首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The frequency and proliferative activity of granulocytic and macrophage progenitor cells were determined in the spleens of C57BL, BALD/c, NZB and CBA mice. These cells were detected by their capacity to form granulocytic and/or macrophage colonies ( in vitro colony-forming cells, CFC) in agar culture. In vitro CFCs were low in frequency in the adult spleen (4–28/105 cells) compared with the bone marrow (180–280/105 cells). However, the neonatal spleen, both in germfree and conventional mice, contained high levels of in vitro CFCs. From the low suiciding index with tritiated thymidine and the small numbers of cluster-forming cells in relation to colony numbers, many in vitro CFCs in the adult C57BL spleen appear to be in a non-cycling state. The level and activity of in vitro CFCs were extremely low in the spleen of adult germfree CBA mice but were greatly increased in conventional mice following the injection of a bacterial antigen.  相似文献   

2.
Isolation of colony stimulating factor from human milk   总被引:1,自引:0,他引:1  
Human milk contains colony stimulating factor (CSF), a polypeptide growth factor, which stimulates in in vitro bone marrow culture proliferation and differentiation of colony forming granulocytic macrophage progenitor cells (CFU-GM) to form colonies. This activity was not found in either bovine milk or colostrum when assayed in human or mouse bone marrow cells. The human milk CSF activity is destroyed by treatment with proteases. However, neither 6M urea, 4M guanidine hydrochloride, 5 mM dithiothreitol, nor exposure to pH 2 will inactivate the milk derived CSF. Gel filtration and isoelectric focusing indicate that human milk CSF differs biochemically from the other CSFs isolated from various sources and has a molecular weight between 250,000 and 240,000 and an isoelectric point between 4.4 and 4.9.  相似文献   

3.
Time- and dose-dependent patterns of depletion and regeneration of hemopoietic progenitor cells in mouse femora and spleens following treatment with the antileukemic agent Myleran (Busulphan, MY) were studied using the murine spleen colony system and the agar gel in vitro colony system. MY was found to depress granulopoiesis selectively, as manifested by the development of marked prolonged neutropenia, hypoplasia of the bone marrow and (to a lesser degree) of the spleen, reduction of the incidence of multipotential hemopoietic progenitor cells (CFU-S) and of granulocytic progenitor cells (CFU-C) in both femora and spleens, and impairment of the capacity of CFU-S from either tissue to generate granulocytic colonies in the spleens of irradiated hosts. The severity and duration was greatest at high dose levels of MY (800 microgram). The action of MY on CFU-S was more pronounced than that on CFU-C, suggesting that MY is a cycle-independent agent. Repopulation of the CFU-C pool preceded that of the CFU-S pool. Development of neutropenia and maximal marrow hypoplasia followed the onset of depression of CFU-S and CFU-C incidence, while recovery of normal nucleated cellularity in the blood, femur and spleen preceded repopulation of the CFU-S and CFU-C pools. MY treatment resulted in transitory stimulation of colony stimulating factor (CSF) generation by the femur but had no effect on serum CSF levels. The peak of femoral CSF generation coincided with the nadir of CFU-C depression. These findings indicated that the prolonged neutropenia following MY treatment was secondary to depletion of the progenitor cell pools, that during recovery granulopoietic repopulation took precedence over self-maintenance of the hemopoietic progenitor cell pools, and that increased generation of CSF may play a role in the early phase of granulopoietic recovery.  相似文献   

4.
Injection of 5 μg endotoxin to adult C57BL mice caused a marked increase in the sedimentation velocity of granulocytic and macrophage progenitor (colony-forming) cells in the bone marrow. This change was maximal two days after injection and was not accompanied by corresponding changes in total marrow nucleated cell populations. The endotoxin-induced shift was not dependent on the presence of the thymus but did not occur in mice challenged after preinjection with endotoxin. No changes in buoyant density, cell cycle status, pattern of differentiation and responsiveness of granulocytic and macrophage progenitor cells were observed after the injection of endotoxin. The increased sedimentation velocity of progenitor cells appears to indicate an increase in cell volume but the mechanisms involved have not been identified.  相似文献   

5.
Arthrobacter nicotianae KCC B35 isolated from blue-green mats densely covering oil sediments along the Arabian Gulf coast grew well on C10 to C40 n -alkanes as sole sources of carbon and energy. Growth on C20 to C40 alkanes was even better than on C10 to C18 alkanes. Biomass samples incubated for 6 h with n -octacosane (C28) or n -nonacosane (C29) accumulated these compounds as the predominant constituent alkanes of the cell hydrocarbon fractions. The even chain hexadecane C16 and the odd chain pentadecane C15 were the second dominant constituent alkanes in C28 and C29 incubated cells, respectively. n -Hexadecane-incubated cells accumulated in their lipids higher proportions of C16-fatty acids than control cells not incubated with hydrocarbons. On the other hand, C28 and C29-incubated cells did not contain any fatty acids with the equivalent chain lengths, but the fatty acid patterns of the cell lipids suggest that there should have been mid-chain oxidation of these very long chain alkanes. This activity qualifies A. nicotianae KCC B35 to be used in cocktails for bioremediating environments polluted with heavy oil sediments.  相似文献   

6.
The in vitro proliferation and differentiation of myeloid progenitor cells (CFU-c) in agar culture from CBA/Ca mouse bone marrow cells was studied. Density subpopulations of marrow cells were obtained by equilibrium centrifugation in continuous albumin density gradients. The formation of colonies of granulocytes and/or macrophages was studied under the influence of three types of colony-stimulating factor (CSF) from mouse lung conditioned medium CSFMLCM), post-endotoxin mouse serum (CSFES) and from human urine (CSFHu). The effect of the sulphydryl reagent mercaptoethanol on colony development was also examined. The density distribution of CFU-c was dependent on the type of CSF. Functional heterogeneity was found among CFU-c with partial discrimination between progenitor cells forming pure granulocytic colonies and those forming pure macrophage colonies. Mercaptoethanol increased colony incidence but had no apparent effect on colony morphology or the density distribution of CFU-c.  相似文献   

7.
Abstract. Cells of the blue-green alga Coccochloris peniocystis , grown at air levels of CO2, were exposed to [l4C]bicarbonate in the light for periods of 0.5 to 2.0 s followed by exposure to unlabelled bicarbonate for longer periods of time in the light. The kinetics of tracer movement during these pulse-chase experiments demonstrate that the principal mechanism of CO2 fixation in this alga is the C3-pathway although an appreciable amount of the C4 acid aspartate is found as one of the initial products of photosynthesis. Degradation of the labelled aspartate revealed that after 20 s of illumination, over 95% of the radioactivity was located in the β-carboxyl of this C4 acid. This alga possesses little, if any, capacity for either the enzymatic decarboxylation of C4 acids or the regeneration of phosphoenolpyruvate (PEP) from pyruvate mediated by the enzyme pyruvate, Pi dikinase. These data further demonstrate the lack of a functional C4-pathway in this alga.  相似文献   

8.
Time- and dose-dependent patterns of depletion and regeneration of hemopoietic progenitor cells in mouse femora and spleens following treatment with the antileukemic agent Myleran (Busulphan, MY) were studied using the murine spleen colony system and the agar gel in vitro colony system. MY was found to depress granulopoiesis selectively, as manifested by the development of marked prolonged neutropenia, hypoplasia of the bone marrow and (to a lesser degree) of the spleen, reduction of the incidence of multipotential hemopoietic progenitor cells (CFU-S) and of granulocytic progenitor cells (CFU-C) in both femora and spleens, and impairment of the capacity of CFU-S from either tissue to generate granulocytic colonies in the spleens of irradiated hosts. the severity and duration was greatest at high dose levels of MY (800 μ). the action of MY on CFU-S was more pronounced than that on CFU-C, suggesting that MY is a cycle-independent agent. Repopulation of the CFU-C pool preceded that of the CFU-S pool. Development of neutropenia and maximal marrow hypoplasia followed the onset of depression of CFU-S and CFU-C incidence, while recovery of normal nucleated cellularity in the blood, femur and spleen preceded repopulation of the CFU-S and CFU-C pools. MY treatment resulted in transitory stimulation of colony stimulating factor (CSF) generation by the femur but had no effect on serum CSF levels. the peak of femoral CSF generation coincided with the nadir of CFU-C depression. These findings indicated that the prolonged neutropenia following MY treatment was secondary to depletion of the progenitor cell pools, that during recovery granulopoietic repopulation took precedence over self-maintenance of the hemopoietic progenitor cell pools, and that increased generation of CSF may play a role in the early phase of granulopoietic recovery.  相似文献   

9.
Four ecotypes of Phragmites australis from different habitats in northwest China were examined to compare their photosynthetic characteristics. In a swamp ecotype, the Δ 13C value of leaf materials was −34.0‰, and bundle sheath cells contained a small amount of organelles and round-shaped chloroplasts, as being similar to typical C3 plants. In a dune ecotype, the Δ 13C value was −20.9‰ and bundle sheath cells contained oval-shaped chloroplasts with poorly-developed grana. In light and heavy salt meadow ecotypes, Δ 13C values were −30.6‰ and −35.6‰, respectively. The shape of bundle sheath chloroplasts in the light salt meadow ecotype was intermediate between those of the swamp and dune ecotypes. Abundance of bundle sheath organelles in the heavy salt meadow ecotype was intermediate. The swamp ecotype had photosynthetic enzyme activities typical of C3 type plants, whereas the dune ecotype had an increased activity of phosphoenolpyruvate carboxylase (PEPC), a key C4 enzyme, and a decreased ribulose 1,5-bisphosphate carboxylase (Rubisco) activity. The light salt meadow and heavy salt meadow ecotypes had substantial activities of PEPC, which indicates potential for C4 photosynthesis. These data suggest that this species evolved the C3-like ecotype in swamp environments and the C4-like C3-C4 intermediate in dune desert environments, and C3-like C3-C4 intermediates in salt environments.  相似文献   

10.
11.
An open flow-through gas system was used to investigate the effect of plant age on nitrogenase activity in relation to root respiration (measured as CO2 release) and supra-ambient O2 levels in 24- to 51-day-old, nodulated Pisum sativum L. cv. Bodil. The effect of assaying plants repeatedly was also studied. The respiratory efficiency of nitrogenase [mol CO2 (mol C2H4)−1] and the relative decline in nitrogenase (EC 1.7.99.2) activity in response to introduction of C2H2 in the gas stream were unaffected by plant age. In contrast, the nitrogenase-linked respiration as a proportion of total root respiration increased with time. Accordingly, the specific respiration linked-to growth and maintenace of the noduled root system decreased with time. C2H2 reduction and root respiration were increased by supra-ambient O2 levels, but the tolerance to high O2 concentrations seemed to decrease with plant age. Repeated C2H2 assays on the same plants decreased their rate of growth and N accumulation: in addition, nitrogenase activity and root respiration were somewhat negatively affected. The results indicate that results from experiments with plants of different ages cannot always be directly compared, and that repeated C2H2 assays on the same plants should be applied with caution in physiological work.  相似文献   

12.
Preliminary studies have indicated that after addition of C2H2 there is a rapid decline in nitrogenase activity in the nodules of Datisca glomerata . The present work was undertaken to determine whether (1) there is also a decline in respiration and (2) the decline is associated with the cessation of ammonia production. The rates of C2H4 and CO2 evolution by nodulated root systems of Datisca were measured as a function of time after exposure to C2H2. The peak rate of C2H4 evolution occurred at 30 s after C2H2 exposure, while the rate of CO2 evolution started to decline at 60 s after exposure to C2H2. Incubation of nodules in a gas mixture containing Ar also caused a decline in CO2 evolution. Further, pretreatment with Ar eliminated most of the C2H2-induced decline in nitrogenase activity and CO2 evolution. These C2H2- and Ar-induced declines in Datisca nodules are more rapid than those reported in any other nodules. They are evidence that continued ammonia formation is essential for maintenance of normal nitrogenase activity in Datisca nodules.  相似文献   

13.
The in vitro incubation of cells from turpentine-induced rat myeloid hyperplastic marrow and peritoneal monocyte/macrophage with 14C-arachidonic acid resulted in the incorporation of the radiolabel into the particulate phospholipids. Challenge of the radiolabeled cells with a highly purified type I CSF (CSF I) from human pancreatic carcinoma cells in continuous culture resulted in the hydrolysis and release of the 14C-arachidonic acid from the cellular phospholipids. The simultaneous challenge of the prelabeled cells with CSF-I and its specific antibody (anti-CSF-I antibody) inhibited the CSF-I induced hydrolysis of 14C-arachidonic acid from the cells. These results confer a specificity on the CSF-I induced release of arachidonic acid from the cellular phospholipids. Our data also demonstrated that the 14C-arachidonic acid released from the cellular phospholipids was further transformed into products of the cyclooxygenation and lipoxygenation pathways by cellular enzyme systems in both populations of cells. Interestingly, our data also indicate that the challenge of the granulocytic hyperplastic marrow cells and the monocyte/macrophage cells with purified CSF-I resulted in a higher generation of lipoxygenase products in the predominantly granulocytic cell population than in the population rich in monocyte/macrophage cells. The biological significance of this observation remains to be further explored. Thus, the CSF-I induced release of cellular arachidonic acid explains, at least in part, the presence of prostaglandins and other metabolites of arachidonic acid that are found in the media of hemopoietic cells incubated with a variety of CSF preparations.  相似文献   

14.
Relationship between photosystem II activity and CO2 fixation in leaves   总被引:9,自引:2,他引:7  
There is now potential to estimate photosystem II (PSII) activity in vivo from chlorophyll fluorescence measurements and thus gauge PSII activity per CO2 fixed. A measure of the quantum yield of photosystem II, ΦII (electron/photon absorbed by PSII), can be obtained in leaves under steady-state conditions in the light using a modulated fluorescence system. The rate of electron transport from PSII equals ΦII times incident light intensity times the fraction of incident light absorbed by PSII. In C4 plants, there is a linear relationship between PSII activity and CO2 fixation, since there are no other major sinks for electrons; thus measurements of quantum yield of PSII may be used to estimate rates of photosynthesis in C4 species. In C3 plants, both CO2 fixation and photorespiration are major sinks for electrons from PSII (a minimum of 4 electrons are required per CO2, or per O2 reacting with RuBP). The rates of PSII activity associated with photosynthesis in C3 plants, based on estimates of the rates of carboxylation (vo) and oxygenation (vo) at various levels of CO2 and O2, largely account for the PSII activity determined from fluorescence measurements. Thus, in C3 plants, the partitioning of electron flow between photosynthesis and photorespiration can be evaluated from analysis of fluorescence and CO2 fixation.  相似文献   

15.
An open flow-through gas system was used to determine the effect of C2H2 and elevated O2 on acetylene reduction activity (ARA) and respiration of the intact, potted root system of Alnus incana (L.) Moench in symbiosis with Frankia Avcll or with a local source of Frankia . Both symbiotic systems responded to C2H2 by an immediate plateau range in ARA. The Plateau in ARA was in some cases followed by a decline of less extent than reported for many legumes. A concurrent decline in net respiration of the root system was on average 8% of the CO2 efflux prior to C2H2 introduction.
Respiration of the root systems in both symbioses responded to elevated oxygen levels in the 10 kPa C2H2 atmosphere by an increase of up to 17% of the net respiration prior to C2H2 introduction in 21 kPa O2. In contrast, the elevated oxygen levels resulted in an immediate drop in ARA followed by a minor increase to a stable level lower than that at the preceding, lower oxygen tension. The symbiosis with the local Frankia had lost all ARA when the partial pressure of O2 exceeded 50 kPa, whereas the symbiosis with Avcll still had some activity at 80 kPa O2. This difference in tolerance of elevated O2 clearly shows that the oxygen exclusion mechanisms may be controlled by the microsymbiont in Alnus-Frankia symbioses. The symbiotic systems recovered ARA to a similar extent when returned from elevated O2 levels to 21 kPa O2.  相似文献   

16.
Abstract Nitrogenase activity of cells of Derxia gummosa (30 h growth in cultures without combined nitrogen) was not inhibited on adding nitrate. However, on adding either azaserine or methionine sulfoximine (MSX) with nitrate to these cells, nitrogenase (C2H2 reduction) was inhibited because nitrite accumulated in the reaction mixtures. Nitrite inhibition of the in vivo C2H2 reduction had a K i value of 16 μM. Both ammonia and glutamine inhibited N2 fixation (C2H2 reduction) in intact cells and in those treated with toluene. This inhibition by ammonia was relieved by methionine sulfoximine but not by glutamine. Azaserine enhanced the inhibition of nitrogenase produced by either ammonia or glutamine, since these treatments resulted in an accumulation of glutamine.  相似文献   

17.
Root formation in vine ( Vitis vinifera L. cv. Albariño) was accompanied by at first a rise and then a fall in total peroxidase (EC 1.11.1.7) activity in the explant. These variations ran parallel to similar changes in the amount of the three cathodic isope-roxidases detected, the most abundant of which, C2, also exhibited IAA oxidase activity. The anodic isoperoxidase bands detected were very weak and underwent no variation during rooting. Changes in the opposite direction (a fall followed by a rise) were shown by certain endogenous phenolics, including monoferuloyl, monocaffeoyl and mono-ρ-coumaroyl tartaric acids, some of which may act as auxin protectors.  相似文献   

18.
Xie DX  Yao J  Zhang P  Li XL  Feng YD  Wu JH  Tao DD  Hu JB  Gong JP 《Cell proliferation》2008,41(2):265-278
Abstract.   Objectives : Based on studies of unicellular organisms or cultured mammalian cells, the generally accepted model of cell-cycle regulation has been developed in which sequential (scheduled) expression of cyclins D, E, A and B and activation of Cdk2 and Cdk1 takes place. It is assumed that the same model is applicable both in vivo and in vitro. Materials and methods : In the present study, we compared proliferating marrow cells freshly isolated from healthy individuals with proliferating lymphocytes in cultures. Results : We demonstrate that during progression of freshly collected human bone marrow cells through G1, S and G2/M, only Cdk1 combined with cyclins A and B1 was distinctly present and active, and its activity gradually increased. In contrast, in vitro growing mitogen-stimulated lymphocytes had perfectly scheduled sequential expression of all four cyclins and Cdk1 and Cdk2 activities. Conclusion : Our findings demonstrate that the pattern of cyclin expression and Cdk activity in bone marrow in vivo is distinctly different from the one observed for normal cells in vitro . Because proliferating bone marrow cells are predominantly expanding populations of committed progenitors, it is likely that during the expansion phase their cell-cycle progression is pre-programmed, being driven solely by Cdk1 combined either with cyclin A or with cyclin B1. Expansion of progenitor cells thus may not require the early steps of cell-cycle regulation, associated with triggering progression by availability of growth factors and mitogens.  相似文献   

19.
A double layer agar technique was used to investigate the proliferative state of granulocytic progenitor cells (Colony Forming Units in Culture; CFUc) in human peripheral blood and bone marrow. The sensitivity of the progenitor cells to the S-phase specific agent, hydroxyurea, was used as an index of the proportion of cells engaged in DNA synthesis. In the presence of low concentrations of colony stimulating factor (CSF) the CFUc were found to be virtually insensitive to the drug. However, when cultured in the presence of increasing concentrations of CSF the proportion of CFUc apparently killed by hydroxyurea increased to a maximum of 23% for those cells in the blood and 39% for those in the marrow. The results indicate that CFUc which are slowly proliferating are sensitive to low concentrations of CSF. In contrast, those CFUc which are proliferating more rapidly require high concentrations of CSF before they will form colonies in culture. A model has been devised which suggests that as CFUc mature, their cell cycle time shortens and their sensitivity to CSF decreases.  相似文献   

20.
The rate of degradation of n -alkanes C12-C18, in petrol (Slovene diesel) in an aqueous system, by free and immobilized Pseudomonas fluorescens in shaking flasks was investigated. Cells were immobilized to a biosupport, Biofix, and a biosorbant, Drizit. Analysis of cellular growth of the free and immobilized bacteria over 8 d of incubation with diesel as the sole carbon source, showed a reduction in the lag phase in the immobilized cultures in comparison to the free system. The free system degraded 52·3% of C12 and 11·6% of C13, but C14-C18 were not degraded. In comparison to the free system and diesel which had not been exposed to experimental conditions (unexposed), the immobilized systems degraded significantly more of C13-C18. Biofix-immobilized cells degraded 14·8% of C12 and an average of 53·5% of C13-C18. Drizit-immobilized cells degraded 24·5% of C12, 52·4% of C13 and an average of 91·2% of C14-C18. This study shows the successful use of immobilized bacteria technology to enhance the degradation of diesel in an aqueous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号