首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A structure-based method for protein sequence alignment   总被引:1,自引:0,他引:1  
MOTIVATION: With the continuing rapid growth of protein sequence data, protein sequence comparison methods have become the most widely used tools of bioinformatics. Among these methods are those that use position-specific scoring matrices (PSSMs) to describe protein families. PSSMs can capture information about conserved patterns within families, which can be used to increase the sensitivity of searches for related sequences. Certain types of structural information, however, are not generally captured by PSSM search methods. Here we introduce a program, Structure-based ALignment TOol (SALTO), that aligns protein query sequences to PSSMs using rules for placing and scoring gaps that are consistent with the conserved regions of domain alignments from NCBI's Conserved Domain Database. RESULTS: In most cases, the alignment scores obtained using the local alignment version follow an extreme value distribution. SALTO's performance in finding related sequences and producing accurate alignments is similar to or better than that of IMPALA; one advantage of SALTO is that it imposes an explicit gapping model on each protein family. AVAILABILITY: A stand-alone version of the program that can generate global or local alignments is available by ftp distribution (ftp://ftp.ncbi.nih.gov/pub/SALTO/), and has been incorporated to Cn3D structure/alignment viewer. CONTACT: bryant@ncbi.nlm.nih.gov.  相似文献   

2.

Background  

While the pairwise alignments produced by sequence similarity searches are a powerful tool for identifying homologous proteins - proteins that share a common ancestor and a similar structure; pairwise sequence alignments often fail to represent accurately the structural alignments inferred from three-dimensional coordinates. Since sequence alignment algorithms produce optimal alignments, the best structural alignments must reflect suboptimal sequence alignment scores. Thus, we have examined a range of suboptimal sequence alignments and a range of scoring parameters to understand better which sequence alignments are likely to be more structurally accurate.  相似文献   

3.
Wang J  Feng JA 《Proteins》2005,58(3):628-637
Sequence alignment has become one of the essential bioinformatics tools in biomedical research. Existing sequence alignment methods can produce reliable alignments for homologous proteins sharing a high percentage of sequence identity. The performance of these methods deteriorates sharply for the sequence pairs sharing less than 25% sequence identity. We report here a new method, NdPASA, for pairwise sequence alignment. This method employs neighbor-dependent propensities of amino acids as a unique parameter for alignment. The values of neighbor-dependent propensity measure the preference of an amino acid pair adopting a particular secondary structure conformation. NdPASA optimizes alignment by evaluating the likelihood of a residue pair in the query sequence matching against a corresponding residue pair adopting a particular secondary structure in the template sequence. Using superpositions of homologous proteins derived from the PSI-BLAST analysis and the Structural Classification of Proteins (SCOP) classification of a nonredundant Protein Data Bank (PDB) database as a gold standard, we show that NdPASA has improved pairwise alignment. Statistical analyses of the performance of NdPASA indicate that the introduction of sequence patterns of secondary structure derived from neighbor-dependent sequence analysis clearly improves alignment performance for sequence pairs sharing less than 20% sequence identity. For sequence pairs sharing 13-21% sequence identity, NdPASA improves the accuracy of alignment over the conventional global alignment (GA) algorithm using the BLOSUM62 by an average of 8.6%. NdPASA is most effective for aligning query sequences with template sequences whose structure is known. NdPASA can be accessed online at http://astro.temple.edu/feng/Servers/BioinformaticServers.htm.  相似文献   

4.
A comparison of scoring functions for protein sequence profile alignment   总被引:3,自引:0,他引:3  
MOTIVATION: In recent years, several methods have been proposed for aligning two protein sequence profiles, with reported improvements in alignment accuracy and homolog discrimination versus sequence-sequence methods (e.g. BLAST) and profile-sequence methods (e.g. PSI-BLAST). Profile-profile alignment is also the iterated step in progressive multiple sequence alignment algorithms such as CLUSTALW. However, little is known about the relative performance of different profile-profile scoring functions. In this work, we evaluate the alignment accuracy of 23 different profile-profile scoring functions by comparing alignments of 488 pairs of sequences with identity < or =30% against structural alignments. We optimize parameters for all scoring functions on the same training set and use profiles of alignments from both PSI-BLAST and SAM-T99. Structural alignments are constructed from a consensus between the FSSP database and CE structural aligner. We compare the results with sequence-sequence and sequence-profile methods, including BLAST and PSI-BLAST. RESULTS: We find that profile-profile alignment gives an average improvement over our test set of typically 2-3% over profile-sequence alignment and approximately 40% over sequence-sequence alignment. No statistically significant difference is seen in the relative performance of most of the scoring functions tested. Significantly better results are obtained with profiles constructed from SAM-T99 alignments than from PSI-BLAST alignments. AVAILABILITY: Source code, reference alignments and more detailed results are freely available at http://phylogenomics.berkeley.edu/profilealignment/  相似文献   

5.
Multiple sequence alignment by a pairwise algorithm   总被引:1,自引:0,他引:1  
An algorithm is described that processes the results of a conventionalpairwise sequence alignment program to automatically producean unambiguous multiple alignment of many sequences. Unlikeother, more complex, multiple alignment programs, the methoddescribed here is fast enough to be used on almost any multiplesequence alignment problem. Received on September 25, 1986; accepted on January 29, 1987  相似文献   

6.

Background  

We are interested in the problem of predicting secondary structure for small sets of homologous RNAs, by incorporating limited comparative sequence information into an RNA folding model. The Sankoff algorithm for simultaneous RNA folding and alignment is a basis for approaches to this problem. There are two open problems in applying a Sankoff algorithm: development of a good unified scoring system for alignment and folding and development of practical heuristics for dealing with the computational complexity of the algorithm.  相似文献   

7.
Landan G  Graur D 《Gene》2009,441(1-2):141-147
We characterize pairwise and multiple sequence alignment (MSA) errors by comparing true alignments from simulations of sequence evolution with reconstructed alignments. The vast majority of reconstructed alignments contain many errors. Error rates rapidly increase with sequence divergence, thus, for even intermediate degrees of sequence divergence, more than half of the columns of a reconstructed alignment may be expected to be erroneous. In closely related sequences, most errors consist of the erroneous positioning of a single indel event and their effect is local. As sequences diverge, errors become more complex as a result of the simultaneous mis-reconstruction of many indel events, and the lengths of the affected MSA segments increase dramatically. We found a systematic bias towards underestimation of the number of gaps, which leads to the reconstructed MSA being on average shorter than the true one. Alignment errors are unavoidable even when the evolutionary parameters are known in advance. Correct reconstruction can only be guaranteed when the likelihood of true alignment is uniquely optimal. However, true alignment features are very frequently sub-optimal or co-optimal, with the result that optimal albeit erroneous features are incorporated into the reconstructed MSA. Progressive MSA utilizes a guide-tree in the reconstruction of MSAs. The quality of the guide-tree was found to affect MSA error levels only marginally.  相似文献   

8.
SUMMARY: NdPASA is a web server specifically designed to optimize sequence alignment between distantly related proteins. The program integrates structure information of the template sequence into a global alignment algorithm by employing neighbor-dependent propensities of amino acids as a unique parameter for alignment. NdPASA optimizes alignment by evaluating the likelihood of a residue pair in the query sequence matching against a corresponding residue pair adopting a particular secondary structure in the template sequence. NdPASA is most effective in aligning homologous proteins sharing low percentage of sequence identity. The server is designed to aid homologous protein structure modeling. A PSI-BLAST search engine was implemented to help users identify template candidates that are most appropriate for modeling the query sequences.  相似文献   

9.
Multiple sequence alignment (MSA) is one of the most fundamental problems in computational molecular biology. The running time of the best known scheme for finding an optimal alignment, based on dynamic programming, increases exponentially with the number of input sequences. Hence, many heuristics were suggested for the problem. We consider a version of the MSA problem where the goal is to find an optimal alignment in which matches are restricted to positions in predefined matching segments. We present several techniques for making the dynamic programming algorithm more efficient, while still finding an optimal solution under these restrictions. We prove that it suffices to find an optimal alignment of the predefined sequence segments, rather than single letters, thereby reducing the input size and thus improving the running time. We also identify "shortcuts" that expedite the dynamic programming scheme. Empirical study shows that, taken together, these observations lead to an improved running time over the basic dynamic programming algorithm by 4 to 12 orders of magnitude, while still obtaining an optimal solution. Under the additional assumption that matches between segments are transitive, we further improve the running time for finding the optimal solution by restricting the search space of the dynamic programming algorithm  相似文献   

10.
MOTIVATION: Protein sequence comparison methods are routinely used to infer the intricate network of evolutionary relationships found within the rapidly growing library of protein sequences, and thereby to predict the structure and function of uncharacterized proteins. In the present study, we detail an improved statistical benchmark of pairwise protein sequence comparison algorithms. We use bootstrap resampling techniques to determine standard statistical errors and to estimate the confidence of our conclusions. We show that the underlying structure within benchmark databases causes Efron's standard, non-parametric bootstrap to be biased. Consequently, the standard bootstrap underpredicts average performance when used in the context of evaluating sequence comparison methods. We have developed, as an alternative, an unbiased statistical evaluation based on the Bayesian bootstrap, a resampling method operationally similar to the standard bootstrap. RESULTS: We apply our analysis to the comparative study of amino acid substitution matrix families and find that using modern matrices results in a small, but statistically significant improvement in remote homology detection compared with the classic PAM and BLOSUM matrices. AVAILABILITY: The sequence sets and code for performing these analyses are available from http://compbio.berkeley.edu/. Contact: brenner@compbio.berkeley.edu.  相似文献   

11.
首先介绍序列比对的分子生物学基础,即核酸序列基本单元核苷酸和蛋白质序列基本单元氨基酸。文中以精心设计的图表列出四种核苷酸和二十种氨基酸的名称、性质和分类。第2节简述序列比对基础,包括相似性和同源性基本概念、整体比对和局部比对、点阵图方法、动态规划和启发式算法、计分矩阵和空位罚分,以及常用软件和分析平台。第3节介绍核酸序列比对中常用计分矩阵DNAfull,蛋白质序列比对中常用计分矩阵BLOSUM62和PAM250。第4-8节则以血红蛋白、多肽毒素、植物转录因子、癌胚抗原和唾液酸酶为例,介绍双序列比对的具体应用。通过这些实例,说明如何选择分析平台和比对程序、如何设置计分矩阵和空位罚分,如何分析比对结果及其生物学意义。文末进行简要总结。  相似文献   

12.
13.

Background  

In this paper, we introduce a progressive corner cutting method called Reticular Alignment for multiple sequence alignment. Unlike previous corner-cutting methods, our approach does not define a compact part of the dynamic programming table. Instead, it defines a set of optimal and suboptimal alignments at each step during the progressive alignment. The set of alignments are represented with a network to store them and use them during the progressive alignment in an efficient way. The program contains a threshold parameter on which the size of the network depends. The larger the threshold parameter and thus the network, the deeper the search in the alignment space for better scored alignments.  相似文献   

14.
Profile hidden Markov models (HMMs) based on classical HMMs have been widely applied for protein sequence identification. The formulation of the forward and backward variables in profile HMMs is made under statistical independence assumption of the probability theory. We propose a fuzzy profile HMM to overcome the limitations of that assumption and to achieve an improved alignment for protein sequences belonging to a given family. The proposed model fuzzifies the forward and backward variables by incorporating Sugeno fuzzy measures and Choquet integrals, thus further extends the generalized HMM. Based on the fuzzified forward and backward variables, we propose a fuzzy Baum-Welch parameter estimation algorithm for profiles. The strong correlations and the sequence preference involved in the protein structures make this fuzzy architecture based model as a suitable candidate for building profiles of a given family, since the fuzzy set can handle uncertainties better than classical methods.  相似文献   

15.
A method for multiple sequence alignment with gaps   总被引:13,自引:0,他引:13  
A method that performs multiple sequence alignment by cyclical use of the standard pairwise Needleman-Wunsch algorithm is presented. The required central processor unit time is of the same order of magnitude as the standard Needleman-Wunsch pairwise implementation. Comparison with the one known case where the optimal multiple sequence alignment has been rigorously determined shows that in practice the proposed method finds the mathematically optimal solution. The more interesting question of the biological usefulness of such multiple sequence alignment over pairwise approaches is assessed using protein families whose X-ray structures are known. The two such cases studied, the subdomains of the ricin B-chain and the S-domains of virus coat proteins, have low pairwise similarity and thus fail to align correctly under standard pairwise sequence comparison. In both cases the multiple sequence alignment produced by the proposed technique, apart from minor deviations at loop regions, correctly predicts the true structural alignment. Thus, given many sequences of low pairwise similarity, the proposed multiple sequence method, can extract any familial similarity and so produce a sequence alignment consistent with the underlying structural homology.  相似文献   

16.
《Gene》1996,172(1):GC33-GC41
We have developed a fast heuristic algorithm for multiple sequence alignment which provides near-to-optimal results for sufficiently homologous sequences. The algorithm makes use of the standard dynamic programming procedure by applying it to all pairs of sequences. The resulting score matrices for pair-wise alignment give rise to secondary matrices containing the additional charges imposed by forcing the alignment path to run through a particular vertex. Such a constraint corresponds to slicing the sequences at the positions defining that vertex, and aligning the remaining pairs of prefix and suffix sequences separately. From these secondary matrices, one can compute - for any given family of sequences - suitable positions for cutting all of these sequences simultaneously, thus reducing the problem of aligning a family of n sequences of average length l in a Divide and Conquer fashion to aligning two families of n sequences of approximately half that length.In this paper, we explain the method for the case of 3 sequences in detail, and we demonstrate its potential and its limits by discussing its behaviour for several test families. A generalization for aligning more than 3 sequences is lined out, and some actual alignments constructed by our algorithm for various user-defined parameters are presented.  相似文献   

17.
Many different types of generative models for protein sequences have been proposed in literature. Their uses include the prediction of mutational effects, protein design and the prediction of structural properties. Neural network (NN) architectures have shown great performances, commonly attributed to the capacity to extract non-trivial higher-order interactions from the data. In this work, we analyze two different NN models and assess how close they are to simple pairwise distributions, which have been used in the past for similar problems. We present an approach for extracting pairwise models from more complex ones using an energy-based modeling framework. We show that for the tested models the extracted pairwise models can replicate the energies of the original models and are also close in performance in tasks like mutational effect prediction. In addition, we show that even simpler, factorized models often come close in performance to the original models.  相似文献   

18.
A new approach to sequence comparison: normalized sequence alignment   总被引:3,自引:0,他引:3  
The Smith-Waterman algorithm for local sequence alignment is one of the most important techniques in computational molecular biology. This ingenious dynamic programming approach was designed to reveal the highly conserved fragments by discarding poorly conserved initial and terminal segments. However, the existing notion of local similarity has a serious flaw: it does not discard poorly conserved intermediate segments. The Smith-Waterman algorithm finds the local alignment with maximal score but it is unable to find local alignment with maximum degree of similarity (e.g. maximal percent of matches). Moreover, there is still no efficient algorithm that answers the following natural question: do two sequences share a (sufficiently long) fragment with more than 70% of similarity? As a result, the local alignment sometimes produces a mosaic of well-conserved fragments artificially connected by poorly-conserved or even unrelated fragments. This may lead to problems in comparison of long genomic sequences and comparative gene prediction as recently pointed out by Zhang et al. (Bioinformatics, 15, 1012-1019, 1999). In this paper we propose a new sequence comparison algorithm (normalized local alignment ) that reports the regions with maximum degree of similarity. The algorithm is based on fractional programming and its running time is O(n2log n). In practice, normalized local alignment is only 3-5 times slower than the standard Smith-Waterman algorithm.  相似文献   

19.
Sequence alignment programs such as BLAST and PSI-BLAST are used routinely in pairwise, profile-based, or intermediate-sequence-search (ISS) methods to detect remote homologies for the purposes of fold assignment and comparative modeling. Yet, the sequence alignment quality of these methods at low sequence identity is not known. We have used the CE structure alignment program (Shindyalov and Bourne, Prot Eng 1998;11:739) to derive sequence alignments for all superfamily and family-level related proteins in the SCOP domain database. CE aligns structures and their sequences based on distances within each protein, rather than on interprotein distances. We compared BLAST, PSI-BLAST, CLUSTALW, and ISS alignments with the CE structural alignments. We found that global alignments with CLUSTALW were very poor at low sequence identity (<25%), as judged by the CE alignments. We used PSI-BLAST to search the nonredundant sequence database (nr) with every sequence in SCOP using up to four iterations. The resulting matrix was used to search a database of SCOP sequences. PSI-BLAST is only slightly better than BLAST in alignment accuracy on a per-residue basis, but PSI-BLAST matrix alignments are much longer than BLAST's, and so align correctly a larger fraction of the total number of aligned residues in the structure alignments. Any two SCOP sequences in the same superfamily that shared a hit or hits in the nr PSI-BLAST searches were identified as linked by the shared intermediate sequence. We examined the quality of the longest SCOP-query/ SCOP-hit alignment via an intermediate sequence, and found that ISS produced longer alignments than PSI-BLAST searches alone, of nearly comparable per-residue quality. At 10-15% sequence identity, BLAST correctly aligns 28%, PSI-BLAST 40%, and ISS 46% of residues according to the structure alignments. We also compared CE structure alignments with FSSP structure alignments generated by the DALI program. In contrast to the sequence methods, CE and structure alignments from the FSSP database identically align 75% of residue pairs at the 10-15% level of sequence identity, indicating that there is substantial room for improvement in these sequence alignment methods. BLAST produced alignments for 8% of the 10,665 nonimmunoglobulin SCOP superfamily sequence pairs (nearly all <25% sequence identity), PSI-BLAST matched 17% and the double-PSI-BLAST ISS method aligned 38% with E-values <10.0. The results indicate that intermediate sequences may be useful not only in fold assignment but also in achieving more complete sequence alignments for comparative modeling.  相似文献   

20.
Protein sequence alignment has become an essential task in modern molecular biology research. A number of alignment techniques have been documented in literature and their corresponding tools are made available as freeware and commercial software. The choice and use of these tools for sequence alignment through the complete interpretation of alignment results is often considered non-trivial by end-users with limited skill in Bioinformatics algorithm development. Here, we discuss the comparison of sequence alignment techniques based on dynamic programming (N-W, S-W) and heuristics (LFASTA, BL2SEQ) for four sets of sequence data towards an educational purpose. The analysis suggests that heuristics based methods are faster than dynamic programming methods in alignment speed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号