首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present experimental evidence supporting the hypothesis that increased spine length in acacia species is a defense induced by herbivory. Acacia drepanolobium is the dominant tree over large areas of East Africa. Each individual tree is occupied by one of four ant species at our study site. Using two types of electric fences, we have effectively controlled herbivory by megaherbivores (elephants and giraffes) and other large mammalian herbivores at a field site in Laikipia, Kenya since 1995. Mean spine lengths of new spines on trees occupied by the most abundant ant species (presumed to be a defensive mutualist) have shown a slow and steady decline over the first five years of the experiment on branches protected from these herbivores. This reduction has been 35–40%, or approximately half of the reduction in spine length that we anticipate will eventually occur, based on trees that have been protected from herbivory for many years. In contrast, trees occupied by a resident ant species that systematically prunes shoots have shown no reduction in spine length associated with herbivore exclusion treatments. Experimental pruning of shoots similar to that carried out by this ant species resulted in longer spines on seedlings in a greenhouse setting. Simulated large mammal browsing in the field rapidly (re-)induced greater spine lengths on trees that had been protected from large mammals for five years. The slow relaxation of spine length in the absence of herbivory, contrasted with its rapid induction after simulated browsing, suggests that there is a difference in the reliability of these two signals. Spine length responses to herbivory were extremely local (limited to individual branches). These branch-specific responses are consistent with the hypothesis that induced defense in this system evolved in the context of within-tree spatial variation in herbivore pressure, in particular variation in branch height.  相似文献   

2.
Herbivory can have deleterious effects on plant reproduction by limitation of photosynthates that are either lost by consumption, used to re-growth or invested in defences. In addition, herbivores can also exert direct impact on plant reproduction by consuming flowers. Spine length can act as an inducible defence in plants, because it tends to increase with increasing herbivore pressure. I hypothesized that almost 40 years of different habitat management (cattle exclusion within a protected area vs. cattle grazing in adjacent areas) could affect inflorescence abundance, spine length and fruit production in Prosopis flexuosa trees. The study area was located in the Central Monte desert of Argentina. I estimated differences in spine length, number of inflorescences and fruit production in trees inside the Man and Biosphere Reserve of Ñacuñán and in the adjacent cattle ranches surrounding the protected area. Inflorescence abundance in the tree canopy was similar in cattle grazed and protected sites, but the presence of large herbivores was associated with limited fruit production. Spines were 37% shorter and fruit production three times higher in trees inside the reserve than in trees in cattle ranches. A negative exponential model was used to describe the relationship between reproduction and spine length in trees. The results indicate that after almost four decades of cattle exclusion, trees inside the protected area show higher reproduction and shorter spines than cattle-browsed trees in surrounding areas. The negative association between defence and reproduction may be due to competition for photosynthates. The present results could be useful and relevant in conservation because they provide evidence on how anthropogenic habitat use can affect plant phenotypes and fitness, which in turn can affect the long-term ecological and evolutionary dynamics of plant populations.  相似文献   

3.
Indirect interactions driven by livestock and wild herbivores are increasingly recognized as important aspects of community dynamics in savannas and rangelands. Large ungulate herbivores can both directly and indirectly impact the reproductive structures of plants, which in turn can affect the pollinators of those plants. We examined how wild herbivores and cattle each indirectly affect the abundance of a common pollinator butterfly taxon, Colotis spp., at a set of long‐term, large herbivore exclosure plots in a semiarid savanna in central Kenya. We also examined effects of herbivore exclusion on the main food plant of Colotis spp., which was also the most common flowering species in our plots: the shrub Cadaba farinosa. The study was conducted in four types of experimental plots: cattle‐only, wildlife‐only, cattle and wildlife (all large herbivores), and no large herbivores. Across all plots, Colotis spp. abundances were positively correlated with both Cadaba flower numbers (adult food resources) and total Cadaba canopy area (larval food resources). Structural equation modeling (SEM) revealed that floral resources drove the abundance of Colotis butterflies. Excluding browsing wildlife increased the abundances of both Cadaba flowers and Colotis butterflies. However, flower numbers and Colotis spp. abundances were greater in plots with cattle herbivory than in plots that excluded all large herbivores. Our results suggest that wild browsing herbivores can suppress pollinator species whereas well‐managed cattle use may benefit important pollinators and the plants that depend on them. This study documents a novel set of ecological interactions that demonstrate how both conservation and livelihood goals can be met in a working landscape with abundant wildlife and livestock.  相似文献   

4.
John L. Maron 《Oikos》2001,92(1):178-186
High mortality of plants growing in dense monospecific stands (i.e. self-thinning) usually results from intense intraspecific competition. However, inconspicuous below-ground insect herbivory might be a potent but overlooked source of mortality within dense stands of plants, particularly if crowding limits a plant's ability to compensate for herbivore damage. Here I ask how high conspecific density influences a plant's ability to cope with heavy below-ground insect herbivory.
I manipulated conspecific density and exposure to an abundant root-borer, the ghost moth ( Hepialus californicus ), and examined the impacts on the fecundity, growth, and survival of bush lupine ( Lupinus arboreus ), a fast-growing shrub that grows in dense monospecific stands in coastal grasslands. Both herbivory and intraspecific competition affected seed production, size, and mortality of bush lupine over the two years of the experiment. Plants consistently produced fewer seeds when growing at high versus low density and ghost moth herbivory also significantly reduced seed production. The negative effects of herbivory on plant fecundity were similar, regardless of plant density. In contrast, plant survival was affected by both competition, herbivory, and the interaction of these factors. In high density plots, plant survival was uniformly low (averaging 0.45–0.50); plants exposed to herbivores died from heavy herbivory, and plants protected from herbivores died due to intense intraspecific competition that compensated for losses due to herbivory. In low density plots, ghost moth herbivory similarly reduced lupine survival, from an average survival probability of 0.94 in plots protected from these herbivores to 0.55 in plots exposed to herbivory. Thus, results show that regardless of plant density, below-ground herbivory can be a potent source of mortality.  相似文献   

5.
The moth larva, Doratifera stenosa (Lepidoptera: Limacodidae), was observed feeding voraciously in great numbers on mature leaves of Rhizophora stylosa in mangroves at Port Curtis in Central Queensland, NE Australia. This behaviour was considered unusual since mangroves, and the Rhizophora species in particular, reportedly harbour few herbivores and have relatively low levels of herbivory, less than 10%. During a two year period (1996–1998), larvae were observed consuming around 30–40% of leaves in the canopy each year, and the mangroves appeared able to sustain these high levels of herbivory. The impact on trees was assessed in conjunction with a study of the herbivore, its behaviour and life history, in an attempt to explain the occurrence. Larvae were 1–2 cm in length, bright green and gregarious, with numerous small, stinging hairs along their upper bodies. Feeding was in small cohort groups of 5–70 individuals that broke up immediately prior to each moult after which they regrouped in much larger numbers of mixed cohorts to form single-file processions across branches, stems and prop roots. In this way, they moved to neighbouring trees with less affected foliage. One of the outstanding characteristics of this herbivore was its ability to desist from killing host trees although it appeared quite capable of doing so had it remained on individual trees. By moving from tree to tree, the herbivore was able to heavily crop Rhizophora foliage in an apparently sustainable manner. These findings demonstrate the role and importance of foliar herbivory in severely affected forests and how such instances best not be ignored or treated as curiosities in future assessments of herbivory and forest turnover in mangrove ecosystems.  相似文献   

6.
Question: What is the effect of frequent low intensity prescribed fire on foliar nutrients and insect herbivory in an Australian eucalypt forest? Location: Lorne State Forest (Bulls Ground Frequent Burning Study), mid‐north coast, New South Wales, Australia. Methods: Eighteen independent sites were studied representing three experimental fire regimes: fire exclusion (at least 45 years), frequently burnt (every 3 years for 35 years) and fire exclusion followed by the recent introduction of frequent burning (two fires in 6 years). Mature leaves were collected from the canopy of Eucalyptus pilularis trees at each site and analysed for nutrients and damage by invertebrate herbivores. Results: Almost 75% of all leaves showed some signs of leaf damage. The frequency of past fires had no effect on carbon and nitrogen content of canopy leaves. These results were consistent with assessments of herbivore damage where no significant differences were found in the amount of invertebrate herbivory damage to leaves across fire treatments. Conclusions: This eucalypt forest displayed a high degree of resilience to both frequent burning and fire exclusion as determined by foliar nutrients and damage by insect herbivores. Fire frequency had no detectable ecological impact on this aspect of forest health.  相似文献   

7.
Riginos C  Young TP 《Oecologia》2007,153(4):985-995
Plant–plant interactions can be a complex mixture of positive and negative interactions, with the net outcome depending on abiotic and community contexts. In savanna systems, the effects of large herbivores on tree–grass interactions have rarely been studied experimentally, though these herbivores are major players in these systems. In African savannas, trees often become more abundant under heavy cattle grazing but less abundant in wildlife preserves. Woody encroachment where cattle have replaced wild herbivores may be caused by a shift in the competitive balance between trees and grasses. Here we report the results of an experiment designed to quantify the positive, negative, and net effects of grasses, wild herbivores, and cattle on Acacia saplings in a Kenyan savanna. Acacia drepanolobium saplings under four long-term herbivore regimes (wild herbivores, cattle, cattle + wild herbivores, and no large herbivores) were cleared of surrounding grass or left with the surrounding grass intact. After two years, grass-removal saplings exhibited 86% more browse damage than control saplings, suggesting that grass benefited saplings by protecting them from herbivory. However, the negative effect of grass on saplings was far greater; grass-removal trees accrued more than twice the total stem length of control trees. Where wild herbivores were present, saplings were browsed more and produced more new stem growth. Thus, the net effect of wild herbivores was positive, possibly due to the indirect effects of lower competitor tree density in areas accessible to elephants. Additionally, colonization of saplings by symbiotic ants tracked growth patterns, and colonized saplings experienced lower rates of browse damage. These results suggest that savanna tree growth and woody encroachment cannot be predicted by grass cover or herbivore type alone. Rather, tree growth appears to depend on a variety of factors that may be acting together or antagonistically at different stages of the tree’s life cycle.  相似文献   

8.
Most forests are exposed to anthropogenic management activities that affect tree species composition and natural ecosystem processes. Changes in ecosystem processes such as herbivory depend on management intensity, and on regional environmental conditions and species pools. Whereas influences of specific forest management measures have already been addressed for different herbivore taxa on a local scale, studies considering effects of different aspects of forest management across different regions are rare. We assessed the influence of tree species composition and intensity of harvesting activities on arthropod herbivores and herbivore-related damage to beech trees, Fagus sylvatica, in 48 forest plots in three regions of Germany. We found that herbivore abundance and damage to beech trees differed between regions and that – despite the regional differences - density of tree-associated arthropod taxa and herbivore damage were consistently affected by tree species composition and harvest intensity. Specifically, overall herbivore damage to beech trees increased with increasing dominance of beech trees – suggesting the action of associational resistance processes – and decreased with harvest intensity. The density of leaf chewers and mines was positively related to leaf damage, and several arthropod groups responded to beech dominance and harvest intensity. The distribution of damage patterns was consistent with a vertical shift of herbivores to higher crown layers during the season and with higher beech dominance. By linking quantitative data on arthropod herbivore abundance and herbivory with tree species composition and harvesting activity in a wide variety of beech forests, our study helps to better understand the influence of forest management on interactions between a naturally dominant deciduous forest tree and arthropod herbivores.  相似文献   

9.
Seedlings of five species of dipterocarp trees were planted in experimental plots in rain forest gaps in Sabah, Malaysia, and the rates of herbivory on their mature leaves recorded over 6 mo. A novel method was used to estimate the feeding pressure exerted by the local insect herbivore community, derived from the relative abundances of the dominant generalist herbivores and their feeding preferences. Characteristics of the leaves related to their defense and nutritional value were measured—phenolic content, laminar fracture toughness, laminar thickness, and nitrogen content. Three main groups of herbivorous insects were present—coleopteran and lepidopteran herbivores, which were sampled by hand from the seedlings, and orthopteran herbivores, which were sampled by sweep netting. The feeding preferences of the main coleopteran and orthopteran herbivores were determined using laboratory feeding trials. Combining variables in a Principal Components Analysis, a clear separation was found between the five seedling species along the first extracted component. This correlated closely with herbivory rates between species. The first extracted component comprised a negative influence of phenolic content and positive effects of nitrogen content, laminar fracture toughness, abundances of coleopteran and lepidopteran herbivores, and estimated feeding pressure of the coleopteran community. Further studies are required to determine the potential applications of the latter measure of estimated herbivore community impact.  相似文献   

10.
Kyle J. Haynes  Thomas O. Crist 《Oikos》2009,118(10):1477-1486
Habitat area, fragmentation, and the surrounding matrix influence levels of herbivory in various ecosystems, but the relative importance of these effects has rarely been assessed. We compared levels of herbivory and densities of dominant arthropod herbivores (the hemipteran insects Agallia constricta, Empoasca fabae, Therioaphis trifolii, Lygus lineolaris and Halticus bractatus ) among experimental plots that varied in the area and fragmentation of clover habitat and the composition of the matrix (bare ground or grass) surrounding clover habitat. To assess levels of herbivory, we compared clover biomass within herbivore exclosures to the biomass accessible to herbivores. The area and fragmentation of clover habitat, as well as matrix composition, significantly influenced the collective densities of herbivores, although each species exhibited unique responses to habitat structure. Herbivory was strongest in plots with large (64  m2) as compared to small (16  m2) amounts of clover habitat. The difference in clover biomass between the inside and outside of exclosures increased significantly with increasing density of Empoasca fabae but was unrelated to the densities of the other herbivores, suggesting that Empoasca fabae was an exceptionally important herbivore in this system. This study supports the view that herbivore densities and herbivory generally increase with increasing area of plant monocultures, but emphasizes that levels of herbivory may be driven primarily by one or a few key herbivore species.  相似文献   

11.
Maintaining coral reef resilience against increasing anthropogenic disturbance is critical for effective reef management. Resilience is partially determined by how processes, such as herbivory and nutrient supply, affect coral recovery versus macroalgal proliferation following disturbances. However, the relative effects of herbivory versus nutrient enrichment on algal proliferation remain debated. Here, we manipulated herbivory and nutrients on a coral-dominated reef protected from fishing, and on an adjacent macroalgal-dominated reef subject to fishing and riverine discharge, over 152 days. On both reefs, herbivore exclusion increased total and upright macroalgal cover by 9-46 times, upright macroalgal biomass by 23-84 times, and cyanobacteria cover by 0-27 times, but decreased cover of encrusting coralline algae by 46-100% and short turf algae by 14-39%. In contrast, nutrient enrichment had no effect on algal proliferation, but suppressed cover of total macroalgae (by 33-42%) and cyanobacteria (by 71% on the protected reef) when herbivores were excluded. Herbivore exclusion, but not nutrient enrichment, also increased sediment accumulation, suggesting a strong link between herbivory, macroalgal growth, and sediment retention. Growth rates of the corals Porites cylindrica and Acropora millepora were 30-35% greater on the protected versus fished reef, but nutrient and herbivore manipulations within a site did not affect coral growth. Cumulatively, these data suggest that herbivory rather than eutrophication plays the dominant role in mediating macroalgal proliferation, that macroalgae trap sediments that may further suppress herbivory and enhance macroalgal dominance, and that corals are relatively resistant to damage from some macroalgae but are significantly impacted by ambient reef condition.  相似文献   

12.
Herbivores are important drivers of plant population dynamics and community composition in natural and managed systems. Intraspecific genetic diversity of long‐lived plants like trees might shape patterns of herbivory by different guilds of herbivores that trees experience through time. However, previous studies on plant genetic diversity effects on herbivores have been largely short‐term. We investigated how tree genotypic variation and diversity influence herbivory of silver birch Betula pendula in a long‐term field experiment. Using clones of eight genotypes, we constructed experimental plots consisting of one, two, four or eight genotypes, and measured damage by five guilds of arthropod herbivores twice a year over three different years (four, six and nine years after the experiment was established). Genotypes varied significantly for most types of herbivore damage, but genotype resistance rankings often shifted over time, and none of the clones was more resistant than all others to all types of herbivores. At the plot level, birch genotypic diversity had significant positive additive effect on leaf rollers and negative non‐additive effects on chewing herbivores and gall makers. In contrast, leaf‐mining and leaf‐tying damage was not influenced by birch genotypic diversity. Within diverse plots, the direction of genotypic diversity effects varied depending on birch genotype, some having lower and some having higher herbivory in mixed stands. This research highlights the importance of long‐term studies including different feeding guilds of herbivores to understand the effects of plant genetic diversity on arthropod communities. Different responses of various feeding guilds to genotypic diversity and shifts in resistance of individual genotypes over time indicate that genotypic mixtures are unlikely to result in overall reduction in herbivory over time.  相似文献   

13.
Boege K 《Oecologia》2005,143(1):117-125
Traits influencing plant quality as food and/or shelter for herbivores may change during plant ontogeny, and as a consequence, influence the amount of herbivory that plants receive as they develop. In this study, differences in herbivore density and herbivory were evaluated for two ontogenetic stages of the tropical tree Casearia nitida. To assess plant ontogenetic differences in foliage quality as food for herbivores, nutritional and defensive traits were evaluated in saplings and reproductive trees. Predatory arthropods were quantified and the foraging preferences of a parasitoid wasp of the genus Zacremnops were assessed. In addition, survival rates of lepidopteran herbivores (Geometridae) were evaluated experimentally. Herbivore density was three times higher and herbivory was 66% greater in saplings than in reproductive trees. Accordingly, concentrations of total foliar phenolics were higher in reproductive trees than in saplings, whereas leaf toughness, water and nitrogen concentration did not vary between ontogenetic stages. Survival rates of lepidopteran larvae exposed to natural enemies were equivalent in reproductive trees and saplings. Given the greater herbivore density on saplings, equal survival rates implied a greater foraging effort of predators on reproductive trees. Furthermore, observed foraging of parasitoid wasps was restricted to reproductive trees. I propose that herbivore density, and as a consequence, leaf damage were lower in reproductive trees than in saplings due to both traits influencing food quality, and architectural or unmeasured indirect defensive traits influencing foraging preference of natural enemies of herbivores.  相似文献   

14.
Plants have considerable ability to respond to herbivory, both with (above-ground) regrowth and with increased defense. We simulated both leaf and shoot herbivory in controlled, replicated experiments on individuals of Acacia drepanolobium in Laikipia, Kenya. These experiments were carried out on individuals that had experienced different, experimentally controlled histories of large mammalian herbivory. Both forms of simulated herbivory were associated with compensatory regrowth. Branches whose shoots had been removed grew significantly more over the next year than paired control branches, fully compensating for the lost shoot length. Branches whose leaves were removed both grew faster and had more leaves one year later than did control branches. Shoot removal, but not leaf removal, increased the production of side shoots. However, because past herbivore pressure was negatively associated with net shoot growth, there may be a long-term cost of herbivory even when plants appear to fully compensate for herbivory in the short term. In contrast to the effects on growth, simulated herbivory did not significantly increase physical (spines) or chemical (tannins) defenses, and there were no significant negative correlations between compensatory growth and plant defense.  相似文献   

15.
Herbivores generally have strong structural and compositional effects on vegetation, which in turn determines the plant forage species available. We investigated how selected large mammalian herbivore assemblages use and alter herbaceous vegetation structure and composition in a southern African savanna in and adjacent to the Kruger National Park, South Africa. We compared mixed and mono-specific herbivore assemblages of varying density and investigated similarities in vegetation patterns under wildlife and livestock herbivory. Grass species composition differed significantly, standing biomass and grass height were almost twice as high at sites of low density compared to high density mixed wildlife species. Selection of various grass species by herbivores was positively correlated with greenness, nutrient content and palatability. Nutrient-rich Urochloa mosambicensis Hack. and Panicum maximum Jacq. grasses were preferred forage species, which significantly differed in abundance across sites of varying grazing pressure. Green grasses growing beneath trees were grazed more frequently than dry grasses growing in the open. Our results indicate that grazing herbivores appear to base their grass species preferences on nutrient content cues and that a characteristic grass species abundance and herb layer structure can be matched with mammalian herbivory types.  相似文献   

16.
Grasslands are subject to considerable alteration due to human activities globally, including widespread changes in populations and composition of large mammalian herbivores and elevated supply of nutrients. Grassland soils remain important reservoirs of carbon (C) and nitrogen (N). Herbivores may affect both C and N pools and these changes likely interact with increases in soil nutrient availability. Given the scale of grassland soil fluxes, such changes can have striking consequences for atmospheric C concentrations and the climate. Here, we use the Nutrient Network experiment to examine the responses of soil C and N pools to mammalian herbivore exclusion across 22 grasslands, under ambient and elevated nutrient availabilities (fertilized with NPK + micronutrients). We show that the impact of herbivore exclusion on soil C and N pools depends on fertilization. Under ambient nutrient conditions, we observed no effect of herbivore exclusion, but under elevated nutrient supply, pools are smaller upon herbivore exclusion. The highest mean soil C and N pools were found in grazed and fertilized plots. The decrease in soil C and N upon herbivore exclusion in combination with fertilization correlated with a decrease in aboveground plant biomass and microbial activity, indicating a reduced storage of organic matter and microbial residues as soil C and N. The response of soil C and N pools to herbivore exclusion was contingent on temperature – herbivores likely cause losses of C and N in colder sites and increases in warmer sites. Additionally, grasslands that contain mammalian herbivores have the potential to sequester more N under increased temperature variability and nutrient enrichment than ungrazed grasslands. Our study highlights the importance of conserving mammalian herbivore populations in grasslands worldwide. We need to incorporate local‐scale herbivory, and its interaction with nutrient enrichment and climate, within global‐scale models to better predict land–atmosphere interactions under future climate change.  相似文献   

17.
Plant monocultures are commonly believed to be more susceptible to herbivore attacks than stands composed of several plant species. However, few studies have experimentally tested the effects of tree species diversity on herbivory. In this paper, we present a meta-analysis of uniformly collected data on insect herbivore abundance and damage on three tree species (silver birch, black alder and sessile oak) from seven long-term forest diversity experiments in boreal and temperate forest zones. Our aim was to compare the effects of forest diversity on herbivores belonging to different feeding guilds and inhabiting different tree species. At the same time we also examined the variation in herbivore responses due to tree age and sampling period within the season, the effects of experimental design (plot size and planting density) and the stability of herbivore responses over time. Herbivore responses varied significantly both among insect feeding guilds and among host tree species. Among insect feeding guilds, only leaf miner densities were consistently lower and less variable in mixed stands as compared to tree monocultures regardless of the host tree species. The responses of other herbivores to forest diversity depended largely on host tree species. Insect herbivory on birch was significantly lower in mixtures than in birch monocultures, whereas insect herbivory on oak and alder was higher in mixtures than in oak and alder monocultures. The effects of tree species diversity were also more pronounced in older trees, in the earlier part of the season, at larger plots and at lower planting density. Overall our results demonstrate that forest diversity does not generally and uniformly reduce insect herbivory and suggest instead that insect herbivore responses to forest diversity are highly variable and strongly dependent on the host tree species and other stand characteristics as well as on the type of the herbivore.  相似文献   

18.
Understanding the role of consumers in density‐dependent plant population dynamics is a long‐standing goal in ecology. However, the generality of herbivory effects across heterogeneous landscapes is poorly understood due to the pervasive influence of context‐dependence. We tested effects of native insect herbivory on the population dynamics of an exotic thistle, Cirsium vulgare, in a field experiment replicated across eight sites in eastern Nebraska. Using hierarchical Bayesian analysis and density‐dependent population models, we found potential for explosive low‐density population growth (λ > 5) and complex density fluctuations under herbivore exclusion. However, herbivore access drove population decline (λ < 1), suppressing complex fluctuations. While plant–herbivore interaction outcomes are famously context‐dependent, we demonstrated that herbivores suppress potentially invasive populations throughout our study region, and this qualitative outcome is insensitive to environmental context. Our novel use of Bayesian demographic modelling shows that native insect herbivores consistently prevent hard‐to‐predict fluctuations of weeds in environments otherwise susceptible to invasion.  相似文献   

19.
T. P. Young 《Oecologia》1987,71(3):436-438
Summary I report here longer thorns induced by large mammal herbivory on the tree Acacia depranolobium. I compared trees that had been browsed by domestic goats to trees protected from goat browsing. Thorns on browsed branches within the reach of goats (<125 cm above the ground) were significantly longer than thorns from higher branches on the same browsed trees, and significantly longer than branches at similar heights on unbrowsed trees. It appears that increased thorn length was an induced response to large mammal herbivory in Acacia depranolobium, both among and within individual trees.  相似文献   

20.
Summary Although insect herbivores have many well documented effects on plant performance, there are few studies that assess the impact of above-ground herbivory on below-ground plant growth. For a seven year period in which no large-scale herbivore outbreaks occurred, a broad spectrum insecticide was utilized to suppress herbivorous insects in a natural community dominated by Solidago altissima. Ramet heights, rhizome lengths, rhizome biomass, and the number of daughter rhizomes all were lower in the control plots than in the insecticidetreated plots. These effects should lead to a decrease in the fitness of genets in the control plots relative to the fitness of genets in the insecticide-treated plots. We also found that ramets in the control plots appear to have compensated for herbivory: the ratio of rhizome length to rhizome biomass was greatest in the control plots, which indicates that clones moved farther per unit biomass in these plots than in the insecticide-treated plots. Clonal growth models show that this shift in allocation patterns greatly reduced the magnitude of treatment differences in long-term clonal displacements.Previous work has shown, and this study verified, that clonal growth in S. altissima is well represented by random-walk and diffusion models. Therefore, we used these models to examine possible treatment differences in rates of clonal expansion. Although rhizome lengths were greater in the insecticide-treated plots, results from the models suggest that our treatments had little impact on the short- and long-term displacement of S. altissima ramets from a point of origin. This occurred because S. altissima ramets backtrack often, and thus, treatment differences in net displacements are less pronounced than treatment differences in rhizome lengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号