首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Active butyrate kinase (Buk) and phosphotransbutyrylase (Ptb) were purified in three steps: ammonium sulfate precipitation, hydrophobic chromatography on phenyl-Sepharose and affinity chromatography on Matrex Red A from recombinant Escherichia coli K2006 (pJC7). They were then successfully exploited for in vitro synthesis of 3-hydroxybutyryl-CoA (3HBCoA), 4-hydroxybutyryl-CoA (4HBCoA), 4-hydroxyvaleryl-CoA (4HVCoA) and poly(hydroxyalkanoic acid) (PHA). In addition, the ability of the PHA synthase of Chromatium vinosum, PhaECCv, to use these CoA thioesters was evaluated. Combination of Buk and Ptb with PhaECCv established a new system for in vitro synthesis of poly(3-hydroxybutyric acid) [poly(3HB)]. In this system, 3-hydroxybutyric acid was converted to 3HBCoA by Buk and Ptb at the expense of ATP. Formation of 3HBCoA was further driven by the polymerization of 3HBCoA molecules to poly(3HB) by PHA synthase, and the released CoA was recycled by Ptb. This system therefore also ensured the regeneration of CoA. With ATP as the energy supply, which was hydrolyzed to ADP and phosphate, 2.6 mg poly(3HB) was obtained from a 1-ml reaction mixture containing 7.6 mg 3-hydroxybutyrate at the beginning. Studies showed that Ptb and PHA synthase were the rate-limiting steps in this system, and initial CoA concentrations ranging from 1 to 7 mM did not inhibit poly(3HB) synthesis. Synthesis of various polyesters of 3HB and 4HB with this system was also tested, and copolyesters containing 4HB of 1–46 mol % were obtained. Received: 17 September 1999 / Accepted: 1 November 1999  相似文献   

2.
For the first time, the purification has been achieved of the type II polyhydroxyalkanoate (PHA) synthases PhaC1 and PhaC2 from Pseudomonas aeruginosa applying N-terminal His6-tag fusions and metal chelate affinity chromatography. In vivo His6-tagged PHA synthase activity was confirmed by functional expression of the corresponding genes in Escherichia coli, and PHA synthase activity could also be measured in vitro with the enzymes. The specific enzyme activity of PHA synthases PhaC1 and PhaC2 was 0.039 U mg−1 and 0.035 U mg−1 protein, respectively. Kinetic studies showed a lag phase for both PHA synthases using (R,S)-3-hydroxydecanoyl-CoA as substrate. Specific enzyme activity was increased to 0.055 U mg−1 when the phasin GA24 from Ralstonia eutropha was added to the assay. CoA inhibited PHA synthase activity, and a K i of 85 μM was determined. A two-enzyme system was established, employing commercially available acyl-CoA synthetase and PHA synthase, which allowed the in vitro de novo PHA granule formation and the in vitro synthesis of poly(3-hydroxydecanoate) exhibiting a weight average molar mass of 9.8 × 104 g mol−1, and which occurred independently of pre-existing PHA granules. Received: 3 December 1999 / Revision received: 10 January 2000 / Accepted: 14 January 2000  相似文献   

3.
A previously established improved two-phase reaction system has been applied to analyze the substrate specificities and polymerization activities of polyhydroxyalkanoate (PHA) synthases. We first analyzed the substrate specificity of propionate coenzyme A (CoA) transferase and found that 2-hydroxybutyrate (2HB) was converted into its CoA derivative. Then, the synthesis of PHA incorporating 2HB was achieved by a wild-type class I PHA synthase from Ralstonia eutropha. The PHA synthase stereoselectively polymerized (R)-2HB, and the maximal molar ratio of 2HB in the polymer was 9 mol%. The yields and the molecular weights of the products were decreased with the increase of the (R)-2HB concentration in the reaction mixture. The weight-average molecular weight of the polymer incorporating 9 mol% 2HB was 1.00 × 105, and a unimodal peak with polydispersity of 3.1 was observed in the GPC chart. Thermal properties of the polymer incorporating 9 mol% 2HB were analyzed by DSC and TG-DTA. T g, T m, and T d (10%) were observed at −1.1°C, 158.8°C, and 252.7°C, respectively. In general, major components of PHAs are 3-hydroxyalkanoates, and only engineered class II PHA synthases have been reported as enzymes having the ability to polymerize HA with the hydroxyl group at C2 position. Thus, this is the first report to demonstrate that wild-type class I PHA synthase was able to polymerize 2HB.  相似文献   

4.
A gene transfer system for Rhodococcus opacus PD630 based on electroporation was established and optimized employing the Escherichia coli-Rhodococcus shuttle vectors pNC9501 and pNC9503 as well as the E. coli-Corynebacterium glutamicum shuttle vector pJC1 as suitable cloning vectors for R. opacus PD630, resulting in transformation efficiencies up to 1.5 × 105 CFUs/μg plasmid DNA. Applying the optimized electroporation protocol to the pNC9501-derivatives pAK68 and pAK71 harboring the entire PHB synthesis operon from Ralstonia eutropha and the PHA synthase gene phaC1 from Pseudomonas aeruginosa, respectively, recombinant PHA biosynthesis was established in R. opacus PD630 and the TAG-negative mutant ROM34. Plasmid pAK68 enabled synthesis and accumulation of poly(3HB) in R. opacus PD630 and ROM34 during cultivation under storage conditions from 1% (w/v) gluconate, of poly(3HB-co-3HV) from 0.2% (w/v) propionate and of poly(3HV) from 0.1% (w/v) valerate. Under storage conditions, recombinant strains of PD630 and ROM34 harboring pAK71 were able to synthesize and accumulate PHA of the medium chain length hydroxyalkanoic acids 3HHx, 3HO, 3HD and 3HDD from 0.1% (w/v) hexadecane or octadecane and a copolyester composed of 3HHp, 3HN and 3HUD from 0.1% (w/v) pentadecane or heptadecane. In the recombinant strains of PD630 and ROM34, the thiostrepton-induced overexpression of a 20 kDa protein was observed with its N-terminus exhibiting a homology of 60% identical amino acids to TipA from Streptomyces lividans. Received: 13 March 1999 / Received revision: 18 May 1999 / Accepted: 21 May 1999  相似文献   

5.
Pseudomonas sp. 61-3 accumulated a blend of poly(3-hydroxybutyrate) [P(3HB)] homopolymer and a random copolymer consisting of 3-hydroxyalkanoate (3HA) units of 4–12 carbon atoms. The genes encoding β-ketothiolase (PhbARe) and NADPH-dependent acetoacetyl-CoA reductase (PhbBRe) from Ralstoniaeutropha were expressed under the control of promoters for Pseudomonas sp. 61-3 pha locus or R. eutropha phb operon together with phaC1 Ps gene (PHA synthase 1 gene) from Pseudomonas sp. 61-3 in PHA-negative mutants P. putida GPp104 and R. eutropha PHB4 to produce copolyesters [P(3HB-co-3HA)] consisting of 3HB and medium-chain-length 3HA units of 6–12 carbon atoms. The introduction of the three genes into GPp104 strain conferred the ability to synthesize P(3HB-co-3HA) with relatively high 3HB compositions (up to 49 mol%) from gluconate and alkanoates, although 3HB units were not incorporated at all or at a very low fraction (3 mol%) into copolyesters by the strain carrying phaC1 Ps gene only. In addition, recombinant strains of R. eutropha PHB4 produced P(3HB-co-3HA) with higher 3HB fractions from alkanoates and plant oils than those from recombinant GPp104 strains. One of the recombinant strains, R. eutropha PHB4/pJKSc46-pha, in which all the genes introduced were expressed under the control of the native promoter for Pseudomonas sp. 61-3 pha locus, accumulated P(3HB-co-3HA) copolyester with a very high 3HB fraction (85 mol%) from palm oil. The nuclear magnetic resonance analyses showed that the copolyesters obtained here were random copolymers of 3HB and 3HA units. Received: 12 July 1999 / Received revision: 1 October 1999 / Accepted: 2 October 1999  相似文献   

6.
The microbial production of poly(hydroxyalkanoates) from tallow   总被引:7,自引:0,他引:7  
The bacteria Pseudomonas oleovorans, P. resinovorans, P. putida, and P. citronellolis were evaluated for their ability to grow and produce poly(hydroxyalkanoates) (PHA) using tallow free fatty acids and tallow triglyceride as carbon substrates. Tallow free fatty acids supported cell growth and PHA production for all four organisms, yielding PHA contents of 18%, 15%, 19% and 3% of their cell dry weights for P. oleovorans, P.␣resinovorans, P. putida, and P. citronellolis respectively. Only P. resinovorans, however, was able to grow and produce PHA polymer, with cells attaining a PHA content of 15% of their cell dry weight, using unhydrolyzed tallow as the substrate. Extracts from 46-h cultures of P. resinovorans were found to have a higher esterase activity (12.80 units μl−1min−1) compared to the activities found for cultures of P. oleovorans, P. citronellolis, and P. putida ( < 0.03 units μl−1min−1). Polymer repeat-unit compositions were determined by GC analysis of the β-hydroxymethyl esters of hydrolyzed PHA, and ranged in carbon-chain lengths from C4 to C14, with some mono-unsaturation in the C12 and C14 side-chains. PHA compositions were similar for the polymers obtained from all four organisms, with repeat units of chain lengths C8 and C10 predominating. Received: 16 February 1996 / Received revision: 23 May 1996 / Accepted: 10 June 1996  相似文献   

7.
The biosynthesis of poly(hydroxyalkanoates) (PHA) by Pseudomonas resinovorans from triglyceride substrates was investigated. Each triglyceride, whether animal fat or vegetable oil, supported cellular growth to relatively high average cell yields (3.3 ± 0.2 g/l). PHA yields ranged from 1.1 g/l to 2.1 g/l, representing approximately 45% of the bacterial cell dry weight. The repeat-unit composition of the polymers was determined by gas chromatography (GC) and GC/mass spectrometry of the β-hydroxyalkanoate methyl esters from the hydrolyzed polymers. With the exception of PHA from soybean oil (PHA-soy), each polyester was composed of β-hydroxyacyl moieties with chain lengths ranging from C4 to C14, with C8 and C10 being the predominant species. PHA-soy contained an additional fraction (2%) of C16 monomers. The alkyl side-chains of the PHA contained varying degrees of unsaturation. PHA from coconut oil was composed entirely of saturated side-chains, whereas PHA-soy contained 4.2 mol% olefinic groups in its side-chains. The increase in the degree of side-chain unsaturation caused decreased melting temperatures, enthalpies of fusion, and glass transition temperatures. The molar masses of the polymers were relatively constant and ranged from 6.5 × 104 to 10.1 × 104 g/mol. Received: 2 September 1997 / Received revision: 21 November 1997 / Accepted: 2 January 1998  相似文献   

8.
Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB/V)], by fed-batch culture of recombinantEscherichia coli harboring a plasmid containing theAlcaligenes latus polyhydroxyalkanoate (PHA) biosynthesis genes, was examined in two pilot-scale fermentors with air supply only. In a 30 L fermentor having aK La value of 0.11 s−1, the final P(3HB/V) concentration and the P(3HB/V) content obtained were 29.6 g/L and 70.1 wt%, respectively, giving a productivity of 1.37 g P(3HB/V)/L-h. In a 300 L fermentor having aK La of 0.03 s−1, the P(3HB/V) concentration and the P(3HB/V) content were 20.4 g/L and 69 wt%, respectively, giving a productivity of 1.06 g P(3HB/V)/L-h. These results suggest that economical production of P(3HB/V) is possible by fed-batch culture of recombinantE. coli in a large-scale fermentor having lowK La value.  相似文献   

9.
Summary The isolation of poly(3-hydroxybutyric acid) granules of Chromatium vinosum D was re-examined. Beside the PHA synthase and a 17 kDa protein, a 14 kDa protein was identified as predominant granule-associated protein. The M r as well as the N-terminal amino acid sequence exhibited identity to ORF5Cv, which is located within the pha-locus of C. vinosum. In addition, sequence alignements revealed new information about ORF4Cv, which is also located within the pha-locus, and about the 17 kDa protein, which exhibited homology to heat shock proteins recently detected in Escherichia coli.  相似文献   

10.
Polyhydroxyalkanoate (PHA) synthases catalyze chain transfer (CT) reaction after polymerization reaction of PHA by transferring PHA chain from PHA synthase to a CT agent, resulting in covalent bonding of CT agent to PHA chain at the carboxyl end. Previous studies have shown that poly(ethylene glycol) (PEG) is an effective exogenous CT agent. This study aimed to compare the effects of PEG on CT reaction during poly[(R)-3-hydroxybutyrate] [P(3HB)] synthesis by using six PHA synthases in Escherichia coli JM109. The synthesized P(3HB) polymers were characterized in terms of molecular weight and end-group structure. Supplementation of PEG to the culture medium reduced P(3HB) molecular weights by up to 96% due to PEG-induced CT reaction. The P(3HB) polymers were subjected to 1H NMR analysis to confirm the formation of a covalent bond between PEG and P(3HB) chain at the carboxyl end. This study revealed the reactivity of PHA synthases to PEG with respect to CT reaction in E. coli.  相似文献   

11.
The ability of Alcaligenes eutrophus to grow and produce polyhydroxyalkanoates (PHA) on plant oils was evaluated. When olive oil, corn oil, or palm oil was fed as a sole carbon source, the wild-type strain of A. eutrophus grew well and accumulated poly(3-hydroxybutyrate) homopolymer up to approximately 80% (w/w) of the cell dry weight during its stationary growth phase. In addition, a recombinant strain of A. eutrophus PHB4 (a PHA-negative mutant), harboring a PHA synthase gene from Aeromonas caviae, was revealed to produce a random copolyester of 3-hydroxybutyrate and 3-hydroxyhexanoate from these plant oils with a high cellular content (approximately 80% w/w). The mole fraction of 3-hydroxyhexanoate units was 4–5 mol% whatever the structure of the triglycerides fed. The polyesters produced by the A. eutrophus strains from olive oil were 200–400 kDa (the number-average molecular mass). The results demonstrate that renewable and inexpensive plant oils are excellent carbon sources for efficient production of PHA using A. eutrophus strains. Received: 3 September 1997 / Received revision: 10 November 1997 / Accepted: 16 November 1997  相似文献   

12.
The biosynthesis of polyhydroxyalkanoates (PHAs) was studied, for the first time, in the thermophilic bacterium Thermus thermophilus. Using sodium gluconate (1.5% w/v) or sodium octanoate (10 mM) as sole carbon sources, PHAs were accumulated to approximately 35 or 40% of the cellular dry weight, respectively. Gas chromatographic analysis of PHA isolated from gluconate-grown cells showed that the polyester (Mw: 480,000 g.mol–1) was mainly composed of 3-hydroxydecanoate (3HD) with a molar fraction of 64%. In addition, 3-hydroxyoctanoate (3HO), 3-hydroxyvalerate (3HV) and 3-hydroxybutyrate (3HB) occurred as constituents. In contrast, the polyester (Mw: 391,000 g mol–1) from octanoate-grown cells was composed of 24.5 mol% 3HB, 5.4 mol% 3HO, 12.3 mol% 3-hydroxynonanoate (3HN), 14.6 mol% 3HD, 35.4 mol% 3-hydroxyundecanoate (3HUD) and 7.8 mol% 3-hydroxydodecanoate (3HDD). Activities of PHA synthase, a -ketothiolase and an NADPH-dependent reductase were detected in the soluble cytosolic fraction obtained from gluconate-grown cells of T. thermophilus. The soluble PHA synthase was purified 4271-fold with 8.5% recovery from gluconate-grown cells, presenting a Km of 0.25 mM for 3HB-CoA. The optimal temperature of PHA synthase activity was about 70°C and acts optimally at pH near 7.3. PHA synthase activity was inhibited 50% with 25 M CoA and lost all of its activity when it was treated with alkaline phosphatase. PHA synthase, in contrary to other reported PHA synthases did not exhibit a lag phase on its kinetics, when low concentration of the enzyme was used. Incubation of PHA synthase with 1 mM N-ethyl-maleimide inhibits the enzyme 56%, indicating that cysteine might be involved in the catalytic site of the enzyme. Acetyl phosphate (10 mM) activated both the native and the dephosphorylated enzyme. A major protein (55 kDa) was detected by SDS-PAGE. When a partially purified preparation was analyzed on native PAGE the major band exhibiting PHA synthase activity was eluted from the gel and analyzed further on SDS-PAGE, presenting the first purification of a PHA synthase from a thermophilic microorganism.  相似文献   

13.
Poly(3-hydroxyalkanoates) (PHA) have the potential to become a biodegradable alternative for conventional plastics. In order to produce PHA at competitive costs in comparison with commonly used plastics, efficient PHA production systems will have to be developed. Poly(3-hydroxybutyrate) fermentations are well developed and in actual use on an industrial scale; medium-chain-length PHA (mcl-PHA) production is less well described, although the vast majority of all PHA known today are mcl-PHA. This paper compares and describes mcl-PHA production systems with respect to the volumetric productivity, the cellular PHA content and the polymer yield on carbon substrates. Nitrogen was shown to be the most effective limitation to trigger PHA formation in P. oleovorans after different nutrient limitations had been compared. By using an economic model for the calculation of PHA production costs, we show that it should be possible to produce octane-based mcl-PHA on a large scale (more than 1000 tonnes/year) at costs below U.S. $ 10 kg−1. Received: 4 April 1997 / Accepted: 20 May 1997  相似文献   

14.
Poly(3-hydroxybutyrate) (PHB) granules isolated in native form (nPHB granules) from Ralstonia eutropha catalyzed formation of PHB from 14C-labeled acetyl coenzyme A (CoA) in the presence of NADPH and concomitantly released CoA, revealing that PHB biosynthetic proteins (acetoacetyl-CoA thiolase, acetoacetyl-CoA reductase, and PHB synthase) are present and active in isolated nPHB granules in vitro. nPHB granules also catalyzed thiolytic cleavage of PHB in the presence of added CoA, resulting in synthesis of 3-hydroxybutyryl-CoA (3HB-CoA) from PHB. Synthesis of 3HB-CoA was also shown by incubation of artificial (protein-free) PHB with CoA and PhaZa1, confirming that PhaZa1 is a PHB depolymerase catalyzing the thiolysis reaction. Acetyl-CoA was the major product detectable after incubation of nPHB granules in the presence of NAD+, indicating that downstream mobilizing enzyme activities were also present and active in isolated nPHB granules. We propose that intracellular concentrations of key metabolites (CoA, acetyl-CoA, 3HB-CoA, NAD+/NADH) determine whether a cell accumulates or degrades PHB. Since the degradation product of PHB is 3HB-CoA, the cells do not waste energy by synthesis and degradation of PHB. Thus, our results explain the frequent finding of simultaneous synthesis and breakdown of PHB.  相似文献   

15.
Biosynthesis of polyhydroxyalkanoate homopolymers by Pseudomonas putida   总被引:1,自引:0,他引:1  
Pseudomonas putida KT2442 has been a well-studied producer of medium-chain-length (mcl) polyhydroxyalkanoate (PHA) copolymers containing C6 ~ C14 monomer units. A mutant was constructed from P. putida KT2442 by deleting its phaG gene encoding R-3-hydroxyacyl-ACP-CoA transacylase and several other β-oxidation related genes including fadB, fadA, fadB2x, and fadAx. This mutant termed P. putida KTHH03 synthesized mcl homopolymers including poly(3-hydroxyhexanoate) (PHHx) and poly(3-hydroxyheptanoate) (PHHp), together with a near homopolymer poly(3-hydroxyoctanoate-co-2 mol% 3-hydroxyhexanoate) (PHO*) in presence of hexanoate, heptanoate, and octanoate, respectively. When deleted with its mcl PHA synthase genes phaC1 and phaC2, the recombinant mutant termed P. putida KTHH08 harboring pZWJ4-31 containing PHA synthesis operon phaPCJ from Aeromonas hydrophila 4AK4 accumulated homopolymer poly(3-hydroxyvalerate) (PHV) when valerate was used as carbon source. The phaC deleted recombinant mutant termed P. putida KTHH06 harboring pBHH01 holding PHA synthase PhbC from Ralstonia eutropha produced homopolymers poly(3-hydroxybutyrate) (PHB) and poly(4-hydroxybutyrate) using γ-butyrolactone was added as precursor. All the homopolymers were physically characterized. Their weight average molecular weights ranged from 1.8 × 105 to 1.6 × 106, their thermal stability changed with side chain lengths. The derivatives of P. putida KT2442 have been developed into a platform for production of various PHA homopolymers.  相似文献   

16.
 The synthesis of poly(3-hydroxyalkanoates) (PHA) by Pseudomonas putida KT2442 growing on long-chain fatty acids was studied in continuous cultures. The effects of the growth rate on the biomass and polymer concentration were determined and it was found that the PHA concentrations decreased with increasing growth rates. The highest volumetric productivity was 0.13 g PHA l-1 h-1 at a specific growth rate (μ) of 0.1 h-1. The molecular mass of the polymer remained constant at all growth rates but changes in the monomeric composition of the PHA synthesized were observed. Variation of the carbon to nitrogen (C/N) ratio of the substrate feed at μ=0.1 h-1 revealed optimal PHA formation at C/N=20 mol/mol. In order to optimize PHA production P. putida KT2442 was cultivated to high cell densities in oxygen-limited continuous cultures. In this way a maximum biomass concentration of 30 g/l containing approximately 23% PHA was achieved. This corresponds to a volumetric productivity of 0.69 g  l-1 h-1. Received: 14 December 1995 / Received revision: 18 April 1996 / Accepted: 22 April 1996  相似文献   

17.
The helix-helix transitions which occur in poly(dG-dC) · poly(dG-dC) and in poly (dG-m5dC) · poly(dG-m5dC) are commonly assumed to be changes between the right-handed A- or B-DNA double helices and the left-handed Z-DNA structure. The mechanisms for such transconformations are highly improbable, especially when they are supposed to be active in long polynucleotide chains organised in semicrystalline fibres. The present alternative possibility assumes that rather than the Z-DNA it is a right-handed double helix (S-DNA) which actually takes part in these form transitions. Two molecular models of this S form, in good agreement with X-ray measurements, are proposed. They present alternating C(2′)-endo and C(3′)-endo sugar puckering like the “alternating B-DNA” put forward some years ago. Dihedral angles, sets of atomic coordinates and stereo views of the two S-DNA structures are given, together with curves of calculated diffracted intensities. Furthermore, we question the possibility of obtaining semicrystalline fibres with triple helices of poly(dA) · 2poly(dT) in a way which renders X-ray diffraction efficient. It is suggested that, up to now, only double helices of poly(dA) · poly(dT) can actually be observed by fibre X-ray diffraction measurements. Received: 30 March 1999 / Revised version: 30 June 1999 / Accepted: 30 June 1999  相似文献   

18.
Ultra-high molecular weight polyhydroxyalkanoates (PHAs) with low polydispersity index (PDI = 1.3) were produced in a novel, pilot scale application of mixed cultures of nitrogen-fixing bacteria. The number average molecular weight (M n) of the poly(3-hydroxybutyrate) (P(3HB)) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(3HB-co-3HV)) was determined to be 2.4 × 106 and 2.5 × 106 g mol−1, respectively. Using two types of carbon sources, biomass contents of the P(3HB) and P(3HB-co-3HV) were 18% and 30% (PHA in dry biomass), respectively. The extracted polymers were analysed for their physical properties using analytical techniques such as nuclear magnetic resonance (NMR) spectroscopy, differential scanning calorimetry (DSC) and gel permeation chromatography (GPC). NMR confirmed the formation of homopolymer and copolymer. DSC showed a single melting endotherm peak for both polymers, with enthalpies that indicated crystallinity indices of 44% and 37% for P(3HB) and P(3HB-co-3HV), respectively. GPC showed a sharp unimodal trace for both polymers, reflecting the homogeneity of the polymer chains. The work described here emphasises the potential of mixed colony nitrogen-fixing bacteria cultures for producing biodegradable polymers which have properties that are very similar to those from their pure-culture counterparts and therefore making a more economically viable route for obtaining biopolyesters.  相似文献   

19.
Poly(hydroxybutyric acid) (PHB) was produced by a selectant of Azotobacter beijerinckii in media containing only organic nitrogen sources such as N substrates. The chosen compounds were casein peptone, yeast extract, casamino acids and urea, each combined with carbon substrates glucose or sucrose. The PHB was synthesized under growth-associated conditions. The concentrations amounted to more than 50% of cell dry mass on casein peptone/glucose as well as urea/glucose medium within 45 h fermentation time. Corresponding to these yields, productivities of about 0.8 g PHB l−1 h−1 were discovered. The highest values increased to 1.06 g PHB l−1 h−1 on casein peptone/glucose medium and 1.1 g PHB l−1 h−1 on yeast extract/glucose medium after a period of 20 h. It was found that oxygen limitation was essential for successful product formation, as demonstrated earlier. These data from basic research may support further investigations into the use of technical proteins from renewable sources as substrates for PHB production by a strain of A. beijerinckii. Received: 3 June 1997 / Received revision: 29 August 1997 / Accepted: 15 September 1997  相似文献   

20.
The biosynthesis and chemical reactions of poly(amino acid)s produced by microorganisms are reviewed. A large amount of γ-poly(glutamic acid) (PGA) has been produced by Bacillus strains. ε-Polylysine (PL) has been produced by Streptomyces albulus. As a modification of PGA and PL, pH-sensitive hydrogels have been prepared by means of γ irradiation or the addition of a crosslinking agent to an aqueous solution of PGA and PL. Received: 4 September 1996 / Received revision: 27 January 1997 / Accepted: 28 January 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号