首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
In our previous study, we identified a Rosa chinensis heat shock protein (HSP) gene, RcHSP17.8, which was induced by abiotic stresses, such as high temperature and osmotic stress. To analyze the expression of RcHSP17.8 and the function of cis-acting elements in the promoter region, a 1,910 bp fragment of the upstream sequence of the RcHSP17.8 translation initiation codon and five promoter deletion fragments were fused to a β-glucuronidase (GUS) report gene. These plasmids were transferred to Arabidopsis thaliana via Agrobacterium. GUS staining was seen in all the organs, especially in the vascular tissues after heat treatment. In transgenic Arabidopsis, GUS expression driven by the full length promoter was significantly higher under heat shock, but no GUS activity was detected under other abiotic stresses. Deletion analysis indicated that the region from −178 to −771 was essential for the promoter’s response to high temperature.  相似文献   

4.
5.
A fundamental problem in fungal pathogenesis is to elucidate the evolutionary forces responsible for genomic rearrangements leading to races with fitter genotypes. Understanding the adaptive evolutionary mechanisms requires identification of genomic components and environmental factors reshaping the genome of fungal pathogens to adapt. Herein, Magnaporthe oryzae, a model fungal plant pathogen is used to demonstrate the impact of environmental cues on transposable elements (TE) based genome dynamics. For heat shock and copper stress exposed samples, eight TEs belonging to class I and II family were employed to obtain DNA profiles. Stress induced mutant bands showed a positive correlation with dose/duration of stress and provided evidences of TEs role in stress adaptiveness. Further, we demonstrate that genome dynamics differ for the type/family of TEs upon stress exposition and previous reports of stress induced MAGGY transposition has underestimated the role of TEs in M. oryzae. Here, we identified Pyret, MAGGY, Pot3, MINE, Mg-SINE, Grasshopper and MGLR3 as contributors of high genomic instability in M. oryzae in respective order. Sequencing of mutated bands led to the identification of LTR-retrotransposon sequences within regulatory regions of psuedogenes. DNA transposon Pot3 was identified in the coding regions of chromatin remodelling protein containing tyrosinase copper-binding and PWWP domains. LTR-retrotransposons Pyret and MAGGY are identified as key components responsible for the high genomic instability and perhaps these TEs are utilized by M. oryzae for its acclimatization to adverse environmental conditions. Our results demonstrate how common field stresses change genome dynamics of pathogen and provide perspective to explore the role of TEs in genome adaptability, signalling network and its impact on the virulence of fungal pathogens.  相似文献   

6.
The ability to detect early molecular responses to various chemicals is central to the understanding of biological impact of pollutants in a context of varying environmental cues. To monitor stress responses in a model plant, we used transgenic moss Physcomitrella patens expressing the beta-glucuronidase reporter (GUS) under the control of the stress-inducible promoter hsp17.3B. Following exposure to pollutants from the dye and paper industry, GUS activity was measured by monitoring a fluorescent product. Chlorophenols, heavy metals and sulphonated anthraquinones were found to specifically activate the hsp17.3B promoter (within hours) in correlation with long-term toxicity effects (within days). At mildly elevated physiological temperatures, the chemical activation of this promoter was strongly amplified, which considerably increased the sensitivity of the bioassay. Together with the activation of hsp17.3B promoter, chlorophenols induced endogenous chaperones that transiently protected a recombinant thermolabile luciferase (LUC) from severe heat denaturation. This sensitive bioassay provides an early warning molecular sensor to industrial pollutants under varying environments, in anticipation to long-term toxic effects in plants. Because of the strong cross-talk between abiotic and chemical stresses that we find, this P. patens line is more likely to serve as a direct toxicity bioassay for pollutants combined with environmental cues, than as an indicator of absolute toxicity thresholds for various pollutants. It is also a powerful tool to study the role of heat shock proteins (HSPs) in plants exposed to combined chemical and environmental stresses.  相似文献   

7.
Rice blast, caused by Magnaporthe grisea, is the most important fungal disease of cultivated rice worldwide. We have developed a strategy for creating disease resistance to M. grisea whereby pathogen-induced expression of the afp (antifungal protein) gene from Aspergillus giganteus occurs in transgenic rice plants. Here, we evaluated the activity of the promoters from three maize pathogenesis-related (PR) genes, ZmPR4, mpi, and PRms, in transgenic rice. Chimeric gene fusions were prepared between the maize promoters and the beta-glucuronidase reporter gene (gus A). Histochemical assays of GUS activity in transgenic rice revealed that the ZmPR4 promoter is strongly induced in response to fungal infection, treatment with fungal elicitors, and mechanical wounding. The ZmPR4 promoter is not active in the seed endosperm. The mpi promoter also proved responsiveness to fungal infection and wounding but not to treatment with elicitors. In contrast, no activity of the PRms promoter in leaves of transgenic rice was observed. Transgenic plants expressing the afp gene under the control of the ZmPR4 promoter were generated. Transformants showed resistance to M. grisea at various levels. Our results suggest that pathogen-inducible expression of the afp gene in rice plants may be a practical way for protection against the blast fungus. Most agricultural crop species suffer from a vast array of fungal diseases that cause severe yield losses all over the world. Rice blast, caused by the fungus Magnaporthe grisea (Herbert) Barr (anamorph Pyricularia grisea), is the most devastating disease of cultivated rice (Oryza sativa L.), due to its  相似文献   

8.
Transposable elements (TEs) are viewed as major contributors to the evolution of fungal genomes. Genomic resources such as BAC libraries are an underutilized resource for studying genome-wide TE distribution. Using the BAC end sequences and physical map that are available for the rice blast fungus, Magnaporthe grisea, we describe a likelihood ratio test designed to identify clustering of TEs in the genome. A significant variation in the distribution of three TEs, MAGGY, MGL, and Pot2 was observed among the fingerprint contigs of the physical map. We utilized a draft sequence of M. grisea chromosome 7 to validate our results and found a similar pattern of clustering. By examining individual BAC end sequences, we found evidence for 11 unique integrations of MAGGY or MGL into Pot2 but no evidence for the reciprocal integration of Pot2 into another TE. This suggests that: (a) the presence of Pot2 in the genome predates that of the other TEs, (b) Pot2 was less transpositionally active than other TEs, or (c) that MAGGY and MGL have integration site preference for Pot2. High transition/transversion mutation ratios as well as bias in transition site context was observed in MAGGY and MGL elements, but not in Pot2 elements. These features are consistent with the effects of a Repeat-Induced Point (RIP) mutation-like process occurring in MAGGY and MGL elements. This study illustrates the general utility of a physical map and BAC end sequences for the study of genome-wide repetitive DNA content and organization.  相似文献   

9.
10.
为了初步探究魔芋热激转录因子HSFB1基因及其启动子的功能,以白魔芋Amorphophallus albus为试材,利用同源克隆方法获得长度为1 365 bp的AaHSFB1基因序列。qRT-PCR结果表明:AaHSFB1基因对热胁迫较敏感,在根中的表达量表现出先升后降的趋势,并在热处理1 h时表达丰度最高;在热处理12 h时,叶片中的表达量也达到最高,在整个热处理时段内球茎中的表达量变化不大;亚细胞定位结果显示AaHSFB1定位于细胞核内。再利用FPNI-PCR法通过三轮步移扩增得到1 509 bp的AaHSFB1启动子序列。生物信息学分析表明:AaHSFB1含有热胁迫响应元件HSE及多种与植物发育及逆境应答相关的顺式作用元件。为进一步分析AaHSFB1启动子的功能,构建融合表达载体prAaHSFB1::GUS,利用农杆菌介导法转入拟南芥,热处理后对转基因拟南芥进行GUS组织化学染色鉴定,结果显示其表达部位主要在叶中。因此推测AaHSFB1可能在白魔芋抗外界逆境特别是热胁迫中起重要作用。  相似文献   

11.
12.
13.
Copper/zinc superoxide dismutase (SOD1) protects cells against oxidative hazards by the dismutation of superoxide radicals. The promoter activity of the SOD1 gene was increased 3-5-fold by hydrogen peroxide, paraquat (PQ) and heat shock. Functional analyses of the regulatory region of the SOD1 gene by deletions, mutations, and heterologous promoter systems confirmed the induction of the SOD1 gene by H(2)O(2) through the hydrogen peroxide-responsive element (HRE) (between nucleotides -533 and -520). Gel mobility shift assays showed that the existence of an H(2)O(2)-inducible protein bound to the oligonucleotide of the HRE. Similar analyses showed that the heat shock activated the SOD1 promoter through the heat shock element (HSE) (between nucleotides -185 and -171). A strong specific far-shifted complex with the oligonucleotide of the HSE was observed by the treatment of heat shock. When cells were treated with PQ, a strong far-shifted complex with the HSE was observed and was competed out by the cold HSE probe, indicating that PQ also activated the SOD1 promoter through the same HSE site. It is very interesting to note that chemical and physical stresses, such as PQ and heat shock, respectively, activated the SOD1 promoter through the same cis-element HSE. These results indicate that the SOD1 was inducible by H(2)O(2) through the HRE and by PQ and heat shock through the same HSE to protect cells from oxidative hazards.  相似文献   

14.
Mycobacterium tuberculosis is a specialized intracellular pathogen that must regulate gene expression to overcome stresses produced by host defenses during infection. SigH is an alternative sigma factor that we have previously shown plays a role in the response to stress of the saprophyte Mycobacterium smegmatis. In this work we investigated the role of sigH in the M. tuberculosis response to heat and oxidative stress. We determined that a M. tuberculosis sigH mutant is more susceptible to oxidative stresses and that the inducible expression of the thioredoxin reductase/thioredoxin genes trxB2/trxC and a gene of unknown function, Rv2466c, is regulated by sigH via expression from promoters directly recognized by SigH. We also determined that the sigH mutant is more susceptible to heat stress and that inducible expression of the heat shock genes dnaK and clpB is positively regulated by sigH. The induction of these heat shock gene promoters but not of other SigH-dependent promoters was markedly greater in response to heat versus oxidative stress, consistent with their additional regulation by a heat-labile repressor. To further understand the role of sigH in the M. tuberculosis stress response, we investigated the regulation of the stress-responsive sigma factor genes sigE and sigB. We determined that inducible expression of sigE is regulated by sigH and that basal and inducible expression of sigB is dependent on sigE and sigH. These data indicate that sigH plays a central role in a network that regulates heat and oxidative-stress responses that are likely to be important in M. tuberculosis pathogenesis.  相似文献   

15.
16.
17.
18.
19.
A new, heat shock-inducible expression system based on an endogenous hsp16+ promoter was developed for use in the fission yeast Schizosaccharomyces pombe. Analysis of GFP expression profiles indicated that a 1.2-kb segment of the hsp16+ promoter region was sufficient to drive expression of heterologous protein. The hsp16+ promoter was found to be activated not only by heat shock but also by other stresses including cadmium, ethanol, and oxidative stress. Two expression vectors, pHIL and pHIU, were constructed using the 1.2-kb hsp16+ promoter for inducible gene expression in Sch. pombe. This new expression system utilizes a simple induction protocol and promises to be a useful tool for analyzing gene expression in Sch. pombe.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号