首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The vascular endothelial growth factor receptor‐1 (VEGFR‐1) is a tyrosine kinase receptor frequently expressed in melanoma. Its activation by VEGF‐A or placental growth factor (PlGF) promotes tumour cell survival, migration and invasiveness. Moreover, VEGFR‐1 stimulation contributes to pathological angiogenesis and induces recruitment of tumour‐associated macrophages. Since melanoma acquired resistance to BRAF inhibitors (BRAFi) has been associated with activation of pro‐angiogenic pathways, we have investigated VEGFR‐1 involvement in vemurafenib resistance. Results indicate that human melanoma cells rendered resistant to vemurafenib secrete greater amounts of VEGF‐A and express higher VEGFR‐1 levels compared with their BRAFi‐sensitive counterparts. Transient VEGFR‐1 silencing in susceptible melanoma cells delays resistance development, whereas in resistant cells it increases sensitivity to the BRAFi. Consistently, enforced VEGFR‐1 expression, by stable gene transfection in receptor‐negative melanoma cells, markedly reduces sensitivity to vemurafenib. Moreover, melanoma cells expressing VEGFR‐1 are more invasive than VEGFR‐1 deficient cells and receptor blockade by a specific monoclonal antibody (D16F7 mAb) reduces extracellular matrix invasion triggered by VEGF‐A and PlGF. These data suggest that VEGFR‐1 up‐regulation might contribute to melanoma progression and spreading after acquisition of a drug‐resistant phenotype. Thus, VEGFR‐1 inhibition with D16F7 mAb might be a suitable adjunct therapy for VEGFR‐1 positive tumours with acquired resistance to vemurafenib.  相似文献   

2.
The objective of this study was to investigate the protein and mRNA expression of vascular endothelial growth factor (VEGF), VEGFR-1 (fms-like tyrosine kinase, Flt-1) and VEGFR-2 (fetal liver kinase-1/kinase insert domain-containing receptor, Flk-1/KDR) in the endometrium during the estrous cycle and early pregnancy in pigs. The VEGF-receptor system was localized in epithelial and stromal cells, blood vessels, and myometrium. Western blot analysis showed higher levels of VEGF protein during the periovulatory and periimplantation periods (P < 0.001, and P < 0.05, respectively). Constant expression of VEGF mRNA during the cycle and significant upregulation on Days 22-25 of gestation (vs. Days 9-17; P < 0.001) was observed. Stable levels of VEGFR-1 mRNA and protein were detected in the endometrium of cyclic animals. However, higher VEGFR-1 protein expression was found on Days 16-17 of the estrous cycle (P < 0.01) and Days 13-15 of gestation (P < 0.05). Protein expression of VEGFR-2 was elevated on Days 2-4 of the estrous cycle (P < 0.001), but mRNA levels were constant during the cycle. In pregnancy, VEGFR-2 protein expression started to increase after Day 15 (vs. Days 9-12; P < 0.05), but induction of VEGFR-2 mRNA expression occurred earlier on Days 13-15. It appears from the present study that the VEGF-receptor system is regulated in a temporal and spatial manner during the estrous cycle and early pregnancy in pigs. The results suggest that VEGF-A family members are probably involved in appropriate preparation of endometrium for implantation and in vascular events during implantation in pigs.  相似文献   

3.
Co-expression of NRP1 and (VEGFR-2) KDR on the surface of endothelial cells (EC) enhances VEGF165 binding to KDR and EC chemotaxis in response to VEGF165. Overexpression of NRP1 by prostate tumor cells in vivo results in increased tumor angiogenesis and growth. We investigated the molecular mechanisms underlying NRP1-mediated angiogenesis by analyzing the association of NRP1 and KDR. An intracellular complex containing NRP1 and KDR was immunoprecipitated from EC by anti-NRP1 antibodies only in the presence of VEGF165. In contrast, VEGF121, which does not bind to NRP1, did not support complex formation. Complexes containing VEGF165, NRP1, and KDR were also formed in an intercellular fashion by co-culture of EC expressing KDR only, with cells expressing NRP1 only, for example, breast carcinoma cells. VEGF165 also mediated the binding of a soluble NRP1 dimer to cells expressing KDR only, confirming the formation of such complexes. Furthermore, the formation of complexes containing KDR and NRP1 markedly increased 125I-VEGF165 binding to KDR. Our results suggest that formation of a ternary complex of VEGF165, KDR, and NRP1 potentiates VEGF165 binding to KDR. These complexes are formed on the surface of EC and in a juxtacrine manner via association of tumor cell NRP1 and EC KDR.  相似文献   

4.
Yan XB  Yang DS  Gao X  Feng J  Shi ZL  Ye Z 《Cell biology international》2007,31(10):1136-1143
Many researchers have reported that proteasome inhibitors could induce apoptosis in a variety of cancer cells, such as breast cancer cell, lung cancer cell, and lymphoma cell. However, the effect of proteasome inhibitors on osteocsarcoma cells and the mechanisms are seldom studied. In this study, we found proteasome inhibitor MG132 was an effective inducer of apoptosis in human osteosarcoma MG-63 cells. On normal human diploid fibroblast cells, MG132 did not show any apoptosis-inducing effects. Apoptotic changes such as DNA fragment and apoptotic body were observed in MG132-treated cells and MG132 mostly caused MG-63 cell arrest at G(2)-M-phase by cell cycle analysis. Increased activation of caspase-8, accumulation of p27(Kip1), and an increased ratio of Bax:Bcl-2 were detected by RT-PCR and Western blot analysis. Activation of caspase-3 and caspase-9 were not observed. This suggests that the apoptosis induced by MG132 in MG63 cells is caspase-8 dependent, p27 and bcl-2 family related.  相似文献   

5.
1. Suitable agar plate media were selected for isolation of nucleotide producing strains, by salvage synthesis, from natural sources. Since this agar medium contains a high concentration of phosphates, manganese and glucose, it is specific for these bacteria.

2. With this plate medium, 113 bacterial strains accumulating 5′inosinic acid (IMP) or IMP-like substances were isolated effectively from feces of a variety of birds and mammals and from soils.

Some of the strains isolated were recognized to accumulate other nucleotides, purine bases and sugars, such as guanine nucleotides, XMP, xanthine, ribulose or xylnlose, with or without hypoxanthine in the media.

3. Five strains of IMP accumulating bacteria were identified; two were classified as Brevibacteriurm, two as Corynebacterium and one as Arthrobacterium species by taxonomical studies. But their characteristics did not completely coincide with those of bacteria described in Bergey’s manual.

4. One of the IMP producing bacteria isolated, culture No. 21–26, actually consisted of two separate strains, namely No. 21–26–101 and No. 21–26–102. The highest production of IMP or guanine nucleotides was obtained, when each strain was inoculated together to the fermentation medium from each seed culture in the same inoculum size.

5. The nucleotide productions by No. 21–26–101 or No. 21–26–102 with authentic strains were examined by the mixed culture technique. It was found that production of IMP or guanine nucleotides by Brevibacterium ammoniagenes ATCC 6871 was stimulated remarkably in the presence of No. 21–26–102.  相似文献   

6.
7.
8.
Vascular endothelial growth factor (VEGF) is a newly identified growth and permeability factor with a unique specificity for endothelial cells. Recently the flt-encoded tyrosine kinase was characterized as a receptor for VEGF. A novel tyrosine kinase receptor encoded by the KDR gene was also found to bind VEGF with high affinity when expressed in CMT-3 cells. Screening for flt and KDR expression in a variety of species and tissue-derived endothelial cells demonstrates that flt is predominantly expressed in human placenta and human vascular endothelial cells. Placenta growth factor (PIGF), a growth factor significantly related to VEGF, is coexpressed with flt in placenta and human vascular endothelial cells. KDR is more widely distributed and expressed in all vessel-derived endothelial cells. These data demonstrate that cultured human endothelial cells isolated from different tissues express both VEGF receptors in relative high levels and, additionally, that all investigated nonhuman endothelial cells in culture are also positive for KDR gene expression.  相似文献   

9.
Decidualization is accompanied by extensive angiogenesis, which is an essential step in the maturation of new blood vessels in mammalian pregnancy. The purpose of this study was to determine a distribution of uNK cells (CD56 uNK or CD56bright cells) in human decidua of the first-trimester pregnancy, and investigate whether uNK cells in human decidua could express vascular endothelial growth factor (VEGF-A) and/or angiopoietin2 (Ang2). Our immunohistochemical staining results demonstrated that a great amount of uNK (CD56 ) cells scattered throughout the decidual stroma and near endometrial gland and spiral vessels in human decidua. The protein expression of VEGF-A and Ang2 was detected in decidual stroma cells, capillary endothelial cells and glandular cells in tissue specimens. There was a positive correlation between microvessel density (MVD) and the number of the CD56-positive uNK cells in decidual stroma, and also between the number of the CD56-positive uNK cells and VEGF-A protein expression in the tissue. In addition, we found that uNK cells in human decidua could express VEGF-A mRNA, but not Ang2 mRNA, in isolated uNK cells in human decidua of the first-trimester gestation by combination of LCM and Nested-PCR. Our study indicated that uNK cells, through expressing VEGF-A, may play an important role in the angiogenic response at the time of human decidualization and early placenta development.  相似文献   

10.
Hypoxia inducible factor-1 alpha (HIF-1 alpha) is a key determinant of oxygen-dependent gene regulation in angiogenesis. HIF-1 alpha overexpression may be beneficial in cell therapy of hypoxia-induced pathophysiological processes, such as ischemic heart disease. To address this issue, human peripheral blood mononuclear cells (PBMNCs) were induced to differentiate into endothelial progenitor cells (EPCs), and then were transfected with either an HIF-1 alpha-expressing or a control vector and cultured under normoxia or hypoxia. Hypoxia-induced HIF-1 alpha mRNA and protein expression was increased after HIF-1 alpha transfection. This was accompanied by VEGF mRNA induction and increased VEGF secretion. Hypoxia-stimulated VEGF mRNA induction was significantly abrogated by HIF-1 alpha-specific siRNA. Functional studies showed that HIF-1 alpha overexpression further promoted hypoxia-induced EPC differentiation, proliferation and migration. The expressions of endothelial cell markers CD31, VEGFR2 (Flk-1) and eNOS as well as VEGF and NO secretions were also increased. Furthermore, in an in vivo model of hindlimb ischemia, HIF-1 alpha-transfected EPCs homed to the site of ischemia. A higher revascularization potential was also demonstrated by increased capillary density at the injury site. Our results revealed that endothelial progenitor cells ex vivo modification by hypoxia inducible factor-1 alpha gene transfection is feasible and may offer significant advantages in terms of EPC expansion and treatment efficacy.  相似文献   

11.
BACKGROUND: Ocular neovascular disorders, such as diabetic retinopathy and age-related macular degeneration, are the principal causes of blindness in developed countries. Current treatments are of limited efficacy, whereas a therapy based on intraocular gene transfer of angiostatic factors represents a promising alternative. For the first time we have explored the potential of helper-dependent adenovirus (HD-Ad), the last generation of Ad vectors, in the therapy of retinal neovascularization. METHODS: We first analyzed efficiency and stability of intraretinal gene transfer following intravitreous injection in mice. A HD-Ad vector expressing green fluorescent protein (GFP) under the control of the cytomegalovirus (CMV) promoter (HD-Ad/GFP) was compared with a first-generation (E1/E3-deleted) Ad vector carrying an identical GFP expression cassette (FG-Ad/GFP). We also constructed HD-Ad vectors expressing a soluble form of the VEGF receptor (sFlt-1) in a constitutive (HD-Ad/sFlt-1) or doxycycline (dox)-inducible (HD-Ad/S-M2/sFlt-1) manner and tested their therapeutic efficacy upon intravitreous delivery in a rat model of oxygen-induced retinopathy (OIR). RESULTS: HD-Ad/GFP promoted long-lasting (up to 1 year) transgene expression in retinal Müller cells, in marked contrast with the short-term expression observed with FG-Ad/GFP. Intravitreous injection of HD-Ad vectors expressing sFlt-1 resulted in detectable levels of sFlt-1 and inhibited retinal neovascularization by more than 60% in a rat model of OIR. Notably, the therapeutic efficacy of the inducible vector HD-Ad/S-M2/sFlt-1 was strictly dox-dependent. CONCLUSIONS: HD-Ad vectors enable stable gene transfer and regulated expression of angiostatic factors following intravitreous injection and thus are attractive vehicles for the gene therapy of neovascular diseases of the retina.  相似文献   

12.
13.
VEGF and TGF-beta1 induce angiogenesis but have opposing effects on vascular endothelial cells: VEGF promotes survival; TGF-beta1 induces apoptosis. We have previously shown that TGF-beta1 induces endothelial cell apoptosis via up-regulation of VEGF expression and activation of signaling through VEGF receptor-2 (flk-1). In context with TGF-beta1, VEGF signaling is transiently converted from a survival into an apoptotic one. VEGF promotes cell survival in part via activation of PI3K/Akt by a mechanism dependent on the formation of a multi-protein complex that includes flk-1 and the adherens junction proteins VE-cadherin and beta-catenin. Here we report that TGF-beta1 induces rearrangement of the adherens junction complex by separating flk-1 from VE-cadherin and increasing beta-catenin association with both flk-1 and VE-cadherin. This rearrangement is caused neither by changes in adherens junction mRNA or protein expression nor by post-translational modification, and requires VEGF signaling through flk-1. These results show that the adherens junction is an important regulatory component of TGF-beta1-VEGF interaction in endothelial cells.  相似文献   

14.
The vascular endothelial growth factor (VEGF) receptor Flt-1 is charaterized by seven Ig-like loops within the extracellular domain. To identify which part is responsible for ligand binding, four cDNA clones coding for truncated Flt-1 mutants consisting of loop 1, 1-2, 2-3 and 1-3 were obtained by PCR from human cardiac cDNA library and inserted into the vectors of the yeast two-hybrid system, with VEGF cDNA on the partner plasmid. The paired plasmids were transformed into yeast strain SFY526, and tested by filter membrane method and β-galactosidase activity. The results showed that Flt-1(1-2)、Flt-1(2-3) and Flt-1(1-3) all were able to bind VEGF, of which Flt-1(1-3) showed the highest binding affinity, but no binding of VEGF was observed with Flt-1(2) and VEGF.  相似文献   

15.
16.
Disabled‐2 (Dab2) and PAR‐3 (partitioning defective 3) are reported to play critical roles in maintaining retinal microvascular endothelial cells biology by regulating VEGF‐VEGFR‐2 signaling. The role of Dab2 and PAR‐3 in glomerular endothelial cell (GEnC) is unclear. In this study, we found that, no matter whether with vascular endothelial growth factor (VEGF) treatment or not, decreased expression of Dab2 could lead to cell apoptosis by preventing activation of VEGF‐VEGFR‐2 signaling in GEnC, accompanied by reduced membrane VEGFR‐2 expression. And silencing of PAR‐3 gene expression caused increased apoptosis of GEnC by inhibiting activation of VEGF‐VEGFR‐2 signaling and membrane VEGFR‐2 expression. In our previous research, we found that the silencing of syndecan‐1 gene expression inhibited VEGF‐VEGFR‐2 signaling by modulating internalization of VEGFR‐2. And our further research demonstrated that downregulation of syndecan‐1 lead to no significant change in the expression of Dab2 and PAR‐3 both at messenger RNA and protein levels in GEnC, while phosphorylation of Dab2 was significantly increased in GEnC transfected with Dab2 small interfering RNA (siRNA) compared with control siRNA. Atypical protein kinase C (aPKC) could induce phosphorylation of Dab2, thus negatively regulating VEGF‐VEGFR‐2 signaling. And we found that decreased expression of syndecan‐1 lead to activation of aPKC, and aPKC inhibitor treatment could block phosphorylation of Dab2 in GEnC. Besides, aPKC inhibitor treatment could activate VEGF‐VGEFR‐2 signaling in GEnC transfected with syndecan‐1 siRNA in a dose‐dependent manner. In conclusion, we speculated that phosphorylation of Dab2 is involved in preventing activation of VEGF‐VEGFR‐2 signaling in GEnC transfected with syndecan‐1 siRNA. This provides a new target for the therapy of GEnC injury and kidney disease.  相似文献   

17.
The maternal systemic disorder of widespread endothelial dysfunction is a primary focus in understanding the development of preeclampsia. sFlt‐1 (soluble fms‐like tyrosine kinase receptor 1), an endogenous inhibitor of VEGF (vascular endothelial growth factor), may play important roles in endothelial dysfunction. The present study aimed to determine whether hypoxic trophoblast‐derived sFlt‐1 could lead to endothelial dysfunction by establishing a cocultured model of anoxic TEV‐1s (human first‐trimester extravillous trophoblasts) and HUVECs (human umbilical vein endothelial cells). The results showed that the hypoxic treatment significantly promoted sFlt‐1 mRNA and protein expression in TEV‐1s in a time‐dependent manner compared with the effect in HUVECs. When HUVECs were cocultured with anoxic TEV‐1s, the endothelial function, which was characterized by NO (nitric oxide) synthesis and monolayer barrier function of HUVECs, were notably decreased, accompanied by increasing sFlt‐1 and decreasing VEGF in cell‐conditioned medium. Moreover, the observed endothelial dysfunction described above was consistent with the dysfunction observed in VEGF siRNA‐treated cultures. The findings presented herein imply that chronically hypoxic trophoblasts may release sufficient sFlt‐1 to cause endothelial dysfunction by depriving cells of VEGF activity.  相似文献   

18.
19.
20.
Thrombospondin-1 (TSP-1) is a matrix protein that has been implicated in mechanisms of tumor progression. Our laboratory previously showed that the CSVTCG (cys-ser-val-thr-cys-gly) sequence of TSP-1 functioned as a tumor cell adhesion domain and CSVTCG peptides as well as an anti-peptide antibody possessed anti-metastatic activity in a murine model of lung metastasis. In a subsequent study, a putative TSP-1 binding protein from lung carcinoma was isolated by CSVTCG-peptide affinity chromatography. In this study, we present the full-length cDNA of this binding protein isolated from a prostate cancer cell (PC3-NI) cDNA library. The purified recombinant protein, termed angiocidin, is a potent inhibitor of tumor growth of Lewis Lung carcinoma in vivo and tumor invasion and angiogenesis in vitro. In addition, the recombinant protein inhibits tumor and endothelial cell proliferation and induces apoptosis. The activity of angiocidin both in vivo and in vitro is partially dependent on its TSP-1 binding activity, since an angiocidin deletion mutant missing a high affinity-binding site for TSP-1 failed to inhibit tumor growth in vivo and was less active in its anti-tumor and anti-angiogenic activities in vitro. These results suggest that the anti-tumor activity of TSP-1 reported in many studies may be mediated in part by binding proteins such as angiocidin. Such proteins may function as tumor-suppressor proteins, which limit the growth of tumors by inhibiting angiogenesis and cell matrix interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号