首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the condensation of the three thoracic and 11 abdominal segmental ganglia to form a prothoracic and central nerve mass during embryogenesis is described. During katatrepsis, many changes occur in the organization of these ganglia; this study suggests that some of these changes are caused by mechanical forces acting on the ventral nerve cord at this time. The ventral nerve cord begins its anterior migration and coalescence ten hours after katatrepsis and is completed 63 hours later. The central ganglion is made up of the meso- and metathoracic ganglia and seven abdominal ganglia. Intrasegmental median cord nuclei are shown to form glial elements in the median sagittal plane of the neuropile and in the longitudinal connectives. Intersegmental median cord neuroblasts migrate into the posterior gangliomeres but, apparently, degenerate soon after katatrepsis. Lateral cord cells bordering on the neuropile form a glial investment that surrounds this fiber tract region. Peripheral lateral cord cells are shown to form the cells of the outer ganglionic sheath, the perineurium.  相似文献   

2.
Glial cells play important roles in the developing brain during axon fasciculation, growth cone guidance, and neuron survival. In the Drosophila brain, three main classes of glia have been identified including surface, cortex, and neuropile glia. While surface glia ensheaths the brain and is involved in the formation of the blood-brain-barrier and the control of neuroblast proliferation, the range of functions for cortex and neuropile glia is less well understood. In this study, we use the nirvana2-GAL4 driver to visualize the association of cortex and neuropile glia with axon tracts formed by different brain lineages and selectively eliminate these glial populations via induced apoptosis. The larval central brain consists of approximately 100 lineages. Each lineage forms a cohesive axon bundle, the secondary axon tract (SAT). While entering and traversing the brain neuropile, SATs interact in a characteristic way with glial cells. Some SATs are completely invested with glial processes; others show no particular association with glia, and most fall somewhere in between these extremes. Our results demonstrate that the elimination of glia results in abnormalities in SAT fasciculation and trajectory. The most prevalent phenotype is truncation or misguidance of axon tracts, or abnormal fasciculation of tracts that normally form separate pathways. Importantly, the degree of glial association with a given lineage is positively correlated with the severity of the phenotype resulting from glial ablation. Previous studies have focused on the embryonic nerve cord or adult-specific compartments to establish the role of glia. Our study provides, for the first time, an analysis of glial function in the brain during axon formation and growth in larval development.  相似文献   

3.
The synganglion of Dermacentor variabilis Say is a single nerve mass, condensed around the esophagus and within the periganglionic sinus of the ciculatory system. Protocerebral, cheliceral (including stomodeal bridge), and pedipalpal ganglia lie in the pre-esophageal portion of the nerve mass and bear optic, cheliceral, and pedipalpal nerves respectively. The unpaired stomodeal and the recurrent nerve which forms the hyper-esophageal ganglion arise from the stomodeal bridge. Paired primary and accessory nerves to the retrocerebral organ complex have mixed protocerebral-cheliceral origins. Pedal ganglia (including ventral olfactory lobes of pedal ganglia I) and composite opisthosomal ganglion lie in the post-esophageal nerve mass and bear pedal nerve trunks and two pairs of opisthosomal nerves respectively. Internally, the synganglion consists of cellular rind and fibrous core. A welldefined neurilemma with a laminar matrix covers nerve mass and peripheral nerves. The rind contains the somata of ganglionic neurons and ensheathing glial cells and is restricted to the synganglion mass. It is limited by two specialized glial layers, the external perineurium and internal subperineurium. Discrete glomerular formations are present within the protocerebrum and olfactory lobes. Olfactory glomeruli located in pedal ganglia I are associated with a pair of globuli cell groups. Possible physiological relationships between anatomical specializations of the synganglion, extraneural sinuses and circulating hemocytes are considered. The evolutionary significances of condensation in the stomatogastric neuropile regions and throughout the synganglion, together with the simplification and loss of glomerular formations, are discussed.  相似文献   

4.
Summary The principal supportive elements of the nereid central nervous system are non-neuronal cells that are referred to as supportive glia. Supportive glial cells form a conspicuous cortex in the nerve cord. The inner region of this cortex consists of closely packed processes and cell bodies of fibrous supportive glial cells that are arranged in concentric layers around the perimeter of the neuropile. The fibrous appearance of the glial cells results from dense bundles of cytoplasmic filaments. Many fibrous glial processes penetrate the neuropile and ramify among the neuronal elements. Larger, irregularly shaped cells are the chief supportive glial elements of the peripheral region of the cortex where they line the stromal sheath (neural lamella) and invest the neuronal perikarya with extensive concentric systems of lamellate processes. These glial cells usually possess a relatively undifferentiated cytoplasm with scattered glycogen granules, but occasionally have a well developed Golgi apparatus, endoplasmic reticulum and densely packed particulate glycogen. The supportive glia exhibits numerous desmosomes as well as 5-layered (tight) and 7-layered (gap) junctions. Interspersed among the supportive glial cells are non-neuronal cells referred to as granulocytes. These cells have abundant large, granular inclusions, electron lucent vesicles, plasmalemmal infoldings and microtubules. The granulocytes may be derived from undifferentiated glial cells or may represent coelomocytes that have invaded the nervous tissue.Supported by USPHS Grants No. NIH 5P01 NS-07512, NIH 2T01 GM-00102, and NB-00840.The author acknowledges the excellent technical assistance of Sarah Wurzelmann and Stanley Brown, and thanks Dr. Berta Scharrer for many stimulating discussions.  相似文献   

5.
Glial cells subserve a number of essential functions during development and function of the Drosophila brain, including the control of neuroblast proliferation, neuronal positioning and axonal pathfinding. Three major classes of glial cells have been identified. Surface glia surround the brain externally. Neuropile glia ensheath the neuropile and form septa within the neuropile that define distinct neuropile compartments. Cortex glia form a scaffold around neuronal cell bodies in the cortex. In this paper we have used global glial markers and GFP-labeled clones to describe the morphology, development and proliferation pattern of the three types of glial cells in the larval brain. We show that both surface glia and cortex glia contribute to the glial layer surrounding the brain. Cortex glia also form a significant part of the glial layer surrounding the neuropile. Glial cell numbers increase slowly during the first half of larval development but show a rapid incline in the third larval instar. This increase results from mitosis of differentiated glia, but, more significantly, from the proliferation of neuroblasts.  相似文献   

6.
Silver impregnation of serial histological sections of the tubeworm Chaetopterus variopedatus revealed the presence of a subepidermal nervous system. The anterior nervous system is delimited by the first 11 segments and comprises (1) two dorsolateral cerebral ganglia and lateral instead of ventral nerve cords which are widely separated and thus connected by unusually long commissures, (2) a pharyngeal ganglion in the fourth segment which is connected to the cerebral ganglia by pharyngeal nerves and constitutes along with the pharyngeal plexus a stomatogastric or enteric nervous system, and (3) small, presumably segmental ganglionic swellings along the lateral nerve cords from which emerge commissures and parapodial nerves. No subesophageal ganglion or periesophageal connective could be identified. The lateral nerve cords converge toward the midline in the 12th segment to form the posterior nervous system comprising a pair of ventromedian nerve cords with their repetitive segmental ganglia from which emerge numerous short commissures and three segmental nerves coursing toward the dorsal and ventral regions of parapods and toward the neuropod. Light and electron microscopic investigations of cerebral and segmental ganglia showed an arrangement of inner neuropile and of unipolar neuron somata at the periphery. The neuropile comprises numerous neurites ranging in diameter from 0.5 to 10 μm and making polarized or symmetrical synaptic junctions with each other. The pharyngeal ganglion consists of a similar neuropile and of a large mass of cell bodies which is traversed by an elaborate network of sinuses and harbors three types of neurosecretory cells in addition to the conventional neuron somata. These findings are interpreted in the framework of the highly specialized morphological features and habits of Chaetopterus, and the welldeveloped stomatogastric system is considered to be related to control of the feeding activities.  相似文献   

7.
Volumetric and histological changes of the central nervous system were studied during post embryonic development of a spider, Argiope aurantia. The neural mass of Argiope grows allometrically with respect to volume of the cephalothorax and body weight. In the first instar 46% of the cephalothoracic volume constitutes the neural mass and this is reduced to 4% in the female (9th stage) and 12% in the male (7th stage) spider. Growth curves for the cephalic ganglion, measured at all stages, represent a straight line. The neural mass of females is two and a half times larger than that of the males. The ganglion increased 24 fold in female and 10 fold in male spiders. Addition of neural mass occurs in all stages. The brain volume is greater than that of the subesophageal ganglion in the first two instars. In subsequent stadia, the subesophageal ganglion grows faster, and in females it is finally three times and in males two times larger than the brain. Growth of cortex and neuropile depict exponential curves. Comparison of growth patterns of these shows an inverse relationship during development. While the volume of the cortex is higher in the first two or three stages, the volume of the neuropile is higher in the remaining stadia. The causes for this growth pattern are discussed. Counts of cell numbers show that there is a constant population of neurons throughout the post-embryonic development. The number of nerve cells in females is higher than in males, 11% in the subesophageal ganglion and 58% in the brain. The growth of the cortex is partly accomplished by an increase in cell volume. In male and female spiders the increase in Type-B cells is 20 and 50 fold, while that of large motor neurons is 200 and 600 fold respectively. The motor neurons of 20 μ and above number 63 in male and 916 in female adult spiders. The growth of neuropile occurs through an increase of dendritic arborization and axonal branching. The largest axons measure 1 μ in the first and 16 μ in adult stages. An increase of incoming sensory fibers is also noticed during development. Invasion of neural lamella into cortex and neuropile increases during development. Neural lamella which are 1-2 μ in the first stage grow to 40–100 μ thickness in adult female spiders, near the origin of the main nerves. One type of astral cells, counted in neuropile, increases 10 fold. The appearance of a central body and the beginning of web construction coincide during the second instar. The relationship between these two is discussed.  相似文献   

8.
When examined under an electron microscope, the central nervous system of Megalobulimus abbreviatus showed two types of glial cells: firstly, protoplasmic glial cells which displayed a nucleus with peripheral heterochromatin, scanty or no intermediate filaments, a developed Golgi complex, rough and smooth endoplasmic reticula, mitochondria and polymorphic lysosomes that indicate phagocytic activity of debris from the extracellular space; and, secondly, fibrous glial cells which showed numerous glial fibrillary acidic protein (GFAP) and vimentin immunoreactive intermediate filament bundles, a discrete Golgi complex, mitochondria, endoplasmic reticulum, lipid droplets and lysosomes. The contacts between the glial cells consisted of desmosomes and puncta adherentia, while those between the glial cells and the basal lamina consisted of hemidesmosomes. Both glial cell types were located in the cortex and medullary regions, however, the protoplasmic glial cells prevailed in the cortical region, while the fibrous glial cells prevailed in the medullar region. As the nervous tissue is avascular, the passage of nutrients and waste products may be facilitated by the glial labyrinthic system which is located in the cortical region. Glial processes adjacent to large and giant neurones formed a trophospongium, which seemed to be involved in a metabolic exchange between these cells. Thus, this evidence suggests that glial cells of M. abbreviatus are involved in structural support, isolation of different ganglionic areas, the formation of a microcirculatory system and an intimate metabolic relationship with neurones.  相似文献   

9.
Summary

Histological and cytological localization of glycogen was studied in the brain of Pieris brassicae larvae and pupae by histochemistry and electron microscopy. The major glycogen deposits were observed in glial cells located between the cortex and the neuropile and also in perineurial cells. The concentrations of brain glycogen were measured in the larvae and the pupae during non-diapausing and diapausing development. In addition, we demonstrated that starvation reduces the density of the brain glycogen deposits as well as the concentrations of glycogen.  相似文献   

10.
In order to identify molecular mechanisms involved in striatal development, we employed a subtraction cloning strategy to enrich for genes expressed in the lateral versus the medial ganglionic eminence. Using this approach, the homeobox gene Meis2 was found highly expressed in the lateral ganglionic eminence and developing striatum. Since Meis2 has recently been shown to be upregulated by retinoic acid in P19 EC cells (Oulad-Abdelghani, M., Chazaud, C., Bouillet, P., Sapin, V., Chambon, P. and Dollé, P. (1997) Dev. Dyn. 210, 173-183), we examined a potential role for retinoids in striatal development. Our results demonstrate that the lateral ganglionic eminence, unlike its medial counterpart or the adjacent cerebral cortex, is a localized source of retinoids. Interestingly, glia (likely radial glia) in the lateral ganglionic eminence appear to be a major source of retinoids. Thus, as lateral ganglionic eminence cells migrate along radial glial fibers into the developing striatum, retinoids from these glial cells could exert an effect on striatal neuron differentiation. Indeed, the treatment of lateral ganglionic eminence cells with retinoic acid or agonists for the retinoic acid receptors or retinoid X receptors, specifically enhances their striatal neuron characteristics. These findings, therefore, strongly support the notion that local retinoid signalling within the lateral ganglionic eminence regulates striatal neuron differentiation.  相似文献   

11.
Summary This is a preliminary electron microscope investigation in which the structure of insect neurons, neuropile, and interganglionic fibers are studied.Neurons of insect are pear-shaped and have an unique prolongation which ramifies into the neuropile. Their soma is surrounded by glial prolongations that exclude the possibility of nervous contacts. The neuronal cytoplasm is rich in granular material similar to the one described as R.N.A. by several authors; it is scattered at random or associated with endoplasmic reticulum cysternae. The latter does not adopt the regular array characterizing the vertebrate Nissl bodies.A large number of naked fibers is seen in the neuropile. The content of these fibers is different in fibers of different diameter. The thinner elements appear light and show a loose reticular matrix, few vesicles, and mitochondria. The thick fibers are characterized by a denser neuroplasm constituted by a reticular matrix and rows of tiny vesicles alternating with profils of tubuli. In some of these fibers the tubuli are seen in a central position.Three main types of contact relationships between fibers are described in the neuropile. These are; a) cross contacts; b) longitudinal contacts; and c) endknob contacts. The first type is in turn subdivided into subtypes, namely: minimum-area cross contacts and maximum-area cross contacts.A glial sheath enveloping each connective nerve fiber is described. Inside the cytoplasm of such cells there are bundles of dense, thin fibrils twisted along the nerve fibers.The criteria maintained by several authors in regard to the fine structure of the synaptic region are discussed and compared with facts reported in this paper.  相似文献   

12.
Electron microscopy of the cerebral ganglionic commissure of the leech Macrobdella decora (Say, 1824) revealed numerous neurosecretory axons terminating in the neural lamella of both the inner and outer capsules, and in the neural lamella deep within the neuropile. The proximal protions of the terminals, with an investment of glial tissue, contain either numerous large homogeneously electron dense granules, or numerous large granules of varying electron density. The distal portions, often devoid of glia, display numerous infoldings, omega profiles, and electron dense focal sites, and contain numerous neurosecretory granules, small lucent vesicles, and, occasionally, acanthosomes. Statistical analysis of the size distribution and morphology of the neurosecretory granules showed that in many individual terminals the granules are not significantly different from those seen within four groups of neurosecretory cells found in the cerebral ganglion. These terminals, because of their diffuse nature, probably represent a neurohemal complex of a primitive nature. The term “intralamellar complexes” is proposed to describe the form and location of these neurosecretory terminals.  相似文献   

13.
The supraesophageal ganglion of the wolf spider Arctosa kwangreungensis is made up of a protocerebral and tritocerebral ganglion, whereas the subesophageal ganglionic mass is composed of a single pair of pedipalpal ganglia, four pairs of appendage ganglia, and a fused mass of abdominal neuromeres. In the supraesophageal ganglion, complex neuropile masses are located in the protocerebrum which include optic ganglia, the mushroom bodies, and the central body. Characteristically, the only nerves arising from the protocerebrum are the optic nerves, and the neuropiles of the principal eyes are the most thick and abundant in this wandering spider. The central body which is recognized as an important association center is isolated at the posterior of the protocerebrum and appears as a complex of highly condensed neurons. These cells give off fine parallel bundles of axons arranged in the mushroom bodies. The subesophageal nerve mass can be divided into two main tracts on the basis of direction of the neuropiles. The dorsal tracts are contributed to from the motor or interneurons of each ganglion, whereas the ventral tracts are from incoming sensory axons.  相似文献   

14.
Median cord development is uniform in six families of Hemiptera and five non-hemipterans. The median cord arises independently from the lateral cords and is histologically distinguishable from the latter throughout development. Intrasegmentally, median cord nuclei possess prominent nucleoli and many small chromatin granules surrounded by clear nuclear sap. This region forms what appear to be glial elements at the midline of the neuropile. Intersegmentally, a spherical clump of eight to twelve large nuclei develops surrounded by dark-staining granular cytoplasm. Each intersegmental clump migrates anteriorly into the preceding ganglionic region but degenerates soon after katatrepsis.  相似文献   

15.
 Glial cells are involved in several functions during the development of the nervous system. To understand potential glial contributions to neuropile formation, we examined the cellular pattern of glia during the development of the mushroom body, antennal lobe and central complex in the brain of the honeybee. Using an antibody against the glial-specific repo-protein of Drosophila, the location of the glial somata was detected in the larval and pupal brain of the bee. In the early larva, a continuous layer of glial cell bodies defines the boundaries of all growing neuropiles. Initially, the neuropiles develop in the absence of any intrinsic glial somata. In a secondary process, glial cells migrate into defined locations in the neuropiles. The corresponding increase in the number of neuropile-associated glial cells is most likely due to massive immigrations of glial cells from the cell body rind using neuronal fibres as guidance cues. The combined data from the three brain regions suggest that glial cells can prepattern the neuropilar boundaries. Received: 3 November 1996 / Accepted: 7 February 1997  相似文献   

16.
The Drosophila brain is tracheated by the cerebral trachea, a branch of the first segmental trachea of the embryo. During larval stages the cerebral trachea splits into several main (primary) branches that grow around the neuropile, forming a perineuropilar tracheal plexus (PNP) at the neuropile surface. Five primary tracheal branches whose spatial relationship to brain compartments is relatively invariant can be distinguished, although the exact trajectories and branching pattern of the brain tracheae are surprisingly variable. Immunohistochemical and electron microscopic studies demonstrate that all brain tracheae grow in direct contact with the glial cell processes that surround the neuropile. To investigate the effect of glia on tracheal development, embryos and larvae lacking glial cells as a result of a genetic mutation or a directed ablation were analyzed. In these animals, the tracheal branching pattern was highly abnormal. In particular, the number of secondary branches entering the central neuropile was increased. Wild-type larvae possess only two central tracheae, typically associated with the mushroom body and the antennocerebral tract. In larvae lacking glial cells, six to ten tracheal branches penetrate the neuropile in a variable pattern. This finding indicates that glia-derived signals constrained tracheal growth in the Drosophila brain and restrict the number of branches entering the neuropile.  相似文献   

17.
Light and electron microscopic techniques show that the eye of the marine prosobranch gastropod, Ilyanassa obsoleta, is composed of an optic cavity, lens, cornea, retina, and neuropile, and is surrounded by a connective tissue capsule. The adult retina is a columnar epithelium containing three morphologically distinct cell types: photoreceptor, pigmented, and ciliated cells. The retina is continuous anteriorly with a cuboidal corneal epithelium. The neuropile, located immediately behind the retina, is composed of photoreceptor cell axons, accessory neurons, and their neurites. The embryonic eye is formed from surface ectoderm, which sinks inward as a pigmented cellular mass. At this time, the eye primordium already contains presumptive photoreceptor cells, pigmented retinal cells, and corneal cells. Several days later, just before hatching, the embryonic eye remains in intimate contact with the cerebral ganglion. It has no ciliated retinal cells, neuropile, optic nerve, or connective tissue capsule and its photoreceptor cells lack the electron-lucent vesicles and multivesicular bodies of adult photoreceptor cells. As the eye and the cerebral ganglion grow apart, the optic nerve, neuropile, and connective tissue capsule develop.  相似文献   

18.
Abstract The brain of Nephtys contains four neurosecretory cell types with distinctive cytoplasmic inclusions, a cells are located uniquely in a single pair of ganglionic nuclei and b cells are represented by a single pair of cells, whereas c cells and d cells have a scattered distribution. Their axons form two types of secretory release structure. First, possible axon collaterals synapse upon slender “dentritic twigs” in the core of the brain. Secondly, two tracts descend to the brain floor to form a “neurosecretory neuropile” (or storage and release complex) in contact with the inner surface of the brain capsule. Other neurosecretory fibres penetrate through the capsule, branch extensively, and terminate in contact with its ventral surface in close association with the “infracerebral gland”. The gland is derived from the pericapsular epithelium and exhibits signs of specialization for glandular function. In contrast to certain other polychaetes, it does not contain secretory neuron perikarya. The secretory end-foot system is poorly developed. Its terminals are located adjacent to the neurosecretory neuropile, which they encircle. The cell bodies are probably represented by four e cells which, like the terminals, contain many mitochondria.  相似文献   

19.
Summary The pedal ganglion is a peripheral ganglion which gives rise to the innervation for both the somatic and visceral organs of the Mytilus foot. In the present study, different histofluorescence methods for the demonstration of monamines (formaldehyde-glutaraldehyde followed by polyethylene glycol embedding; aluminium-formaldehyde; Falck) and acetylcholinesterase histochemistry were applied in order to characterize the neuronal population of the ganglion. The fluorescence methods employed showed that the cortical region of the pedal ganglion is composed of roundish cells; these mainly contained an orange autofluorescent pigment. Yellow-fluorescing cells were scattered in the anterior region of the cortex, but they were more numerous and arranged in clusters in the posterior region. Greenfluorescing cells were mainly located at the border between the cortex and neuropile and in the neuropile itself, where a rich plexus of beaded green-fluorescing fibres was also present. Of the three methods, that using formaldehydeglutaraldehyde followed by embedding in polyethylene glycol gave the best preservation of morphological details. Acetylcholinesterase histochemistry showed the presence of positive cells and fibres mainly in the anterior region of the ganglion.  相似文献   

20.
At the mouth tube/introvert border a circumenteric intraepithelial nerve ring occupies a circular ridge protruding into the body cavity. The ring has a centrally located neuropile nearly free of perikarya and two zones of different perikarya above and below the neuropile. Presumably non-neuronal perikarya have an oval nucleus, large heterochromatin clumps and marked filament bundles. Such elements resemble tanycytic glial cells. Two types of presumably neuronal perikarya contain small cytoplasmic granules, similar to those in nerve fibre profiles. One of these neurons has a pale nucleus with a prominent nucleolus, the other a rather inconspicuous nucleus similar to that of the tanycytic cells. The neuronal processes of the fibre ring differ in diameter and contain clear and dense core vesicles, small granules (high or medium electron density) or granules with a dense periphery and a light centre. Sometimes neighbouring processes seem interconnected by electrical synapses. Images suggesting chemical synapses are rare. A large intraepithelial nerve lies in the wall of the introvert and ventral body wall close to the musculature, possibly innervated by this nerve. Frontal of the anus lies an intraepithelial ganglion demonstrating again a central neuropile. two neuronal types and tanycytic elements with filament bundles. Comparative aspects of the characters of the Tubiluchus nervous system are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号