首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This protocol describes a robust method for the covalent capture of small molecules with diverse reactive functional groups in microarray format, and outlines a procedure for probing small-molecule microarrays (SMMs) with proteins of interest. A vapor-catalyzed, isocyanate-mediated surface immobilization scheme is used to attach bioactive small molecules, natural products and small molecules derived from diversity-oriented synthesis pathways. Additionally, an optimized methodology for screening SMMs with purified proteins and cellular lysates is described. Finally, a suggested model for data analysis that is compatible with commercially available software is provided. These procedures enable a platform capability for discovering novel interactions with potential applications to immunoglobulin profiling, comparative analysis of cellular states and ligand discovery. With the appropriate materials and experimental setup, the printing of SMMs can be completed in 14 hours over 3 days. Screening and data analysis requires 2 days. A detailed timeline is provided.  相似文献   

2.
A recent publication by Stockwell and colleagues documents a leap forward toward the continued development of small molecule microarray (SMM) technology. By creating microarrays of small molecules impregnated in a biodegradable polymer, the authors have, for the first time, shown that SMMs can be used in a cell-based format. This technological improvement opens the door for using SMMs to perform high-throughput screens in mammalian cells.  相似文献   

3.
Uncovering the functions of thousands of gene products, in various states of post-translational modification, is a key challenge in the post-genome era. To identify small-molecule probes for each protein function, high-throughput methods for ligand discovery are needed. In recent years, small-molecule microarrays (SMMs) have emerged as high-throughput and miniaturized screening tools for discovering protein-small-molecule interactions. Microarrays of small molecules from a variety of sources, including FDA-approved drugs, natural products and products of combinatorial chemistry and diversity-oriented synthesis, have been prepared and screened by several laboratories, leading to several newly discovered protein-ligand pairs.  相似文献   

4.
Chemogenomics aims towards the systematic identification of small molecules that interact with the products of the genome and modulate their biological function. This Opinion article summarizes the different knowledge-based chemogenomics strategies that are followed and outlines the challenges and opportunities that will impact drug discovery. Chemogenomics aims towards the systematic identification of small molecules that interact with the products of the genome and modulate their biological function. While historically the approach is based on efforts that systematically explore target gene families like kinases, today additional knowledge-based systematization principles are followed within early drug discovery projects which aim to biologically validate the targets and to identify starting points for chemical lead optimization. While the expectations of chemogenomics are very high, the reality of drug discovery is quite sobering with very high project attrition rates. This article summarizes the different knowledge-based chemogenomics strategies that are followed and outlines the challenges and potential opportunities that will impact drug discovery.  相似文献   

5.
A novel immobilization method based on oligonucleotide as linker has been developed for small molecule microarrays (SMMs) construction. The oligonucleotide tail was employed as a linker in solid-phase synthesis. Small molecules could be easily conjugated at the 5′ end of the oligonucleotide, previously modified with a functional group. Being a reactive species, the oligonucleotide was activated by UV irradiation, for the attachment of the conjugate to the slide surface. The method was successfully applied to structurally distinct small molecules, including biotin, antibiotic and drug. This immobilization strategy showed high efficiency, 1.1 fmol of small molecules in the spotting solution per spot gave a detectable signal (mean S/N = 10.9). The results suggest that it is very promising for exploring interaction between small molecules and proteins, and high throughput detecting the chemical compounds.  相似文献   

6.
Advances in genomics and proteomics have opened up new possibilities for the rapid functional assignment and global characterization of proteins. Large-scale studies have accelerated this effort by using tools and strategies that enable highly parallel analysis of huge repertoires of biomolecules. Organized assortments of molecules on arrays have furnished a robust platform for rapid screening, lead discovery and molecular characterization. The essential advantage of microarray technology is attributed to the massive throughput attainable, coupled with a highly miniaturized platform--potentially driving discovery both as an analytical and diagnostic tool. The scope of microarrays has in recent years expanded impressively. Virtually every biological component--from diverse small molecules and macromolecules (such as DNA and proteins) to entire living cells--has been harnessed on microarrays in attempts to dissect the bewildering complexity of life. Herein we highlight strategies that address challenges in proteomics using microarrays of immobilized proteins and small molecules. Of specific interest are the techniques involved in stably immobilizing proteins and chemical libraries on slide surfaces as well as novel strategies developed to profile activities of proteins on arrays. As a rapidly maturing technology, microarrays pave the way forward in high-throughput proteomic exploration.  相似文献   

7.
High-definition genome profiling for genetic marker discovery   总被引:1,自引:0,他引:1  
Genetic mapping is a key step towards isolating genes and genetic markers associated with phenotypic traits by elucidating their genetic positions. The success of this approach depends on precision in pinpointing genetic positions and the effectiveness of the discovery process. Recent advances in microarray technology and the increasing availability of genomic information have provided an opportunity to use microarrays to scan effectively for genetic variations at the whole-genome scale, enabling the production of high-definition gene-based genetic maps, in combination with functional analyses and identification of trait-associated genetic marker candidates with high precision. In this review, we discuss the concept, process, tools and applications of microarray-based high-definition genetic analysis. This post-genomics approach should help to identify causative genetic variation by uniting genetic and functional information.  相似文献   

8.
9.
The completion of the human genome sequence has led to a rapid increase in genetic information. The invention of DNA microarrays, which allow for the parallel measurement of thousands of genes on the level of mRNA, has enabled scientists to take a more global view of biological systems. Protein microarrays have a big potential to increase the throughput of proteomic research. Microarrays of antibodies can simultaneously measure the concentration of a multitude of target proteins in a very short period of time. The ability of protein microarrays to increase the quantity of data points in small biological samples on the protein level will have a major impact on basic biological research as well as on the discovery of new drug targets and diagnostic markers. This review highlights the current status of protein expression profiling arrays, their development, applications and limitations.  相似文献   

10.
The majority of small molecule drugs act on protein targets to exert a therapeutic function. It has become apparent in recent years that many small molecule drugs act on more than one particular target and consequently, approaches which profile drugs to uncover their target binding spectrum have become increasingly important. Classical yeast two-hybrid systems have mainly been used to discover and characterize protein-protein interactions, but recent modifications and improvements have opened up new routes towards screening for small molecule-protein interactions. Such yeast "n"-hybrid systems hold great promise for the development of drugs which interfere with protein-protein interactions and for the discovery of drug-target interactions. In this review, we discuss several yeast two-hybrid based approaches with applications in drug discovery and describe a protocol for yeast three-hybrid screening of small molecules to identify their direct targets.  相似文献   

11.
12.
NMR screening in drug discovery   总被引:2,自引:0,他引:2  
NMR methods in drug discovery have traditionally been used to obtain structural information for drug targets or target-ligand complexes. Recently, it has been shown that NMR may be used as an alternative approach for identification of ligands that bind to protein drug targets, shifting the emphasis of many NMR laboratories towards screening and design of potential drug molecules, rather than structural characterization.  相似文献   

13.
Protein microarrays are considered an enabling technology, which will significantly expand the scope of current protein expression and protein interaction analysis. Current technologies, such as two-dimensional gel electrophoresis (2-DE) in combination with mass spectrometry, allowing the identification of biologically relevant proteins, have a high resolving power, but also considerable limitations. As was demonstrated by Gygi et al. (Proc. Nat. Acad. Sci. USA 2000,97, 9390-9395), most spots in 2-DE, observed from whole cell extracts, are from high abundance proteins, whereas low abundance proteins, such as signaling molecules or kinases, are only poorly represented. Protein microarrays are expected to significantly expedite the discovery of new markers and targets of pharmaceutical interest, and to have the potential for high-throughput applications. Key factors to reach this goal are: high read-out sensitivity for quantification also of low abundance proteins, functional analysis of proteins, short assay analysis times, ease of handling and the ability to integrate a variety of different targets and new assays. Zeptosens has developed a revolutionary new bioanalytical system based on the proprietary planar waveguide technology which allows us to perform multiplexed, quantitative biomolecular interaction analysis with highest sensitivity in a microarray format upon utilizing the specific advantages of the evanescent field fluorescence detection. The analytical system, comprising an ultrasensitive fluorescence reader and microarray chips with integrated microfluidics, enables the user to generate a multitude of high fidelity data in applications such as protein expression profiling or investigating protein-protein interactions. In this paper, the important factors for developing high performance protein microarray systems, especially for targeting low abundant messengers of relevant biological information, will be discussed and the performance of the system will be demonstrated in experimental examples.  相似文献   

14.
Tissue microarrays are a high-throughput method for the investigation of biomarkers in multiple tissue specimens at once. This technique allows for the analysis of up to 500 tissue samples in a single experiment using immunohistochemistry and in situ hybridization. Recently, cell lines and xenografts have been reduced to a tissue microarray format and are being applied to preclinical drug development. In clinical research, tissue microarrays are applied at multiple levels: comprehensive analysis of samples in the context of a clinical trial or across a population. Tissue microarrays play a central role in translational research, facilitating the discovery of molecules that have potential roles in the diagnosis, prognosis and prediction of response to therapy.  相似文献   

15.
Tissue microarrays are a high-throughput method for the investigation of biomarkers in multiple tissue specimens at once. This technique allows for the analysis of up to 500 tissue samples in a single experiment using immunohistochemistry and in situ hybridization. Recently, cell lines and xenografts have been reduced to a tissue microarray format and are being applied to preclinical drug development. In clinical research, tissue microarrays are applied at multiple levels: comprehensive analysis of samples in the context of a clinical trial or across a population. Tissue microarrays play a central role in translational research, facilitating the discovery of molecules that have potential roles in the diagnosis, prognosis and prediction of response to therapy.  相似文献   

16.
Using small molecules to study big questions in cellular microbiology   总被引:1,自引:1,他引:0  
High-throughput screening of small molecules is used extensively in pharmaceutical settings for the purpose of drug discovery. In the case of antimicrobials, this involves the identification of small molecules that are significantly more toxic to the microbe than to the host. Only a small percentage of the small molecules identified in these screens have been studied in sufficient detail to explain the molecular basis of their antimicrobial effect. Rarer still are small molecule screens undertaken with the explicit goal of learning more about the biology of a particular microbe or the mechanism of its interaction with its host. Recent technological advances in small molecule synthesis and high-throughput screening have made such mechanism-directed small molecule approaches a powerful and accessible experimental option. In this article, we provide an overview of the methods and technical requirements and we discuss the potential of small molecule approaches to address important and often otherwise experimentally intractable problems in cellular microbiology.  相似文献   

17.
How to find small non-coding RNAs in bacteria   总被引:11,自引:0,他引:11  
Vogel J  Sharma CM 《Biological chemistry》2005,386(12):1219-1238
  相似文献   

18.
The design of sulfated, small, nonsaccharide molecules as modulators of proteins is still in its infancy as standard drug discovery tools such as library of diverse sulfated molecules and in silico docking and scoring protocol have not been firmly established. Databases, such as ZINC, contain too few sulfate-containing nonsaccharide molecules, which severely limits the identification of new hits. Lack of a generally applicable protocol for scaffold hopping limits the development of sulfated small molecules as synthetic mimetics of the highly sulfated glycosaminoglycans. We explored a sequential ligand-based (LBVS) and structure-based virtual screening (SBVS) approach starting from our initial discovery of monosulfated benzofurans to discover alternative scaffolds as allosteric modulators of thrombin, a key coagulation enzyme. Screening the ZINC database containing nearly 1 million nonsulfated small molecules using a pharmacophore developed from the parent sulfated benzofurans followed by a genetic algorithm-based dual-filter docking and scoring screening identified a group of 10 promising hits, of which three top-scoring hits were synthesized. Each was found to selectively inhibit human alpha-thrombin suggesting the possibility of this approach for scaffold hopping. Michaelis–Menten kinetics showed allosteric inhibition mechanism for the best molecule and human plasma studies confirmed good anticoagulation potential as expected. Our simple sequential LBVS and SBVS approach is likely to be useful as a general strategy for identification of sulfated small molecules hits as modulators of glycosaminoglycan–protein interactions.  相似文献   

19.
Recent advances of protein microarrays   总被引:5,自引:0,他引:5  
Technological innovations and novel applications have greatly advanced the field of protein microarrays. Over the past two years, different types of protein microarrays have been used for serum profiling, protein abundance determinations, and identification of proteins that bind DNA or small compounds. However, considerable development is still required to ensure common quality standards and to establish large content repertoires. Here, we summarize applications available to date and discuss recent technological achievements and efforts on standardization.  相似文献   

20.
The field of drug target discovery is currently very popular with a great potential for advancing biomedical research and chemical genomics. Innovative strategies have been developed to aid the process of target identification, either by elucidating the primary mechanism-of-action of a drug, by understanding side effects involving unanticipated 'off-target' interactions, or by finding new potential therapeutic value for an established drug. Several promising proteomic methods have been introduced for directly isolating and identifying the protein targets of interest that are bound by active small molecules or for visualizing enzyme activities affected by drug treatment. Significant progress has been made in this rapidly advancing field, speeding the clinical validation of drug candidates and the discovery of the novel targets for lead compounds developed using cell-based phenotypic screens. Using these proteomic methods, further insight into drug activity and toxicity can be ascertained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号