首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Takano K  Yamagata Y  Yutani K 《Biochemistry》2000,39(29):8655-8665
To clarify the role of amino acid residues at turns in the conformational stability and folding of a globular protein, six mutant human lysozymes deleted or substituted at turn structures were investigated by calorimetry, GuHCl denaturation experiments, and X-ray crystal analysis. The thermodynamic properties of the mutant and wild-type human lysozymes were compared and discussed on the basis of their three-dimensional structures. For the deletion mutants, Delta47-48 and Delta101, the deleted residues are in turns on the surface and are absent in human alpha-lactalbumin, which is homologous to human lysozyme in amino acid sequence and tertiary structure. The stability of both mutants would be expected to increase due to a decrease in conformational entropy in the denatured state; however, both proteins were destabilized. The destabilizations were mainly caused by the disappearance of intramolecular hydrogen bonds. Each part deleted was recovered by the turn region like the alpha-lactalbumin structure, but there were differences in the main-chain conformation of the turn between each deletion mutant and alpha-lactalbumin even if the loop length was the same. For the point mutants, R50G, Q58G, H78G, and G37Q, the main-chain conformations of these substitution residues located in turns adopt a left-handed helical region in the wild-type structure. It is thought that the left-handed non-Gly residue has unfavorable conformational energy compared to the left-handed Gly residue. Q58G was stabilized, but the others had little effect on the stability. The structural analysis revealed that the turns could rearrange the main-chain conformation to accommodate the left-handed non-Gly residues. The present results indicate that turn structures are able to change their main-chain conformations, depending upon the side-chain features of amino acid residues on the turns. Furthermore, stopped-flow GuHCl denaturation experiments on the six mutants were performed. The effects of mutations on unfolding-refolding kinetics were significantly different among the mutant proteins. The deletion/substitutions in turns located in the alpha-domain of human lysozyme affected the refolding rate, indicating the contribution of turn structures to the folding of a globular protein.  相似文献   

2.
A Goldblum 《Biochemistry》1988,27(5):1653-1658
Semiempirical minimal neglect of differential overlap-self-consistent field calculations, corrected and modified for multiple hydrogen-bonding interactions, were applied to models of the active site of aspartic proteinases (AP). The propensities of the two active-site aspartates to ionize were compared under the influence of various neighboring residues and of water molecules. Asp-32 and Asp-215 in three aspartic proteinases (endothiapepsin, Rhizopus pepsin, and penicillopepsin) are found to be basically asymmetric, Asp-32 being preferentially (by 2-3 kcal) ionized with respect to Asp-215. In penicillopepsin, this asymmetry is compensated by effects of surrounding residues. In our largest model for the active site, which includes such other residues, near equality is found for the ionizing tendency of Asp-32 and Asp-215. The pK difference is rationalized in terms of first and second ionizations of the full active-site model. Its ionization enthalpies correlate well with those of other small organic diacids. This "gas-phase" approach to AP active-site interactions represents the main possible contributions to the acidity of the active site.  相似文献   

3.
The molecular structure of endothiapepsin (EC 3.4.23.6), the aspartic proteinase from Endothia parasitica, has been refined to a crystallographic R-factor of 0.178 at 2.1 A resolution. The positions of 2389 protein non-hydrogen atoms have been determined and the present model contains 333 solvent molecules. The structure is bilobal, consisting of two predominantly beta-sheet domains that are related by an approximate 2-fold axis. Of approximately 170 residues, 65 are topologically equivalent when one lobe is superimposed on the other. Twenty beta-strands are arranged as five beta-sheets and are connected by regions involving 29 turns and four helices. A central sheet involves three antiparallel strands from each lobe organized around the dyad axis. Each lobe contains a further local dyad that passes through two sheets arranged as a sandwich and relates two equivalent motifs of four antiparallel strands (a, b, c, d) followed by a helix or an irregular helical region. Sheets 1N and 1C, each contain two interpenetrating psi structures contributed by strands c,d,d' and c',d',d, which are related by the intralobe dyad. A further sheet, 2N or 2C, is formed from two extended beta-hairpins from strands b,c and b',c' that fold above the sheets 1N and 1C, respectively, and are hydrogen-bonded around the local intralobe dyad. Asp32 and Asp215 are related by the interlobe dyad and form an intricate hydrogen-bonded network with the neighbouring residues and comprise the most symmetrical part of the structure. The side-chains of the active site aspartate residues are held coplanar and the nearby main chain makes a "fireman's grip" hydrogen-bonding network. Residues 74 to 83 from strands a'N and b'N in the N-terminal lobe form a beta-hairpin loop with high thermal parameters. This "flap" projects over the active site cleft and shields the active site from the solvent region. Shells of water molecules are found on the surface of the protein molecule and large solvent channels are observed within the crystal. There are only three regions of intermolecular contacts and the crystal packing is stabilized by many solvent molecules forming a network of hydrogen bonds. The three-dimensional structure of endothiapepsin is found to be similar to two other fungal aspartic proteinases, penicillopepsin and rhizopuspepsin. Even though sequence identities of endothiapepsin with rhizopuspepsin and penicillopepsin are only 41% and 51%, respectively, a superposition of the three-dimensional structures of these three enzymes shows that 237 residues (72%) are within a root-mean-square distance of 1.0 A.  相似文献   

4.
The amino acid sequence of endothiapepsin, the aspartic protease from Endothia parasitica has been determined. The enzyme consists of 330 residues. The sequence determination was performed exclusively at the protein level. The homology of this fungal milk-clotting enzyme with aspartic proteases is demonstrated by alignment with pepsin, chymosin, gastricsin, renin, and cathepsin D from various vertebrates and proteinase A from Saccharomyces cerevisiae showing 25-30% identity. The identity with mucor rennin from Mucor pucillus was 21% and with penicillopepsin from Penicillium janthinellum 53%, the fungal enzymes thus representing the lowest as well as the highest degree of homology.  相似文献   

5.
The polyproline II (PPII) conformation of protein backbone is an important secondary structure type. It is unusual in that, due to steric constraints, its main-chain hydrogen-bond donors and acceptors cannot easily be satisfied. It is unable to make local hydrogen bonds, in a manner similar to that of alpha-helices, and it cannot easily satisfy the hydrogen-bonding potential of neighboring residues in polyproline conformation in a manner analogous to beta-strands. Here we describe an analysis of polyproline conformations using the HOMSTRAD database of structurally aligned proteins. This allows us not only to determine amino acid propensities from a much larger database than previously but also to investigate conservation of amino acids in polyproline conformations, and the conservation of the conformation itself. Although proline is common in polyproline helices, helices without proline represent 46% of the total. No other amino acid appears to be greatly preferred; glycine and aromatic amino acids have low propensities for PPII. Accordingly, the hydrogen-bonding potential of PPII main-chain is mainly satisfied by water molecules and by other parts of the main-chain. Side-chain to main-chain interactions are mostly nonlocal. Interestingly, the increased number of nonsatisfied H-bond donors and acceptors (as compared with alpha-helices and beta-strands) makes PPII conformers well suited to take part in protein-protein interactions.  相似文献   

6.
An automatic procedure for building a protein polyalanine backbone from C alpha positions and 'spare parts' retrieved from a data base of 66 high-resolution protein structures is described. Protein backbones are constructed from overlapping fragments of variable length, which allows the backbone of regular secondary structure elements to be built in one block. The procedure is shown to yield backbones which compare very favourably with those from highly refined X-ray structures (r.m.s. deviation between generated and crystal structures less than 1A). The method is furthermore quite insensitive to experimental errors in C alpha positions as well as to the size of the data base, and is seen to yield valuable insight into the relationships between sequence and 3-D structure: one example on triose phosphate isomerase, a beta-barrel protein, shows that beta alpha loops can be considered as structurally more uncommon than alpha beta loops. The 'spare parts' approach is also found to be useful for general-purpose modelling of local structural changes produced by insertion or deletion of residues. It should, however, be used with caution. Crude selection criteria based solely on fragment length and geometric fit to the loop base regions yield realistic backbones in about two-thirds of the test cases (r.m.s. deviations from refined crystal structure approximately 1A). In the remaining cases, sequence information, in particular the presence of glycine residues which tend to adopt more unusual backbone conformations, must be considered to obtain comparable results.  相似文献   

7.
利用距离约束的数据库搜索方法和接触势能分析技术,提出了一种用来模建蛋白质结构环区的分子模建方法。通过对珠蛋白、丝氨酸蛋白酶、钙结合蛋白和溶菌酶中的50个环区的模建,证明上述方法是可行的。对总区50个环区的模建表明,86%的环区可以模建,只有14%的环区不能模建。研究结果表明这种方法非常适用于蛋白质工程中的环区模建。  相似文献   

8.
The interplay between side-chain and main-chain conformations is a distinctive characteristic of proline residues. Here we report the results of a statistical analysis of proline conformations using a large protein database. In particular, we found that proline residues with the preceding peptide bond in the cis state preferentially adopt a down puckering. Indeed, out of 178 cis proline residues, as many as 145 (81%) are down. By analyzing the 1-4 and 1-5 nonbonding distances between backbone atoms, we provide a structural explanation for the observed trend. The observed correlation between proline puckering and peptide bond conformation suggests a new mechanism to explain the reported shift of the cis-trans equilibrium in proline derivatives. The implications of these results for the current models of collagen stability are also discussed.  相似文献   

9.
Chung SY  Subbiah S 《Proteins》1999,35(2):184-194
The precision and accuracy of protein structures determined by nuclear magnetic resonance (NMR) spectroscopy depend on the completeness of input experimental data set. Typically, rather than a single structure, an ensemble of up to 20 equally representative conformers is generated and routinely deposited in the Protein Database. There are substantially more experimentally derived restraints available to define the main-chain coordinates than those of the side chains. Consequently, the side-chain conformations among the conformers are more variable and less well defined than those of the backbone. Even when a side chain is determined with high precision and is found to adopt very similar orientations among all the conformers in the ensemble, it is possible that its orientation might still be incorrect. Thus, it would be helpful if there were a method to assess independently the side-chain orientations determined by NMR. Recently, homology modeling by side-chain packing algorithms has been shown to be successful in predicting the side-chain conformations of the buried residues for a protein when the main-chain coordinates and sequence information are given. Since the main-chain coordinates determined by NMR are consistently more reliable than those of the side-chains, we have applied the side-chain packing algorithms to predict side-chain conformations that are compatible with the NMR-derived backbone. Using four test cases where the NMR solution structures and the X-ray crystal structure of the same protein are available, we demonstrate that the side-chain packing method can provide independent validation for the side-chain conformations of NMR structures. Comparison of the side-chain conformations derived by side-chain packing prediction and by NMR spectroscopy demonstrates that when there is agreement between the NMR model and the predicted model, on average 78% of the time the X-ray structure also concurs. While the side-chain packing method can confirm the reliable residue conformations in NMR models, more importantly, it can also identify the questionable residue conformations with an accuracy of 60%. This validation method can serve to increase the confidence level for potential users of structural models determined by NMR.  相似文献   

10.
Tanaka T  Kodama TS  Morita HE  Ohno T 《Chirality》2006,18(8):652-661
Structures of model compounds mimicking aromatic amino acid residues in proteins are optimized by density functional theory (DFT), assuming that the main-chain conformation was a random coil. Excitation energies and dipole and rotational strengths for the optimized structures were calculated based on time-dependent DFT (TD-DFT). The electronic circular dichroism (ECD) bands of the models were significantly affected by side-chain conformations. Hydration models of the aromatic residues were also subjected to TD-DFT calculations, and the ECD bands of these models were found to be highly perturbed by the hydration of the main-chain amide groups. In addition to calculating the random-coil conformation, we also performed TD-DFT calculations of the aromatic residue models, assuming that the main-chain conformation was an alpha-helix or beta-strand. As expected, the overall feature of the ECD bands was also perturbed by the main-chain conformations. Moreover, vibrational circular dichroism (VCD) spectra of the hydration models in a random-coil structure were simulated by DFT, which showed that the VCD spectra are more sensitive to the side-chain conformations than the ECD spectra. The present results show that analyses combining ECD and VCD spectroscopy and using DFT calculations can elucidate the main- and side-chain conformations of aromatic residues in proteins.  相似文献   

11.
The complete amino acid sequence of monkey progastricsin   总被引:1,自引:0,他引:1  
The complete amino acid sequence of progastricsin from the Japanese monkey (Macaca fuscata) was determined. Progastricsin is composed of 374 residues, including the gastricsin moiety of 331 residues and the activation segment of 43 residues. Upon activation under acidic conditions, progastricsin was converted to gastricsin via the intermediate protein species. NH2-terminal sequence determination of these protein species enabled us to deduce the NH2-terminal 78-residue sequence of progastricsin, including the 43-residue activation segment. The complete sequence of the gastricsin moiety was determined using peptide fragments obtained by several chemical and enzymatic cleavages. The molecular weight of progastricsin was determined to be 40,785. As compared with pepsinogen A of the same monkey species, deletion of 4 residues and insertion of 5 residues were observed. Although monkey progastricsin and pepsinogen A have highly homologous sequences around the two active site aspartyl residues, the homology between these proteins is rather small (49% identity). This indicates that progastricsin diverged from pepsinogen A in the early phase of the evolution of gastric aspartyl proteinases.  相似文献   

12.
Canonical structures for the hypervariable regions of immunoglobulins   总被引:61,自引:0,他引:61  
We have analysed the atomic structures of Fab and VL fragments of immunoglobulins to determine the relationship between their amino acid sequences and the three-dimensional structures of their antigen binding sites. We identify the relatively few residues that, through their packing, hydrogen bonding or the ability to assume unusual phi, psi or omega conformations, are primarily responsible for the main-chain conformations of the hypervariable regions. These residues are found to occur at sites within the hypervariable regions and in the conserved beta-sheet framework. Examination of the sequences of immunoglobulins of unknown structure shows that many have hypervariable regions that are similar in size to one of the known structures and contain identical residues at the sites responsible for the observed conformation. This implies that these hypervariable regions have conformations close to those in the known structures. For five of the hypervariable regions, the repertoire of conformations appears to be limited to a relatively small number of discrete structural classes. We call the commonly occurring main-chain conformations of the hypervariable regions "canonical structures". The accuracy of the analysis is being tested and refined by the prediction of immunoglobulin structures prior to their experimental determination.  相似文献   

13.
The accurate determination of a large number of protein structures by X-ray crystallography makes it possible to conduct a reliable statistical analysis of the distribution of the main-chain and side-chain conformational angles, how these are dependent on residue type, adjacent residue in the sequence, secondary structure, residue-residue interactions and location at the polypeptide chain termini. The interrelationship between the main-chain (phi, psi) and side-chain (chi 1) torsion angles leads to a classification of amino acid residues that simplify the folding alphabet considerably and can be a guide to the design of new proteins or mutational studies. Analyses of residues occurring with disallowed main-chain conformation or with multiple conformations shed some light on why some residues are less favoured in thermophiles.  相似文献   

14.
An extended simulated annealing process (ESAP) has been developed in order to obtain an ensemble of conformations of a peptide segment from a protein fluctuating at a given temperature. The annealing process was performed with a fast Monte Carlo method using the scaled collective variables developed by Noguti and Go. The system was divided into two parts: one consists of one or more peptide segments and is flexible around the main-chain and side-chain torsional angles; the other represents the rest of the molecule and was maintained fixed at the atomic positions determined by x-ray experiments. The target function included the nonbonding atomic interactions and a distance function to anchor the N and C terminal ends of each segment to the fixed part. Three systems of complementary determining regions (CDR) of antibodies were tested and compared to x-ray data: L2 loop (7 residues) of the light chain of lambda-type Bence-Jones protein, H1 and the H2 loops (14 residues) of McPC603, and H1 and H2 loops (12 residues) of HyHEL-5. Each state of CDR conformations was characterized at room temperature by the average of their coordinates (average conformation) and the internal energy. With a limited number of annealing processes (10), starting from the extended conformation, we have obtained states with conformations close to the observed x-ray structures, from 1.1 to 1.7 A root mean square deviation (rmsd) of main-chain atoms depending on the system. These states were identical or within 0.25 A rmsd of those of lowest internal energy. For unknown CDR structures the criteria of lowest internal energies from ESAP can be used to predict hypervariable loop structures in antibodies with an accuracy comparable to other methods.  相似文献   

15.
The relationship between the preferred side-chain dihedral angles and the secondary structure of a residue was examined. The structures of 61 proteins solved to a resolution of 2.0 A (1 A = 0.1 nm) or better were analysed using a relational database to store the information. The strongest feature observed was that the chi 1 distribution for most side-chains in an alpha-helix showed an absence of the g- conformation and a shift towards the t conformation when compared to the non-alpha/beta structures. The exceptions to this tendency were for short polar side-chains that form hydrogen bonds with the main-chain which prefer g+. Shifts in the chi 1 preferences for residues in the beta-sheet were observed. Other side-chain dihedral angles (chi 2, chi 3, chi 4) were found to be influenced by the main-chain. This paper presents more accurate distributions for the side-chain dihedral angles which were obtained from the increased number of proteins determined to high resolution. The means and standard deviations for chi 1 and chi 2 angles are presented for all residues according to the secondary structure of the main-chain. The means and standard deviations are given for the most popular conformations for side-chains in which chi 3 and chi 4 rotations affect the position of C atoms.  相似文献   

16.
In this study, a new ab initio method named CLOOP has been developed to build all-atom loop conformations. In this method, a loop main-chain conformation is generated by sampling main-chain dihedral angles from a restrained varphi/psi set, and the side-chain conformations are built randomly. The CHARMM all-atom force field was used to evaluate the loop conformations. Soft core potentials were used to treat the non-bond interactions, and a designed energy-minimization technique was used to close and optimize the loop conformations. It is shown that the two strategies improve the computational efficiency and the loop-closure rate substantially compared to normal minimization methods. CLOOP was used to construct the conformations of 4-, 8-, and 12-residue loops in Fiser's test set. The average main-chain root-mean-square deviations obtained in 1,000 trials for the 10 different loops of each size are 0.33, 1.27, and 2.77 A, respectively. CLOOP can build all-atom loop conformations with a sampling accuracy comparable with previous loop main-chain construction algorithms. [Figure: see text].  相似文献   

17.
A Monte Carlo simulated annealing (MCSA) algorithm was used to generate the conformations of local regions in bovine pancreatic trypsin inhibitor (BPTI) starting from random initial conformations. In the approach explored, only the conformation of the segment is computed; the rest of the protein is fixed in the known native conformation. Rather than follow a single simulation exhaustively, computer time is better used by performing multiple independent MCSA simulations in which different starting temperatures are employed and the number of conformations sampled is varied. The best computed conformation is chosen on the basis of lowest total energy and refined further. The total energy used in the annealing is the sum of the intrasegment energy, the interaction energy of the segment with the local surrounding region, and a distance constraint to generate a smooth connection of the initially randomized segment with the rest of the protein. The rms deviations between the main-chain conformations of the computed segments in BPTI and those of the native x-ray structure are 0.94 Å for a 5-residue α-helical segment, 1.11 Å for a 5-residue β-strand segment, and 1.03, 1.61, and 1.87 Ã for 5-, 7-, and 9-residue loop segments. Side-chain deviations are comparable to the main-chain deviations for those side chains that interact strongly with the fixed part of the protein. A detailed view of the deviations at an atom-resolved level is obtained by comparing the predicted segments with their known conformations in the crystal structure of BPTI. These results emphasize the value of predetermined fixed structure against which the computed segment can nest. © 1993 John Wiley & Sons, Inc.  相似文献   

18.
High conservation of glycyl residues in homologous proteins is fairly frequent. It is commonly understood that glycine tends to be highly conserved either because of its unique Ramachandran angles or to avoid steric clash that would arise with a larger side chain. Using a database of aligned 3D structures of homologous proteins we identified conserved Gly in 288 alignment positions from 85 families. Ninety‐six of these alignment positions correspond to conserved Gly residue with (φ, ψ) values allowed for non‐glycyl residues. Reasons for this observation were investigated by in‐silico mutation of these glycyl residues to Ala. We found in 94% of the cases a short contact exists between the Cβ atom of the introduced Ala with the atoms which are often distant in the primary structure. This suggests the lack of space even for a short side chain thereby explaining high conservation of glycyl residues even when they adopt (φ, ψ) values allowed for Ala. In 189 alignment positions, the conserved glycyl residues adopt (φ, ψ) values which are disallowed for Ala. In‐silico mutation of these Gly residues to Ala almost always results in steric hindrance involving Cβ atom of Ala as one would expect by comparing Ramachandran maps for Ala and Gly. Rare occurrence of the disallowed glycyl conformations even in ultrahigh resolution protein structures are accompanied by short contacts in the crystal structures and such disallowed conformations are not conserved in the homologues. These observations raise the doubt on the accuracy of such glycyl conformations in proteins.  相似文献   

19.
We have investigated the shapes of polypeptides where successive residues have main-chain phi,psi conformations of opposite hand. A graph not unlike a Ramachandran plot is presented illustrating the various possible conformations. All are ring-shaped or extended. Some of these conformations occur in native proteins, the commonest approximating to a feature we propose calling a nest, described in the accompanying paper, where the main-chain NH groups point inwards relative to the ring and give rise to an anion-binding site. Another conformation is related but more extended and is found uniquely in the four stretches of polypeptide that line the tetrameric K(+) channel; their CO groups bind the K ions in the channel. In a different ring-shaped conformation that we propose calling a catgrip, the main-chain CO groups point into the ring; this is employed for specific Ca ion binding in the annexin, phospholipase A2 and subtilisin loops, and the regularly arranged beta-roll loops of the serralysin protease family.  相似文献   

20.
Chinen A  Uchiyama I  Kobayashi I 《Gene》2000,259(1-2):109-121
Recent work suggests that restriction-modification gene complexes are mobile genetic elements that insert themselves into the genome and cause various genome rearrangements. In the present work, the complete genome sequences of Pyrococcus horikoshii and Pyrococcus abyssi, two species in a genus of hyperthermophilic archaeon (archaebacterium), were compared to detect large genome polymorphisms linked with restriction-modification gene homologs. Sequence alignments, GC content analysis, and codon usage analysis demonstrated the diversity of these homologs and revealed a possible case of relatively recent acquisition (horizontal transfer). In two cases out of the six large polymorphisms identified, there was insertion of a DNA segment with a modification gene homolog, accompanied by target deletion (simple substitution). In two other cases, homologous DNA segments carrying a modification gene homolog were present at different locations in the two genomes (transposition). In both cases, substitution (insertion/deletion) in one of the two loci was accompanied by inversion of adjacent chromosomal segment. In the fifth case, substitution by a DNA segment carrying type I restriction, modification, and specificity gene homologs was likewise accompanied by adjacent inversion. In the last case, two homologous DNA segments, were found at different loci in the two genomes (transposition), but only one of them had insertion of a modification homolog and an unknown ORF. The possible relationship of these polymorphisms to attack by restriction enzymes on the chromosome will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号