首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reversible phosphorylation of proteins regulates the majority of all cellular processes, e.g. proliferation, differentiation, and apoptosis. A fundamental understanding of these biological processes at the molecular level requires characterization of the phosphorylated proteins. Phosphorylation is often substoichiometric, and an enrichment procedure of phosphorylated peptides derived from phosphorylated proteins is a necessary prerequisite for the characterization of such peptides by modern mass spectrometric methods. We report a highly selective enrichment procedure for phosphorylated peptides based on TiO2microcolumns and peptide loading in 2,5-dihydroxybenzoic acid (DHB). The effect of DHB was a very efficient reduction in the binding of nonphosphorylated peptides to TiO2 while retaining its high binding affinity for phosphorylated peptides. Thus, inclusion of DHB dramatically increased the selectivity of the enrichment of phosphorylated peptides by TiO2. We demonstrated that this new procedure was more selective for binding phosphorylated peptides than IMAC using MALDI mass spectrometry. In addition, we showed that LC-ESI-MSMS was biased toward monophosphorylated peptides, whereas MALDI MS was not. Other substituted aromatic carboxylic acids were also capable of specifically reducing binding of nonphosphorylated peptides, whereas phosphoric acid reduced binding of both phosphorylated and nonphosphorylated peptides. A putative mechanism for this intriguing effect is presented.  相似文献   

2.
Immobilized Metal Affinity Chromatography (IMAC) has been used for decades to purify proteins on the basis of amino acid content, especially surface-exposed histidines and "histidine tags" genetically added to recombinant proteins. We and others have extended the use of IMAC to purification of nucleic acids via interactions with the nucleotide bases, especially purines, of single-stranded RNA and DNA. We also have demonstrated the purification of plasmid DNA from contaminating genomic DNA by IMAC capture of selectively-denatured genomic DNA. Here we describe an efficient method of purifying PCR products by specifically removing error products, excess primers, and unincorporated dNTPs from PCR product mixtures using flow-through metal-chelate affinity adsorption. By flowing a PCR product mixture through a Cu(2+)-iminodiacetic acid (IDA) agarose spin column, 94-99% of the dNTPs and nearly all the primers can be removed. Many of the error products commonly formed by Taq polymerase also are removed. Sequencing of the IMAC-processed PCR product gave base-calling accuracy comparable to that obtained with a commercial PCR product purification method. The results show that IMAC matrices (specifically Cu(2+)-IDA agarose) can be used for the purification of PCR products. Due to the generality of the base-specific mechanism of adsorption, IMAC matrices may also be used in the purification of oligonucleotides, cDNA, mRNA and micro RNAs.  相似文献   

3.
Fusion of peptide‐based tags to recombinant proteins is currently one of the most used tools for protein production. Also, immobilized metal ion affinity chromatography (IMAC) has a huge application in protein purification, especially in research labs. The combination of expression systems of recombinant tagged proteins with this robust chromatographic system has become an efficient and rapid tool to produce milligram‐range amounts of proteins. IMAC‐Ni(II) columns have become the natural partners of 6xHis‐tagged proteins. The Ni(II) ion is considered as the best compromise of selectivity and affinity for purification of a recombinant His‐tagged protein. The palladium(II) ion is also able to bind to side chains of amino acids and form ternary complexes with iminodiacetic acid and free amino acids and other sulfur‐containing molecules. In this work, we evaluated two different cysteine‐ and histidine‐containing six amino acid tags linked to the N‐terminal group of green fluorescent protein (GFP) and studied the adsorption and elution conditions using novel eluents. Both cysteine‐containing tagged GFPs were able to bind to IMAC‐Pd(II) matrices and eluted successfully using a low concentration of thiourea solution. The IMAC‐Ni(II) system reaches less than 20% recovery of the cysteine‐containing tagged GFP from a crude homogenate of recombinant Escherichia coli, meanwhile the IMAC‐Pd(II) yields a recovery of 45% with a purification factor of 13. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Aprotinin, a bovine protease inhibitor currently also produced in recombinant bacteria, yeast, and corn, has valuable applications as a human therapeutic and in tissue culture. The objective of this work was to develop the basis of a large-scale aprotinin purification process centered on immobilized metal ion affinity chromatography (IMAC). This technique uses ligands—metal ions—of a lower cost and higher stability than those traditionally used in affinity chromatography. Since aprotinin does not interact with IMAC ligands, collection is from the nonretained fractions (negative chromatography). Stirred-tank batch IMAC adsorption experiments indicated that one-step aprotinin purification could not be successful. Immobilized chymotrypsin chromatography was then used as a prepurification step, yielding a suitable feed for IMAC (with purification factors as high as 476). IMAC column fed with these prepurified materials produced purified aprotinin in the nonretained fractions with purification factors as high as 952.  相似文献   

5.
A novel thermostable chimeric beta-galactosidase was constructed by fusing a poly-His tag to the N-terminal region of the beta-galactosidase from Thermus sp. strain T2 to facilitate its overexpression in Escherichia coli and its purification by immobilized metal-ion affinity chromatography (IMAC). The poly-His tag fusion did not affect the activation, kinetic parameters, and stability of the beta-galactosidase. Copper-iminodiacetic acid (Cu-IDA) supports enabled the most rapid adsorption of the His-tagged enzyme, favoring multisubunit interactions, but caused deleterious effects on the enzyme stability. To improve the enzyme purification a selective one-point adsorption was achieved by designing tailor-made low-activated Co-IDA or Ni-IDA supports. The new enzyme was not only useful for industrial purposes but also has become an excellent model to study the purification of large multimeric proteins via selective adsorption on tailor-made IMAC supports.  相似文献   

6.
Arginine hydrochloride (ArgHCl) is a versatile solvent additive, as it suppresses protein aggregation. ArgHCl has been used for protein refolding and to solubilize proteins from loose inclusion bodies. Immobilized metal affinity chromatography (IMAC) is one of the most commonly used technologies for purification of recombinant proteins. Here we have evaluated compatibility of ArgHCl with IMAC purification for his-tag proteins. ArgHCl clearly interfered with protein binding to Ni-columns. Nevertheless, such interference was greatly reduced at ArgHCl concentration below 200 mM, demonstrating that IMAC purification can be done even in the presence of ArgHCl.  相似文献   

7.
Immobilized metal affinity chromatography (IMAC) is widely used for protein purification, e.g., in the isolation of proteins bearing the well-known hexahistidine affinity tag. We report that IMAC matrixes can also adsorb single-stranded nucleic acids through metal ion interactions with aromatic base nitrogens and propose that metal affinity technologies may find widespread application in nucleic acid technology. Oligonucleotide duplexes, plasmid, and genomic DNA show low IMAC binding affinity, while RNA and single-stranded oligonucleotides bind strongly to matrixes such as Cu(II) iminodiacetic acid (IDA) agarose. The affinity of yeast RNA for IDA-chelated metal ions decreases in the following order: Cu(II), Ni(II), Zn(II), and Co(II). Adsorption isotherms for 20-mer oligonucleotide homopolymers show that purines are strongly favored over pyrimidines and that double-stranded duplexes are not bound. IMAC columns have been used to purify plasmid DNA from E. coli alkaline lysates, to purify a ribozyme, to remove primers and imperfect products from PCR reactions, and to separate 20-mer oligonucleotide duplexes containing centered single-base mismatches. Potential further applications include SNP scoring, hybridization assays, and the isolation of polyadenylated messenger RNA.  相似文献   

8.
de Marco A 《Nature protocols》2006,1(3):1538-1543
The present purification protocol applies to target proteins that are fused to a double tag, such as NusA-His6, through a linker that includes a protease-recognition sequence. It involves two steps of immobilized metal ion affinity chromatography (IMAC). NusA stabilizes the passenger protein during translation, whereas the His-tag enables affinity purification of the fusion. The eluate resulting from the first IMAC is buffer-exchanged to remove the imidazole and to achieve optimal conditions for the enzymatic cleavage performed by a His-tagged recombinant protease. The digested sample is loaded directly for a second IMAC step and the target protein is selectively recovered in the flow-through. The resin binds residual non-digested fusion protein, double-tagged moiety, protease and any contaminant that bound the affinity resin and was eluted from the first IMAC. The purity of the target protein usually makes a further purification step unnecessary for most of the lab applications. It takes less than 5 hours to purify the protein from a 5 g pellet.  相似文献   

9.
The characterization of phosphorylated proteins is a challenging analytical task since many of the proteins targeted for phosphorylation are low in abundance and phosphorylation is typically substoichiometric. Highly efficient enrichment procedures are therefore required. Here we describe a protocol for selective phosphopeptide enrichment using titanium dioxide (TiO2) chromatography. The selectivity toward phosphopeptides is obtained by loading the sample in a 2,5-dihydroxybenzoic acid (DHB) or phthalic acid solution containing acetonitrile and trifluoroacetic acid (TFA) onto a TiO2 micro-column. Although phosphopeptide enrichment can be achieved by using TFA and acetonitrile alone, the selectivity is dramatically enhanced by adding DHB or phthalic acid since these compounds, in conjunction with the low pH caused by TFA, prevent binding of nonphosphorylated peptides to TiO2. Using an alkaline solution (pH > or = 10.5) both monophosphorylated and multiphosphorylated peptides are eluted from the TiO2 beads. This highly efficient method for purification of phosphopeptides is well suited for the characterization of phosphoproteins from both in vitro and in vivo studies in combination with mass spectrometry (MS). It is a very easy and fast method. The entire protocol requires less than 15 min per sample if the buffers have been prepared in advance (not including lyophilization).  相似文献   

10.
Immobilised metal chelate affinity chromatography (IMAC) in an expanded bed mode was used for the purification of horse radish peroxidase. Recovery of horse radish peroxidase varied between 85 and 72% starting from the crude homogenate. When a pure peroxidase was passed through the purification protocol a recovery of about 95% was achieved.  相似文献   

11.
Transient transfection of mammalian cells has proven to be a useful technique for the rapid production of recombinant proteins because of its ability to produce milligram quantities within 2 weeks following cloning of their corresponding cDNA. This rapid production also requires a fast and efficient purification scheme that can be applied generically, typically through the use of affinity tags such as the polyhistidine-tag for capture by immobilized metal-affinity chromatography (IMAC) or the Strep-tag II, which binds to the StrepTactin affinity ligand. However, one-step purification using either of these tags has disadvantages in terms of yield, elution conditions, and purity. Here, we show that the addition of both Strep-tag-II and (His)(8) to the C-terminal of r-proteins allows efficient purification by consecutive IMAC and StrepTactin affinity. This approach has been successfully demonstrated using the intracellular protein DsRed, as well as two secreted proteins, secreted alkaline phosphatase (SEAP) and vascular endothelial growth factor (VEGF), all produced by transient transfection of HEK293-EBNA1 cells in medium supplemented with bovine calf serum. All proteins were purified to >99% homogeneity with yields varying from 29 to 81%.  相似文献   

12.
A novel thermostable chimeric β-galactosidase was constructed by fusing a poly-His tag to the N-terminal region of the β-galactosidase from Thermus sp. strain T2 to facilitate its overexpression in Escherichia coli and its purification by immobilized metal-ion affinity chromatography (IMAC). The poly-His tag fusion did not affect the activation, kinetic parameters, and stability of the β-galactosidase. Copper-iminodiacetic acid (Cu-IDA) supports enabled the most rapid adsorption of the His-tagged enzyme, favoring multisubunit interactions, but caused deleterious effects on the enzyme stability. To improve the enzyme purification a selective one-point adsorption was achieved by designing tailor-made low-activated Co-IDA or Ni-IDA supports. The new enzyme was not only useful for industrial purposes but also has become an excellent model to study the purification of large multimeric proteins via selective adsorption on tailor-made IMAC supports.  相似文献   

13.
Immobilized-metal-ion affinity chromatography (IMAC) is used extensively for phosphopeptide enrichment in phosphoproteomics. However, the effect of nucleic acids in protein samples on phosphopeptide enrichment by IMAC has not yet been well clarified. In this study, we demonstrate that IMAC beads possess a strong adsorption of nucleic acids, especially single-stranded or single-stranded-region-containing nucleic acids, leading to approximately 50% loss of phosphopeptides during the process of IMAC enrichment. Therefore, nucleic acids must be removed from protein samples prior to IMAC. Acetonitrile (ACN) precipitation, a simple and efficient procedure, was established to remove nucleic acids from the protein samples. We showed that ACN precipitation approximately doubled the phosphopeptide number identified by IMAC and mass spectrometry, indicating that nucleic acid removal significantly improves the identification of phosphopeptides. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.

Background  

In the postgenomic era, high throughput protein expression and protein microarray technologies have progressed markedly permitting screening of therapeutic reagents and discovery of novel protein functions. Hexa-histidine is one of the most commonly used fusion tags for protein expression due to its small size and convenient purification via immobilized metal ion affinity chromatography (IMAC). This purification process has been adapted to the protein microarray format, but the quality of in situ His-tagged protein purification on slides has not been systematically evaluated. We established methods to determine the level of purification of such proteins on metal chelate-modified slide surfaces. Optimized in situ purification of His-tagged recombinant proteins has the potential to become the new gold standard for cost-effective generation of high-quality and high-density protein microarrays.  相似文献   

15.
In this study we describe a novel method for purification of Arabidopsis thaliana dehydrins overproduced in Escherichia coli. The cDNAs corresponding to the four dehydrin genes RAB18, LTI29, LTI30, and COR47 were inserted into a bacterial expression vector under an isopropyl beta-d-thiogalactopyranoside (IPTG) inducible bacterial promoter. After IPTG induction all four proteins accumulated in high amounts. The recombinant proteins were efficiently purified to over 95% purity with a three-step purification scheme: heat fractionation, immobilized metal ion affinity chromatography (IMAC), and ion exchange chromatography. In this study we introduce the novel use of IMAC as an efficient purification method for native dehydrins. Characterization of the purified proteins was done by Edman degradation, mass spectrometry, reverse-phase chromatography, and analytical gel filtration under native and denaturing conditions. Yields of purified proteins were between 2.8 and 12.5 mg per liter of bacterial culture, sufficient for further biochemical studies.  相似文献   

16.
Abstract We describe an efficient, general approach for cloning, expression and purification of heterologous proteins in Escherichia coli host strains. The affinity expression cassette polymerase chain reaction (AEC-PCR) allows the insertion of virtually any coding sequence in suitable expression vectors. For ease of purification of the (over)produced protein the gene expression cassettes are engineered by specifically designed oligonucleotide primers in the polymerase chain reaction (PCR) to contain either 3′ or 5′ additional nucleotides coding for a short amino acid sequence constituting an ‘affinity block’ fused to either end of the protein. This allows a one-step purification by affinity chromatography. In combination with PCR-mediated site-specific mutagenesis this approach is a highly efficient way for the expression and isolation of proteins and for the analysis and dissection of functional domains. The application of AEC-PCR is demonstrated by the cloning, production and purification of the native, active and the mutagenized, inactive ADP-ribosyltransferase (S1 subunit) of pertussis toxin. In this example, a string of six histidines has been engineered to either the N-terminal or the C-terminal end of the protein to serve as ‘affinity block’ for the isolation of the recombinant protein by immobilized metal ion affinity chromatography (IMAC). Thus, the S1 subunit can now be produced in sufficient quantities to facilitate further studies on its immunological and molecular properties.  相似文献   

17.
Chimeric virus-like particles (VLPs) of infectious bursal disease virus (IBDV) were produced by coinfecting Spodoptera frugiperda (Sf-9) insect cells with two recombinant baculoviruses, vIBD-7 and vEDLH-22. vIBD-7 encodes VP2, VP3, and VP4 of the IBDV structural proteins. vEDLH-22 encodes VP2 with five histidine residues at the carboxy-terminus (VP2H). Coinfection produced hybrid VLPs composed of VP2, VP2H, and VP3. The additional histidine residues on VP2H enabled the efficient purification of VLPs based on immobilized metal affinity chromatography (IMAC). These results demonstrated that the VLPs formed are comprised of chimeric subunits with attached affinity ligands, and further, that sufficient His5 ligand was available for binding to the IMAC metal-chelating resin. Additionally, these novel particles were fully characterized for antigenicity by a series of monoclonal antibodies, and appeared identical to the two wild-type IBDV strains contributing subunits to the chimeric VLP. IMAC purification provides a promising low-cost and simple scheme to purify VLPs as vaccines.  相似文献   

18.
Immobilized metal ion affinity chromatography.   总被引:14,自引:0,他引:14  
The introduction of immobilized metal ion affinity chromatography, directed toward specific protein side chains, has opened a new dimension in protein purification. This review covers the principles and practice of IMAC that can be performed under very mild, nondenaturing conditions. IMAC is particularly suitable for preparative group fractionation of complex extracts and biofluids, but can also be used in high-performance mode: "HP-IMAC." Single-step purifications of 1000-fold or more may allow isolation of a particular protein from crude extracts on a milligram or gram scale. With respect to separation efficiency, IMAC compares well with biospecific affinity chromatography, and the immobilized metal ion ligand complexes are more likely to withstand wear and tear than are antibodies or enzymes. The enormous potential of IMAC and related metal affinity techniques is only in the initial stages of being explored and exploited. Synthesis of IMA adsorbents, and various modes of performing IMAC are discussed and exemplified with selected applications. Advantages and disadvantages are listed. Effective means of counteracting the few undesirable effects that can occur are suggested.  相似文献   

19.
Open-loop simulated moving bed (SMB) has been used for immobilized metal affinity chromatographic (IMAC) purification of his-tagged β-glucosidase expressed in E. coli. A simplified approach based on an optimized single column protocol is used to design the open-loop SMB. A set of columns in the SMB represent one step in the chromatographic cycle i.e. there will be one set each of columns for load, wash, elution etc within the SMB. Only the wash and elution are operated with columns in sequence. The β-glucosidase was purified to almost single band purity with a purification factor of 15 and a recovery of 91%. SMB-performance showed reduced buffer consumption, higher purification fold, a better yield and higher productivity.  相似文献   

20.
Immobilized metal affinity chromatography (IMAC) of proteins containing poly-histidine fusion tags is an efficient research tool for purifying recombinant proteins from crude cellular feedstocks at laboratory scale. Nevertheless, to achieve successful purification of large amounts of the target protein for critical therapeutic applications that demand the precise removal of fusion tags, it is important to also take into consideration issues such as protein quality, efficiency, cost effectiveness, and optimal affinity tag choice and design. Despite the many considerations described in this article, it is expected that enhanced selectivity, the primary consideration in the field of protein separation, will continue to see the use of IMAC in solving new purification challenges. In addition, the platform nature of this technology makes it an ideal choice in purifying proteins with unknown properties. Finally, the unique interaction between immobilized metal ions and poly-histidine fusion tag has enabled new developments in the areas of biosensor, immunoassay, and other analytical technologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号