH without affecting ATPase activity. At physiological concentrations (1–5 m M ), nitrate caused an initial slight increase of the ATP-generated proton gradient followed by a complete dissipation after 2–3 min. The dissipating effect was not caused by inhibition of ATPase activity, since ATP prevented the nitrate-induced collapse of δpH. On the other hand, ATPase activity, evaluated as release of Pi, was not inhibited by concentrations lower than 20 m M KNO3. These results indicate that nitrate entered the vesicles in response to an electrical potential and then could exit in symport with protons, while Ca2+ entered in exchange for protons (antiport).  相似文献   

16.
Two monovalent ion porters, the putative Na+/H+ antiporter (NapA) of Enterococcus hirae and the putative K+/H+ antiporter (KefC) of Escherichia coli, are similar in sequence throughout their hydrophobic domains. These two proteins, which comprise a novel family of transporters unrelated to the previously characterized Na+/H+ exchangers of E. coli (NhaA and NhaB) are proposed to function by essentially the same mechanism.  相似文献   

17.
We report here characterization of calmodulin-stimulated Ca2+ transport activities in synaptic plasma membranes (SPM). The calcium transport activity consists of a Ca2+-stimulated, Mg2+-dependent ATP hydrolysis coupled with ATP-dependent Ca2+ uptake into membraneous sacs on the cytosolic face of the synaptosomal membrane. These transport activities have been found in synaptosomal subfractions to be located primarily in SPM-1 and SPM-2. Both Ca2+-ATPase and ATP-dependent Ca2+ uptake require calmodulin for maximal activity (KCm for ATPase = 60 nM; KCm for uptake = 50 nM). In the reconstituted membrane system, KCa was found to be 0.8 microM for Ca2+-ATPase and 0.4 microM for Ca2+ uptake. These results demonstrate for the first time the calmodulin requirements for the Ca2+ pump in SPM when Ca2+ ATPase and Ca2+ uptake are assayed under functionally coupled conditions. They suggest that calmodulin association with the membrane calcium pump is regulated by the level of free Ca2+ in the cytoplasm. The activation by calmodulin, in turn, regulates the cytosolic Ca2+ levels in a feedback process. These studies expand the calmodulin hypothesis of synaptic transmission to include activation of a high-affinity Ca2+ + Mg2+ ATPase as a regulator for cytosolic Ca2+.  相似文献   

18.
Abstract Buffering capacity and membrane H+ conductance were examined in seven Gram-negative species: Aquaspirillum serpens, Pseudomonas aeruginosa, Alcaligenes faecalis, Escherichia coli, Salmonella typhimurium, Proteus mirabilis and Aeromonas hydrophila . All strains of Enterobacteriaceae studied here showed a decrease in both parameters as the external pH increased, over the pH range studied. The other four species presented an increase in buffering capacity and membrane conductance to protons as the external pH increased from 5.5 to 7.0.  相似文献   

19.
The carboxanilide systemic fungicide 2-iodobenzanilide (2-IB) after 2 h pretreatment at 0.25 m M inhibited K+ and SO42- uptake by excised corn roots ( Zea mays L., cv. Dekalb 342) up to ca 70 and 40%, respectively. Proton extrusion from corn roots was also reduced by ca 50% after 1 h contact, and the microsomal K+-stimulated ATPase activity from corn roots and pea stems ( Pisum sativum L., cv. Alaska) inhibited by 50 and 72%, respectively. In contrast, the Mg2+-ATPase activities of microsomes and mitochondria at pH 6.0 and 8.7, respectively, were unaffected. After 2 h of preincubation with 0.25 m M 2-IB, O2 consumption by corn roots and pea stems was inhibited by 12 and 18%, respectively. ATP content of corn roots was not altered by 2-IB treatment. Therefore, energy availability "in vivo" was unaffected and the primary effect on corn roots is suggested to be at the plasmalemma ATPase which forms the proton gradient.
With isolated pea stem mitochondria, 0.25 m M 2-IB inhibited O2 consumption by ca 60% when NADH or malate plus pyruvate were added as substrates; when succinate was used O2 consumption was unaffected. The mode of action on isolated mitochondria was different from that shown for carboxin and also formerly attributed to the whole class of carboxanilide fungicides.  相似文献   

20.
Abstract: The features of Ca2+ fluxes, the importance of the Ca2+ pump‐mediated H+/Ca2+ exchanges at plasmalemma level, and the possible involvement of Ca2+‐ATPase activity in ABA‐induced changes of H+ fluxes were studied in Egeria densa leaves. The results presented show that, while in basal conditions no net Ca2+ flux was evident, a conspicuous Ca2+ influx (about 1.1 ìmol g?1 FW h?1) occurred. The concomitant efflux of Ca2+ was markedly reduced by treatment with 5 íM eosin Y (EY), a specific inhibitor of the Ca2+‐ATPase, that completely blocked the transport of Ca2+ after the first 20 ‐ 30 min. The decrease in Ca2+ efflux induced by EY was associated with a significant increase in net H+ extrusion (?ÄH+) and a small but significant cytoplasmic alkalinization. The shift of external [Ca2+] from 0.3 to 0.2 mM (reducing Ca2+ uptake by about 30 %) and the hindrance of Ca2+ influx by La3+ were accompanied by progressively higher ?ÄH+ increases, in agreement with a gradual decrease in the activity of a mechanism counteracting the Ca2+ influx by an nH+/Ca2+ exchange. The ABA‐induced decreases in ?ÄH+ and pHcyt were accompanied by a significant increase in Ca2+ efflux, all these effects being almost completely suppressed by EY, in line with the view that the ABA effects on H+ fluxes are due to activation of the plasmalemma Ca2+‐ATPase. These results substantially stress the high sensitivity and efficacy of the plasmalemma Ca2+ pump in removing from the cytoplasm the Ca2+ taken up, and the importance of the contribution of Ca2+ pump‐mediated H+/Ca2+ fluxes in bringing about global changes of H+ fluxes at plasmalemma level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号