共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
While much work has been performed to quantify the extent of bone damage, its effects on the mechanical integrity of the tissue and its biological impact, the set of factors which gives forth to microdamage are nebulous, particularly the compositional properties local to microdamage. In this context, the current study tested the hypothesis that microcracks initiate within more mineralized regions of bone. Cortical bone specimens were taken from human male donors aged 31, 38, 53, 64, 71, and 84 years at the mid femoral diaphysis in a plane parallel to the osteonal orientation. The mineralization was assessed in a spatially resolved manner using Raman microspectroscopy. Arrays of measurements were taken over the entire area (i.e. global scans) of each sample followed by measurements in the vicinity of microcracks (i.e. local scans). Histograms of mineralization were constructed for global and local scans to determine whether the mineralization of damaged loci differed from the mean overall mineralization. Statistical analysis of this data revealed that the mean mineralization of damaged loci was significantly greater (P < 0.05) than the overall mineralization for each donor, indicating that there exists a highly-mineralized 'brittle volume' in bone. The presence of this damage prone 'brittle volume' has future implications for the assessment of fracture susceptibility. 相似文献
3.
Balooch M Habelitz S Kinney JH Marshall SJ Marshall GW 《Journal of structural biology》2008,162(3):404-410
Dentin and bone derive their mechanical properties from a complex arrangement of collagen type-I fibrils reinforced with nanocrystalline apatite mineral in extra- and intrafibrillar compartments. While mechanical properties have been determined for the bulk of the mineralized tissue, information on the mechanics of the individual fibril is limited. Here, atomic force microscopy was used on individual collagen fibrils to study structural and mechanical changes during acid etching. The characteristic 67 nm periodicity of gap zones was not observed on the mineralized fibril, but became apparent and increasingly pronounced with continuous demineralization. AFM-nanoindentation showed a decrease in modulus from 1.5 GPa to 50 MPa during acid etching of individual collagen fibrils and revealed that the modulus profile followed the axial periodicity. The nanomechanical data, Raman spectroscopy and SAXS support the hypothesis that intrafibrillar mineral etches at a substantially slower rate than the extrafibrillar mineral. These findings are relevant for understanding the biomechanics and design principles of calcified tissues derived from collagen matrices. 相似文献
4.
5.
6.
7.
8.
Porter BD Oldham JB He SL Zobitz ME Payne RG An KN Currier BL Mikos AG Yaszemski MJ 《Journal of biomechanical engineering》2000,122(3):286-288
Poly (Propylene Fumarate) (PPF), a novel, bulk erosion, biodegradable polymer, has been shown to have osteoconductive effects in vivo when used as a bone regeneration scaffold (Peter, S. J., Suggs, L. J., Yaszemski, M. J., Engel, P. S., and Mikos, A. J., 1999, J. Biomater. Sci. Polym. Ed., 10, pp. 363-373). The material properties of the polymer allow it to be injected into irregularly shaped voids in vivo and provide mechanical stability as well as function as a bone regeneration scaffold. We fabricated a series of biomaterial composites, comprised of varying quantities of PPF, NaCl and beta-tricalcium phosphate (beta-TCP), into the shape of right circular cylinders and tested the mechanical properties in four-point bending and compression. The mean modulus of elasticity in compression (Ec) was 1204.2 MPa (SD 32.2) and the mean modulus of elasticity in bending (Eb) was 1274.7 MPa (SD 125.7). All of the moduli were on the order of magnitude of trabecular bone. Changing the level of NaCl from 20 to 40 percent, by mass, did not decrease Ec and Eb significantly, but did decrease bending and compressive strength significantly. Increasing the beta-TCP from 0.25 g/g PPF to 0.5 g/g PPF increased all of the measured mechanical properties of PPF/NVP composites. These results indicate that this biodegradable polymer composite is an attractive candidate for use as a replacement scaffold for trabecular bone. 相似文献
9.
Pressel T Bouguecha A Vogt U Meyer-Lindenberg A Behrens BA Nolte I Windhagen H 《Biomedical engineering online》2005,4(1):17
Background
Studying mechanical properties of canine trabecular bone is important for a better understanding of fracture mechanics or bone disorders and is also needed for numerical simulation of canine femora. No detailed data about elastic moduli and degrees of anisotropy of canine femoral trabecular bone has been published so far, hence the purpose of this study was to measure the elastic modulus of trabecular bone in canine femoral heads by ultrasound testing and to assess whether assuming isotropy of the cancellous bone in femoral heads in dogs is a valid simplification. 相似文献10.
11.
Andreas G. Reisinger Dieter H. Pahr Philippe K. Zysset 《Biomechanics and modeling in mechanobiology》2010,9(5):499-510
The key parameters determining the elastic properties of an unidirectional mineralized bone fibril-array decomposed in two further hierarchical levels are investigated using mean field methods. Modeling of the elastic properties of mineralized micro- and nanostructures requires accurate information about the underlying topology and the constituents’ material properties. These input data are still afflicted by great uncertainties and their influence on computed elastic constants of a bone fibril-array remains unclear. In this work, mean field methods are applied to model mineralized fibrils, the extra-fibrillar matrix and the resulting fibril-array. The isotropic or transverse isotropic elastic constants of these constituents are computed as a function of degree of mineralization, mineral distribution between fibrils and extra-fibrillar matrix, collagen stiffness and fibril volume fraction. The linear sensitivity of the elastic constants was assessed at a default set of the above parameters. The strain ratios between the constituents as well as the axial and transverse indentation moduli of the fibril-array were calculated for comparison with experiments. Results indicate that the degree of mineralization and the collagen stiffness dominate fibril-array elasticity. Interestingly, the stiffness of the extra-fibrillar matrix has a strong influence on transverse and shear moduli of the fibril-array. The axial strain of the intra-fibrillar mineral platelets is 30–90% of the applied fibril strain, depending on mineralization and collagen stiffness. The fibril-to-fibril-array strain ratio is essentially ~1. This study provides an improved insight in the parameters, which govern the fibril-array stiffness of mineralized tissues such as bone. 相似文献
12.
Neutron diffraction measurements have been made of the equatorial and meridional spacings of collagen in fully mineralized mature bovine bone and demineralized bone collagen, in both wet and dry conditions. The collagen equatorial spacing in wet mineralized bovine bone is 1.24 nm, substantially lower than the 1.53 nm value observed in wet demineralized bovine bone collagen. Corresponding spacings for dry bone and demineralized bone collagen are 1.16 nm and 1.12 nm, respectively. The collagen meridional long spacing in mineralized bovine bone is 63.6 nm wet and 63.4 nm dry. These data indicate that collagen in fully mineralized bovine bone is considerably more closely packed than had been assumed previously, with a packing density similar to that of the relatively crystalline collagens such as wet rat tail tendon. The data also suggest that less space is available for mineral within the collagen fibrils in bovine bone than had previously been assumed, and that the major portion of the mineral in this bone must be located outside the fibrils. 相似文献
13.
This study uses a nanoindentation technique to examine variations in the local mechanical properties of porcine femoral cortical bone under hydrated conditions. Bone specimens from three age groups (6, 12 and 42 months), representing developing bone, ranging from young to mature animals, were tested on the longitudinal and transverse cross-sectional surfaces. Elastic modulus and hardness of individual lamellae within bone's microstructure: laminar bone, interstitial bone, and osteons, were measured. Both the elastic modulus and hardness increased with age. However, the magnitudes of these increases were different for each microstructural component. The longitudinal moduli were higher than the transverse moduli. Dehydrated samples were also tested to allow a comparison with hydrated samples and these resulted in higher moduli and hardness than the hydrated samples. Again, the degree of variation was different for each microstructural component. These results indicate that the developmental changes in bone have different rates of mechanical change within each microstructural component. 相似文献
14.
15.
Implantation of demineralized extracellular bone matrix results in new bone formation locally. Although the precise molecular mechanisms are not known, the reconstitution of matrix proteins less than 50,000 daltons with collagenous residue results in bone induction. The aim of the present investigation was to ascertain the distribution of the bone inductive protein(s) in various compartments of the tissue. A sequential extraction of mineralized bone matrix was employed: (1) 4 M guanidine HCl to extract proteins that are cell associated and not masked by mineral; (2) 0.5 M EDTA to dissolve the mineral phase; (3) 4 M guanidine HCl to reextract the collagenous matrix-associated proteins under dissociative conditions; (4) 4 M guanidine HCl containing 0.5 M EDTA to release any other residual proteins. This sequential method revealed that about 25% of total biological activity of bone induction is associated with first guanidine extraction, about 15% with the mineral phase and the rest of the activity is tightly associated with the collagenous matrix. 相似文献
16.
A R Villanueva 《Stain technology》1974,49(1):1-8
17.
The effect of strain rate (epsilon) and apparent density (rho) on stiffness (E), strength (sigma u), and ultimate strain (epsilon u) was studied in 60 human trabecular bone specimens from the proximal tibia. Testing was performed by uniaxial compression to 5% specimen strain. Six different strain rates were used: 0.0001, 0.001, 0.01, 0.1, 1, and 10 s-1. Apparent density ranged between 0.23 and 0.59 g cm-3. Linear and non-linear regression analyses using strength, stiffness and ultimate strain as dependent variables (Y) and strain rate and apparent density as independent variables were performed using the following models: Y = a rho b epsilon c, Y = rho b(a + c epsilon; Y = (a + b rho)epsilon c, Y = a rho 2 epsilon c, E = a rho 3 epsilon c. The variations of strength and stiffness were explained equally well by the linear and the power function relationship to strain rate. The exponent was 0.07 in the power function relationship between strength and strain rate and 0.05 between stiffness and strain rate. The variation of ultimate strain was explained best using a power function relationship to strain rate (exponent = 0.03). The variation of strength and stiffness was explained equally well by the linear, power function and quadratic relationship to apparent density. The cubic relationship between stiffness and apparent density showed a less good fit. Ultimate strain varied independently of apparent density. 相似文献
18.
After the publication of this work [1], we became aware of the fact that the frequency of the ultrasound transmitter that we used for determining the elastic moduli
of the trabecular bone specimens was not correctly specified. The oscillation frequency of the ultrasound transmitter was
2 MHz (and not 100 MHz as stated in our work) while we used a sampling rate of 100 MHz. In our publication, the oscillation
frequency and sampling rate were confounded. Therefore also the statement in the discussion that we might have determined
elastic moduli of trabecular bone tissue rather than the elastic properties of whole specimens because we used an ultrasound
frequency > 2 MHz is wrong and has to be omitted. 相似文献
19.
J G Ramaekers 《Acta morphologica Neerlando-Scandinavica》1979,17(3):173-180
The mechanical behaviour of bony material taken from humeral bone of the mallard duck was analysed. Wing-clipping led to a change in the values and distribution of the dynamic shear modulus and damping. The distribution of the values of the modulus shows a specific pattern in which the highest values are found ventrally. This pattern changes when there is a disturbance of the functional forces acting upon the humerus -- in this study induced by wing-clipping. The hypothesis is put forward that in birds the bone with its specific shape will resist any change in this shape. For a specific shape required for other functions than simply resisting load, it is functionally advantageous to respond to a change in required forces by adapting the pattern of moduli. An adaptation according Wolff's law will only occur in extreme cases, but an alteration of the bone shape will be avoided. 相似文献
20.
Gastropod nacre: structure, properties and growth--biological, chemical and physical basics 总被引:1,自引:0,他引:1
The biogenic polymer/mineral composite nacre is a non-brittle biological ceramic, which self-organizes in aqueous environment and under ambient conditions. It is therefore an important model for new sustainable materials. Its highly controlled structural organization of mineral and organic components at all scales down to the nano- and molecular scales is guided by organic molecules. These molecules then get incorporated into the material to be responsible for properties like fracture mechanics, beauty and corrosion resistance. We report here on structure, properties and growth of columnar (gastropod) nacre with emphasis on the genus Haliotis in contrast to sheet nacre of many bivalves. 相似文献