首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The respiratory capacities of hepatocytes, derived from hypothyroid, euthyroid and hyperthyroid rats, have been compared by measuring rates of oxygen uptake and by titrating components of the respiratory chain with specific inhibitors. Thyroid hormone increased the maximal rate of substrate-stimulated respiration and also increased the degree of ionophore-stimulated oxygen uptake. In titration experiments, similar concentrations of oligomycin or antimycin were required for maximal inhibition of respiration regardless of thyroid state, suggesting that the changes in respiratory capacity were not the result of variation in the amounts of ATP synthase or cytochrome b. However, less rotenone was required for maximal inhibition of respiration in the hypothyroid state than in cells from euthyroid or hyperthyroid rats, implying that hepatocytes from hypothyroid animals contain less NADH dehydrogenase. The concentration of carboxyatractyloside necessary for maximal inhibition of respiration was 100 microM in hepatocytes from hypothyroid rats, but 200 microM and 300 microM in hepatocytes from euthyroid and hyperthyroid rats, respectively, indicating a possible correlation between levels of thyroid hormone and the amount or activity of adenine nucleotide translocase. The increased capacity for coupled respiration in response to thyroid hormone is not associated with an increase in the components of the electron transport chain or ATP synthase, but correlates with an increased activity of adenine nucleotide translocase.  相似文献   

2.
The activity of the adenine nucleotide translocator is decreased at ischemia. Studies were undertaken to elucidate changes in the adenine nucleotide translocator by determining its content in mitochondria of ischemic rat kidney. After 60 min of ischemia, the content of the adenine nucleotide translocator amounted only to about 55%, of that measured in control mitochondria. At the same time, the flux control coefficient was increased. These changes paralled the well-known effects of ischemia: the decrease in oxidative phosphorylation and in adenine nucleotides. It is supposed that the decrease in the adenine nucleotide translocatar content accounts, at least partially, for the ischemia-induced impairment of mitochondria.  相似文献   

3.
Oxidative phosphorylation can be treated as two groups of reactions; those that generate protonmotive force (dicarboxylate carrier, succinate dehydrogenase and the respiratory chain) and those that consume protonmotive force (adenine nucleotide and phosphate carriers. ATP synthase and proton leak). Mitochondria from hypothyroid rats have lower rates of respiration in the presence of ADP (state 3) than euthyroid controls. We show that the kinetics of the protonmotive-force generators are unchanged in mitochondria from hypothyroid animals, but the kinetics of the protonmotive-force consumers are altered, supporting proposals that the important effects of thyroid hormone on state 3 are on the ATP synthase or the adenine nucleotide translocator.  相似文献   

4.
Impaired phosphorylation efficiency in liver mitochondria from hypothyroid rats is paralleled by a defect in adenine nucleotide transport. Both of these lesions can be corrected within 15 min by a near-physiological dose of triiodo-L-thyronine. Measurement of the control strength of the translocator shows, however, that this step has a smaller share of the control for oxidative phosphorylation after thyroidectomy and that this is unaltered after 15 min by replacement therapy. Rapid control by triiodothyronine is thus exerted elsewhere than at this transfer and the effects of hormone on the translocator are likely to be indirect.  相似文献   

5.
In order to locate sites of action of thyroid hormone on mitochondrial oxidative phosphorylation we have used an experimental application of control analysis as previously described [Groen, Wanders, Westerhoff, Van der Meer & Tager (1982) J. Biol. Chem. 257, 2754-2757]. Rat-liver mitochondria were isolated from hypothyroid rats or from hypothyroid rats 24 h after treatment with a single dose of 3,3',5-triiodothyronine (T3). The amount of control exerted by four different steps on State-3 respiration with succinate as respiratory substrate was quantified by using specific inhibitors. The hormone treatment resulted in an increase in the flux control coefficient of the adenine nucleotide translocator, the dicarboxylate carrier and cytochrome c oxidase and a decrease in the flux control coefficient of the bc1-complex. The results of this analysis indicate that thyroid hormone treatment results in an activation of the bc1-complex and of at least one other enzyme, possibly succinate dehydrogenase. Measurement of the extramitochondrial ATP/ADP ratio at different rates of respiration (induced by addition of different amounts of hexokinase in the presence of glucose and ATP) showed that the adenine nucleotide translocator operates at a higher (ATP/ADP)out after T3 treatment, which supports previous reports on stimulation of this step by thyroid hormone.  相似文献   

6.
A synthetic polyanion (a copolymer of methacrylate, maleate, and styrene in 1:2:3 proportion with an average molecular weight of 10,000 dalton) inhibits the tricarboxylate, oxoglutarate, dicarboxylate, and adenine nucleotide translocators of rat liver mitochondria. The activity versus inhibitor concentration curves are sigmoidal. The inhibition of the oxoglutarate and tricarboxylate translocators by the polyanion is competitive, while that of the adenine nucleotide translocator is of mixed-type. TheK 1 values of the polyanion are the following: for oxoglutarate translocator 4.0 µM, tricarboxylate translocator 1.2 µM, and adenine nucleotide translocator 1.3 µM with ADP and 0.8 µM with ATP. It is suggested that the polyanion acts primarily by increasing the negative charge of the inner membrane at the outer surface, and the sensitivity of the translocators toward the polyanion depends on the number of negative charges of their substrates.  相似文献   

7.
2,6-Diisopropylphenol, a general anesthetic, was previously reported to reduce the transmembrane electrical potential in isolated rat liver mitochondria without affecting the rate of ATP production. This effect appeared to contrast with the generally accepted chemiosmotic mechanism for oxidative phosphorylation. In this study we further examined the influence of 2,6-diisopropylphenol on the production of ATP by isolated mitochondria and we studied its effect on the permeability of the inner mitochondrial membrane to protons. In order to clarify the effects of 2,6-diisopropylphenol on mitochondrial ATP production the activities of the adenine nucleotide translocator and the ATP synthetase were evaluated. The results obtained indicate that the depression of the transmembrane electrical potential elicited by 2,6-diisopropylphenol decreased the activity of the ATP synthetase (as expected in the chemiosmotic model for energy coupling), but not that of the adenine nucleotide translocator. The decrease of the ATP synthetase activity, however, did not result in an apparent inhibition of the overall rate of ATP production in isolated mitochondria due to the rate-limiting effect of the adenine nucleotide translocator in this process. Moreover 2,6-diisopropylphenol was found to increase the permeability to protons of the inner mitochondrial membrane; this effect became more marked as the pH of the incubation medium was increased, demonstrating that it involved the dissociated form of 2,6-diisopropylphenol. These observations suggested that 2,6-diisopropylphenol affected oxidative phosphorylation by acting as a mild protonophore and that its effectiveness was limited by the low fraction of phenol dissociated at near-physiological pH.  相似文献   

8.
Chronic alcohol consumption induced liver injury in Cu,Zn-superoxide dismutase-deficient mice (Sod1-/-), with extensive centrilobular necrosis and inflammation and a reduction in hepatic ATP content. Mechanisms by which ethanol decreased ATP in these mice remain unclear. We investigated alterations in mitochondria of Sod1-/- mice produced by chronic ethanol treatment. These mitochondria had an increase in State 4 oxygen consumption with succinate and especially with glutamate plus malate compared to mitochondria from pair-fed Sod1-/- mice or mitochondria from wild-type mice fed dextrose or ethanol. This uncoupling was associated with a decrease in ADP/O and respiratory control ratios, a decline in mitochondrial membrane potential, enhanced mitochondrial permeability transition, and decreased aconitase activity. Total thiols and uncoupling protein 2 levels were elevated in the pair-fed Sod1-/- mitochondria, perhaps an adaptive response to oxidant stress. However, no such increases were found with the ethanol-fed Sod1-/- mitochondria, suggesting a failure to develop these adaptations. The mitochondria from the ethanol-fed Sod1-/- mice had elevated levels of cleaved Bax, Bak, Bcl-xl, and adenine nucleotide translocator. Immunoprecipitation studies revealed increased association of Bax and Bak with the adenine nucleotide translocator. ADP-ATP exchange was very low in the ethanol-fed Sod1-/- mitochondria. These results suggest that ethanol treatment of Sod1-/- mice produces uncoupling and a decline in Deltapsi, swelling, increased association of proapoptotic proteins involved in the permeability transition, and decreased adenine nucleotide translocator activity, which may be responsible for the decline in ATP levels and development of necrosis in this model of alcohol-induced liver injury.  相似文献   

9.
The consequence of the complexity of the metabolic network on the amount of control strength of adenine nucleotide translocator was investigated with isolated rat liver mitochondria. Two experimental systems were compared: (i) mitochondria in the presence of yeast hexokinase (hexokinase system) and (ii) the same system plus additional pyruvate kinase (pyruvate kinase system). In both systems the control strength was analysed for the adenine nucleotide translocator by inhibitor titration studies with carboxyatractyloside and for the hexokinase or pyruvate kinase by changing their relative activities. Experimental results were compared with computer simulation of these systems and that of a third one, where the extramitochondrial ATP / ADP ratio was held constant by perifusion (perifusion system). The results demonstrate quite different flux-dependent control strength of the translocator in the three systems. In the hexokinase system the control strength of the translocator on mitochondrial respiration was zero up to respiration rates of about 60 nmol O2/mg protein per min. For higher rates, the control strength increased until the maximum value (0.45) was reached in the fully active state. Here, the same value was also found in the pyruvate kinase system. In all other states of respiration the translocator exerts a higher control strength in the pyruvate kinase system than in the hexokinase system. This different behaviour was attributed to the various changes in the adenine nucleotide pattern caused by partial inhibition of the translocator in the hexokinase and pyruvate kinase system. The data clearly show that the sharing of control strength depends not only on the respiration rate but also on the complexity of the metabolic system.  相似文献   

10.
Carboxyatractylate (CAT) and atractylate inhibit the mitochondrial adenine nucleotide translocator (ANT) and stimulate the opening of permeability transition pore (PTP). Following pretreatment of mouse liver mitochondria with 5 microM CAT and 75 microM Ca2+, the activity of PTP increased, but addition of 2 mM ADP inhibited the swelling of mitochondria. Extramitochondrial Ca2+ concentration measured with Calcium-Green 5N evidenced that 2 mM ADP did not remarkably decrease the free Ca2+ but the release of Ca2+ from loaded mitochondria was stopped effectively after addition of 2 mM ADP. CAT caused a remarkable decrease of the maximum amount of calcium ions, which can be accumulated by mitochondria. Addition of 2 mM ADP after 5 microM CAT did not change the respiration, but increased the mitochondrial capacity for Ca2+ at more than five times. Bongkrekic acid (BA) had a biphasic effect on PT. In the first minutes 5 microM BA increased the stability of mitochondrial membrane followed by a pronounced opening of PTP too. BA abolished the action about of 1 mM ADP, but was not able to induce swelling of mitochondria in the presence of 2 mM ADP. We conclude that the outer side of inner mitochondrial membrane has a low affinity sensor for ADP, modifying the activity of PTP. The pathophysiological importance of this process could be an endogenous prevention of PT at conditions of energetic depression.  相似文献   

11.
The transport of inorganic pyrophosphate (PPi) by the adenine nucleotide translocator from beef heart mitochondria was studied in a reconstituted system. The transport of PPi is dependent on appropriate transmembrane substrates. The activity of PPi exchange is about one tenth as compared to the ADP/ATP exchange, whereas the transport affinity for PPi is very low (2-5 mM). The adenine nucleotide carrier catalyzes a strict counterexchange of PPi and nucleotides with an exchange stoichiometry close to 1. The inhibitor specificity of PPi exchange is comparable to that of ADP/ATP exchange.  相似文献   

12.
We investigated ADP/ATP exchange mediated by the adenine nucleotide translocator and opening of the mitochondrial permeability transition pore in homogenates from cerebellar granule cells en route to apoptosis induced by low potassium. We showed that, in the first 3 h of apoptosis, when maximum cytochrome c release had already occurred, adenine nucleotide translocator function was impaired owing to the action of reactive oxygen species, but no permeability transition pore opening occurred. Over 3-8 h of apoptosis, the permeability transition pore progressively opened, owing to caspase action, and further ADP/ATP translocator impairment occurred. The kinetics of transport and permeability transition pore opening were inversely correlated, both in the absence and presence of inhibitors of antioxidant and proteolytic systems. We conclude that, en route to apoptosis, alteration of the adenine nucleotide translocator occurs, resulting in permeability transition pore opening. This process depends on the action of caspase on pore component(s) other than the ADP/ATP translocator, because no change in either amount or molecular weight of the latter protein was noted during apoptosis, as measured by western blotting. Cell death occurs via apoptosis in the presence of cyclosporin A, the permeability transition pore inhibitor, thus showing that permeability transition pore opening, not needed for cytochrome c release, is also unnecessary for apoptosis to occur.  相似文献   

13.
Control of mitochondrial respiration   总被引:10,自引:0,他引:10  
The control theory of Kacser and Burns [in: Rate Control of Biological Processes (Davies, D.D. ed) pp. 65-104, Cambridge University Press, London, 1973] and Heinrich and Rapoport [Eur. J. Biochem. (1974) 42, 97-105] has been used to quantify the amount of control exerted by different steps on mitochondrial oxidative phosphorylation in rat-liver mitochondria. Inhibitors were used to manipulate the amount of active enzyme. The control strength of the adenine nucleotide translocator was measured by carrying out titrations with carboxyatractyloside. In state 4, the control strength of the translocator was found to be zero. As the rate of respiration was increased by adding hexokinase, the control strength of the translocator increased to a maximum value of approximately 30% at approximately 80% of state 3 respiration. In state 3, control of respiration is distributed between a number of steps, including the adenine nucleotide translocator, the dicarboxylate carrier and cytochrome c oxidase. The measured values for the distribution of control agree very well with those calculated with the aid of a model for mitochondrial oxidative phosphorylation developed by Bohnensack et al. [Biochim. Biophys. Acta (1982) 680, 271-280].  相似文献   

14.
The adenine nucleotide content of rat liver mitochondria was shown to increase significantly after birth. On the other hand, it was found that the ligand-binding properties of the adenine nucleotide translocator were essentially the same in foetal, suckling and adult rat liver mitochondria. These results are compatible with the proposal that the accumulation of adenine nucleotides which occurs during mitochondrial biogenesis and maturation is effected by a pathway different from the adenine nucleotide translocator.  相似文献   

15.
Mitochondrial creatine kinase (MtCK) co-localizes with mitochondrial porin (voltage-dependent anion channel) and adenine nucleotide translocator in mitochondrial contact sites. A specific, direct protein-protein interaction between MtCK and mitochondrial porin was demonstrated using surface plasmon resonance spectroscopy. This interaction was independent of the immobilized binding partner (porin reconstituted in liposomes or MtCK) or the analyzed isoform (chicken sarcomeric MtCK or human ubiquitous MtCK, human recombinant porin, or purified bovine porin). Increased ionic strength reduced the binding of MtCK to porin, suggesting predominantly ionic interactions. By contrast, micromolar concentrations of Ca(2+) increased the amount of bound MtCK, indicating a physiological regulation of complex formation. No interaction of MtCK with reconstituted adenine nucleotide translocator was detectable in our experimental setup. The relevance of these findings for structure and function of mitochondrial contact sites is discussed.  相似文献   

16.
The effect of di(2-ethylhexyl) phthalate (DEHP) on the response of isolated rat liver mitochondria to Ca2+ was investigated. DEHP was found to inhibit more than 60% of the auto-accelerating release of respiration induced by 100 microM Ca2+, being maximally inhibitory at 40 microM. Prior addition of DEHP also partially inhibited Ca2+-induced swelling of the mitochondrial matrix. However, DEHP did not change the net rate of Ca2+ uptake measured by the steady-state infusion method. DEHP also reduced the rate of adenine nucleotide exchange across the mitochondrial membrane. Another alkyl phthalate and alkyl citrates had similar effects on Ca2+-induced membrane damage, but their potencies depended on the lengths of their alkyl chains. These results suggest that the effects of DEHP and other alkyl esters on mitochondrial functions are mainly based on their actions on membrane lipids surrounding adenine nucleotide translocator (AdNT), resulting in alteration of the interaction between these phospholipids and AdNT, and consequent modification of the state of the protein.  相似文献   

17.
Complexes made up of the kinases, hexokinase and glycerol kinase, together with the outer mitochondrial membrane voltage-dependent anion channel (VDAC) protein, porin, and the inner mitochondrial membrane protein, the adenine nucleotide translocator, are involved in tumorigenesis, diabetes mellitus, and central nervous system function. Identification of these two mitochondrial membrane proteins, along with an 18 kD protein, as components of the peripheral benzodiazepine receptor, provides independent confirmation of the interaction of porin and the adenine nucleotide translocator to form functional contact sites between the inner and outer mitochondrial membranes. We suggest that these are dynamic structures, with channel conductances altered by the presence of ATP, and that ligand-mediated conformational changes in the porin-adenine nucleotide translocator complexes may be a general mechanism in signal transduction.  相似文献   

18.
Adenine nucleotide transport over the carboxyatractyloside-insensitive ATP-Mg/Pi carrier was assayed in isolated rat liver mitochondria with the aim of investigating a possible regulatory role for Ca2+ on carrier activity. Net changes in the matrix adenine nucleotide content (ATP + ADP + AMP) occur when ATP-Mg exchanges for Pi over this carrier. The rates of net accumulation and net loss of adenine nucleotides were inhibited when free Ca2+ was chelated with EGTA and stimulated when buffered [Ca2+]free was increased from 1.0 to 4.0 microM. The unidirectional components of net change were similarly dependent on Ca2+; ATP influx and efflux were inhibited by EGTA in a concentration-dependent manner and stimulated by buffered free Ca2+ in the range 0.6-2.0 microM. For ATP influx, increasing the medium [Ca2+]free from 1.0 to 2.0 microM lowered the apparent Km for ATP from 4.44 to 2.44 mM with no effect on the apparent Vmax (3.55 and 3.76 nmol/min/mg with 1.0 and 2.0 microM [Ca2+]free, respectively). Stimulation of influx and efflux by [Ca2+]free was unaffected by either ruthenium red or the Ca2+ ionophore A23187. Calmodulin antagonists inhibited transport activity. In isolated hepatocytes, glucagon or vasopressin promoted an increased mitochondrial adenine nucleotide content. The effect of both hormones was blocked by EGTA, and for vasopressin, the effect was blocked also by neomycin. The results suggest that the increase in mitochondrial adenine nucleotide content that follows hormonal stimulation of hepatocytes is mediated by an increase in cytosolic [Ca2+]free that activates the ATP-Mg/Pi carrier.  相似文献   

19.
Upon the addition of inorganic phosphate, isolated rat-heart mitochondria released endogenous adenine nucleotides. To elucidate the mechanism of this phosphate-induced efflux, we evaluated the relative roles of three inner mitochondrial membrane carriers: the adenine nucleotide translocase, the phosphate/hydroxyl exchanger, and the dicarboxylate carrier. Atractyloside (a specific inhibitor of the adenine nucleotide translocase) prevented this efflux, but did not inhibit mitochondrial swelling. Inhibitors of the phosphate/hydroxyl exchanger (200 microM n-ethylmaleimide and 10 microM mersalyl) did not inhibit phosphate-induced efflux. 200 microM mersalyl (which inhibited both the phosphate/hydroxyl exchanger and the dicarboxylate carrier) inhibited the rate of efflux approx. 65% Phenylsuccinate and 2-n-butylmalonate (inhibitors of the dicarboxylate carrier) partially inhibited phosphate-induced efflux and adenine nucleotide translocase activity. Mersalyl (200 microM) had no effect on adenine nucleotide translocase activity. Partial inhibition of the adenine nucleotide translocase by phenylsuccinate and butylmalonate could not explain the extent of inhibition of phosphate-efflux by these agents. Moreover, the rates of adenine nucleotide efflux in the presence of phenylsuccinate, butylmalonate, or mersalyl correlated well with the ability of these agents to inhibit succinate-supported respiration. We conclude that phosphate-induced efflux of adenine nucleotides from rat heart mitochondria occurs over the adenine nucleotide translocase, and that the site of action of the phosphate is not the phosphate/hydroxyl exchanger, but is likely the dicarboxylate carrier.  相似文献   

20.
The effect of the divalent cationic cyanine dye tri-S-C4(5) on oxidative phosphorylation in rat liver mitochondria was examined. The dye at about 100 n mols per mg mitochondrial protein inhibited state 3 respiration and ATP synthesis almost completely. However, it had no effect on submitochondrial particles, like other hydrophobic cations. The dye inhibited the transport of ADP into mitochondria mediated by the adenine nucleotide translocator. Thus, the inhibition of oxidative phosphorylation by the cationic dye was concluded to be due to its action on the adenine nucleotide translocator, not to its electrophoretic transfer into the inner space of mitochondria according to the inside-negative electrochemical potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号