首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autophagy is a multistep membrane traffic pathway. In contrast to autophagosome formation, the mechanisms underlying autophagosome–lysosome fusion remain largely unknown. Here, we describe a novel autophagy regulator, inositol polyphosphate‐5‐phosphatase E (INPP5E), involved in autophagosome–lysosome fusion process. In neuronal cells, INPP5E knockdown strongly inhibited autophagy by impairing the fusion step. A fraction of INPP5E is localized to lysosomes, and its membrane anchoring and enzymatic activity are necessary for autophagy. INPP5E decreases lysosomal phosphatidylinositol 3,5‐bisphosphate (PI(3,5)P2), one of the substrates of the phosphatase, that counteracts cortactin‐mediated actin filament stabilization on lysosomes. Lysosomes require actin filaments on their surface for fusing with autophagosomes. INPP5E is one of the genes responsible for Joubert syndrome, a rare brain abnormality, and mutations found in patients with this disease caused defects in autophagy. Taken together, our data reveal a novel role of phosphoinositide on lysosomes and an association between autophagy and neuronal disease.  相似文献   

2.
Two major mechanisms of intracellular protein degradation, autophagy and the ubiquitin-proteasome pathway, operate in mammalian cells. PTEN, which is frequently mutated in glioblastomas, is a tumor suppressor gene that encodes a dual specificity phosphatase that antagonizes the phosphatidylinositol 3-kinase class I/AKT/mTOR pathway, which is a key regulator of autophagy. Here, we investigated in U87MG human glioma cells the role of PTEN in the regulation of autophagy and the ubiquitin-proteasome pathway, because both are functionally linked and are relevant in cancer progression. Since U87MG glioma cells lack a functional PTEN, we used stable clones that express, under the control of a tetracycline-inducible system (Tet-on), wild-type PTEN and two of its mutants, G129E-PTEN and C124S-PTEN, which, respectively, lack the lipid phosphatase activity only and both the lipid and the protein phosphatase activities of this protein. Expression of PTEN in U87MG glioma cells decreased proteasome activity and also reduced protein ubiquitination. On the contrary, expression of PTEN increased the autophagic flux and the lysosomal mass. Interestingly, and although PTEN negatively regulates the phosphatidylinositol 3-kinase class I/AKT/mTOR signaling pathway by its lipid phosphatase activity, both effects in U87MG cells were independent of this activity. These results suggest a new mTOR-independent signaling pathway by which PTEN can regulate in opposite directions the main mechanisms of intracellular protein degradation.  相似文献   

3.
Vibrio alginolyticus is a gram-negative bacterium and has been recognized as an opportunistic pathogen in marine animals as well as humans. Here, we further characterized a cell death mechanism caused by this bacterium in several mammalian cell lines. The T3SS of V. alginolyticus killed HeLa cells by a very similar cell cytolysis mechanism in fish cells, as evidenced by cell rounding and LDH release; however, DNA fragmentation was not observed. Further studies showed that caspase-1 and caspase-3 were not activated during the T3SS-mediated cell death, indicating that the death mechanism is completely independent of pyroptosis and apoptosis in HeLa cells. Conversely, autophagy was detected during the T3SS-mediated cell death by the appearance of MDC-labeled punctate fluorescence and accumulation of autophagic vesicles. Moreover, western blot analysis revealed increase in conversion of LC3-I to LC3-II in infected mammalian cell lines, confirming that autophagy occurs during the process. Together, these data demonstrate that the death process used by V. alginolyticus in mammalian cells is different from that in fish cells, including induction of autophagy, cell rounding and osmotic lysis. This study provides some evidences hinting that differences in death mechanism in responses to V. alginolyticus infection may be attributed to the species of infected cells from which it was derived.  相似文献   

4.
5.
Oncolytic adenoviruses, such as Delta-24-RGD, are promising therapies for patients with brain tumor. Clinical trials have shown that the potency of these cancer-selective adenoviruses should be increased to optimize therapeutic efficacy. One potential strategy is to increase the efficiency of adenovirus-induced cell lysis, a mechanism that has not been clearly described. In this study, for the first time, we report that autophagy plays a role in adenovirus-induced cell lysis. At the late stage after adenovirus infection, numerous autophagic vacuoles accompany the disruption of cellular structure, leading to cell lysis. The virus induces a complete autophagic process from autophagosome initiation to its turnover through fusion with the lysosome although the formation of the autophagosome is sufficient for virally induced cell lysis. Importantly, downmodulation of autophagy genes (ATG5 or ATG10) rescues the infected cells from being lysed by the virus. Moreover, autophagy triggers caspase activity via the extrinsic FADD/caspase 8 pathway, which also contributes to adenovirus-mediated cell lysis. Therefore, our study implicates autophagy and caspase activation as part of the mechanism for cell lysis induced by adenovirus and suggests that manipulation of the process is a potential strategy to optimize clinical efficacy of oncolytic adenoviruses.  相似文献   

6.
7.
Synopsis In the liver of pregnant rats, fedad libitum, there was an increase in acid phosphatase specific activity which occurred in two peaks, one at the 15th day and the other at the end of gestation. By light and electron microscopic histochemistry, the activity was found to be localized in parenchymal cell peribiliary dense bodies and also in phagosomes present in macrophages and parenchymal cells. There was an increase in liver weight which reached a peak at the 17th day of gestation. Total DNA also rose to the 17th day; there was a high rate of cell division in the hepatic parenchyma at the 17th and 18th days of gestation. During this period single cell deletion by apoptosis was relatively frequent and in late pregnancy there was evidence of cell deletion by lysis.During pregnancy there was a slight increase in sinusoidal macrophages as a proportion of the total cell population but there did not appear to be significant changes in macrophage enzymic activity. It is suggested that the acid phosphatase activity present in macrophages makes a minor contribution to total liver activity, most of which is present in parenchymal cells. Acid phosphatase activity associated with single cell deletion appears to be quantitatively negligible.There was a direct relationship between total hepatic acid phosphatase activity and the numbers of peribiliary dense bodies, which were most numerous at the 15th day and at the end of gestation. It is suggested that these residual bodies contain products of detoxification processes and also cell structural elements resulting from enhanced liver metabolism and intracellular turnover during pregnancy.  相似文献   

8.
Summary The distribution of acid phosphatase activity in the thymus of young (8 week) and old (42 week) mice is presented. In 8 week old mice acid phosphatase positive cells represent 1.27±0.13% of the total population whereas in 42 week old mice, showing involution of the thymus, acid phosphatase positive cells represent 2.40±0.17% of the total population. Loci of free acid phosphatase activity have been interpreted as sites of cell lysis and death. This has been confirmed at electron microscope level where free acid phosphatase has been demonstrated in the cytoplasm of lysing thymic lymphocytes. Vacuolar sites of acid phosphatase activity have been demonstrated in macrophages which appear to dispose of the lymphocytes. Extensive autophagic activity occurs in the epithelial reticular cells. The role of acid phosphatase in thymic lymphocyte deletion and in the tissue dynamics of the thymus is discussed.  相似文献   

9.
The naidid oligochaete Chaetogaster limnaei limnaei has an alimentary canal consisting of a mouth, pharynx with a dorsal pharyngeal pad, esophagus, stomach, anterior and posterior intestine, and anus. The diet is omnivorous but limited by particle size. Unattached food organisms are sucked into the pharynx while sessile organisms are plucked from the substratum. Granules of acid mucosubstances that stain purple with neutral red are secreted into the stomach lumen after food enters, rapidly increasing the acidity from pH 3 to 1.5. Acid induced lysis of the organisms initiates autolysis before the food is passed into the alkaline, pH 7 to 8, anterior intestine. Ciliated intestinal cells showed arylamidase, acid phosphatase and C-esterase active granules indicating primary lysosomes with secondary lysosomes being recognized in electron micrographs suggesting intracellular digestion. Arylamidase and alkaline phosphatase activity appears in the intestinal margins during the alkaline phase of digestion. Scattered, pyramidal cells found only in the anterior intestine contain yellow refractile spheres. The spheres stain alcian blue pH 2.5 and bromophenol blue positive and exhibit a strong acid phosphatase activity all the time with A-esterase active granules surrounding them. Glycogen and lipids are stored mainly in the chlorogague cells. Many of the yellow refractile granules in the stomach and intestinal cells are bacteria.  相似文献   

10.
Starvation, in particular amino acid deprivation, induces autophagy in trophocytes (adipocytes), the major component of the fat body cell types, in the larvae of Drosophila melanogaster. However, the fat body of cockroach has two additional cell types: urocytes depositing uric acid in urate vacuoles as a nitrogen resource and mycetocytes harboring an endosymbiont, Blattabacterium cuenoti, which can synthesize amino acids from the metabolites of the stored uric acid. These cells might complement the roles of autophagy in recycling amino acids in the fat body or other organs of cockroaches under starvation. We investigate the presence of autophagy in tissues such as the fat body and midgut of the American cockroach, Periplaneta americana, under starvation by immunoblotting with antibody against Atg8, a ubiquitin-like protein required for the formation of autophagosomes and by electron microscopy. Corresponding changes in acid phosphatase activity were also investigated as representing lysosome activity. Starvation increased the level of an autophagic marker, Atg8-II, in both the tissues, extensively stimulating the formation of autophagic compartments in trophocytes of the fat body and columnar cells of the midgut for over 2 weeks. Acid phosphatase showed no significant increase in the fat body of the starved cockroaches but was higher in the midgut of the continuously fed animals. Thus, a distinct autophagic mechanism operates in these tissues under starvation of 2 weeks and longer. The late induction of autophagy implies exhaustion of the stored uric acid in the fat body. High activity of acid phosphatase in the midgut of the fed cockroaches might represent enhanced assimilation and not an autophagy-related function.  相似文献   

11.
Euphorbia dulcis endosperm is the site of controlled long lasting endocellular lysis involving segregation and autophagy of portions of the cytoplasm within the endoplasmic reticulum membrane. The lysis products may constitute a food source for the benefit of the early developing embryo.  相似文献   

12.
The morphological and histochemical features of degeneration in honeybee (Apis mellifera) salivary glands were investigated in 5th instar larvae and in the pre-pupal period. The distribution and activity patterns of acid phosphatase enzyme were also analysed. As a routine, the larval salivary glands were fixed and processed for light microscopy and transmission electron microscopy. Tissue sections were subsequently stained with haematoxylin-eosin, bromophenol blue, silver, or a variant of the critical electrolyte concentration (CEC) method. Ultrathin sections were contrasted with uranyl acetate and lead citrate. Glands were processed for the histochemical and cytochemical localization of acid phosphatase, as well as biochemical assay to detect its activity pattern. Acid phosphatase activity was histochemically detected in all the salivary glands analysed. The cytochemical results showed acid phosphatase in vesicles, Golgi apparatus and lysosomes during the secretory phase and, additionally, in autophagic structures and luminal secretion during the degenerative phase. These findings were in agreement with the biochemical assay. At the end of the 5th instar, the glandular cells had a vacuolated cytoplasm and pyknotic nuclei, and epithelial cells were shed into the glandular lumen. The transition phase from the 5th instar to the pre-pupal period was characterized by intense vacuolation of the basal cytoplasm and release of parts of the cytoplasm into the lumen by apical blebbing; these blebs contained cytoplasmic RNA, rough endoplasmic reticule and, occasionally, nuclear material. In the pre-pupal phase, the glandular epithelium showed progressive degeneration so that at the end of this phase only nuclei and remnants of the cytoplasm were observed. The nuclei were pyknotic, with peripheral chromatin and blebs. The gland remained in the haemolymph and was recycled during metamorphosis. The programmed cell death in this gland represented a morphological form intermediate between apoptosis and autophagy.  相似文献   

13.
《Autophagy》2013,9(5):616-624
Autophagy is a highly conserved degradative process in eukaryotic cells. This process plays an integral role in cellular physiology, and the levels of autophagy must be precisely controlled to prevent cellular dysfunction. The rapamycin-sensitive Tor kinase complex 1 (TORC1) has a major role in regulating the induction of autophagy; however, the regulatory mechanisms are not fully understood. Here, we find that Tap42 and protein phosphatase type 2A (PP2A) are involved in the regulation of autophagy in yeast. Temperature-sensitive mutant alleles of TAP42 revealed that autophagy was induced without inactivation of TORC1. Absence of the Tap42-interacting protein Tip41 abolished autophagy induction in the tap42 mutants, whereas overexpression of Tip41 activated autophagy. Furthermore, inactivation of PP2A stimulated autophagy and overexpression of a catalytic subunit of PP2A blocked rapamycin-induced autophagy. Our data support a model in which autophagy is negatively regulated by the Tap42-PP2A pathway.  相似文献   

14.
Studies on the effects of different carbon sources on neomycin formation by washed cells ofStreptomyces fradiae 3535 indicate that they do not stimulate the antibiotic synthesis. The higher titer of neomycin in mineral salts medium is due to the fresh synthesis of neomycin and not merely due to release from the mycelium. Glucosamine andN-acetylglucosamine are stimulatory to neomycin production. The neomycin activity of the broth and the alkaline phosphatase level of the mycelium decrease on the addition of glucose to the medium. The metabolism of neomycin and neomycin phosphate is stimulated in the presence of glucose. Studies on changes in mycelial constituents during neomycin production show that during lysis there is loss of amino acids from the cell while the amino sugar and sugar content remain unaffected. In the medium where cells are resistant to lysis, mycelial total amino acid, amino sugar and sugar increase gradually and the growth phase is prolonged upto day 7 of fermentation.  相似文献   

15.
16.
Targeting macroautophagy/autophagy is a novel strategy in cancer immunotherapy. In the present study, we showed that the natural product rocaglamide (RocA) enhanced natural killer (NK) cell-mediated lysis of non-small cell lung cancer (NSCLC) cells in vitro and tumor regression in vivo. Moreover, this effect was not related to the NK cell recognition of target cells or expressions of death receptors. Instead, RocA inhibited autophagy and restored the level of NK cell-derived GZMB (granzyme B) in NSCLC cells, therefore increasing their susceptibility to NK cell-mediated killing. In addition, we further identified that the target of RocA was ULK1 (unc-51 like autophagy activating kinase 1) that is required for autophagy initiation. Using firefly luciferase containing the 5´ untranslated region of ULK1, we found that RocA inhibited the protein translation of ULK1 in a sequence-specific manner. Taken together, RocA could block autophagic immune resistance to NK cell-mediated killing, and our data suggested that RocA was a promising therapeutic candidate in NK cell-based cancer immunotherapy.  相似文献   

17.
《Autophagy》2013,9(12):1975-1982
The physiological relationship between autophagy and programmed cell death during C. elegans development is poorly understood. In C. elegans, 131 somatic cells and a large number of germline cells undergo programmed cell death. Autophagy genes function in the removal of somatic cell corpses during embryogenesis. Here we demonstrated that autophagy activity participates in germ-cell death induced by genotoxic stress. Upon γ ray treatment, fewer germline cells execute the death program in autophagy mutants. Autophagy also contributes to physiological germ-cell death and post-embryonic cell death in ventral cord neurons when ced-3 caspase activity is partially compromised. Our study reveals that autophagy activity contributes to programmed cell death during C. elegans development.  相似文献   

18.
《Autophagy》2013,9(1):173-175
The crucial issue for defining successful natural killer (NK)-based anticancer therapy is the ability of tumor cells to activate resistance mechanisms leading to escape from NK-mediated killing. It is now well established that such mechanisms are likely evolved under hypoxia in the tumor microenvironment. Here, we show that hypoxia-induced autophagy impairs breast cancer cell susceptibility to NK-mediated lysis and that this impairment is reverted by targeting autophagy. We provide evidence that activation of autophagy in hypoxic cells is involved in selective degradation of the pro-apoptotic NK-derived serine protease GZMB/granzyme B, thereby blocking NK-mediated target cell apoptosis. Our in vivo data validate the concept that targeting autophagy in cancer cells promotes tumor regression by facilitating their elimination by NK cells. This study provides a cutting-edge advance in our understanding of how hypoxia-induced autophagy impairs NK-mediated lysis and might pave the way for formulating more effective NK-based antitumor therapy by combining autophagy inhibitors.  相似文献   

19.
《Autophagy》2013,9(11):2006-2020
Silver nanoparticles (Ag NPs) are cytotoxic to cancer cells and possess excellent potential as an antitumor agent. A variety of nanoparticles have been shown to induce autophagy, a critical cellular degradation process, and the elevated autophagy in most of these situations promotes cell death. Whether Ag NPs can induce autophagy and how it might affect the anticancer activity of Ag NPs has not been reported. Here we show that Ag NPs induced autophagy in cancer cells by activating the PtdIns3K signaling pathway. The autophagy induced by Ag NPs was characterized by enhanced autophagosome formation, normal cargo degradation, and no disruption of lysosomal function. Consistent with these properties, the autophagy induced by Ag NPs promoted cell survival, as inhibition of autophagy by either chemical inhibitors or ATG5 siRNA enhanced Ag NPs-elicited cancer cell killing. We further demonstrated that wortmannin, a widely used inhibitor of autophagy, significantly enhanced the antitumor effect of Ag NPs in the B16 mouse melanoma cell model. Our results revealed a novel biological activity of Ag NPs in inducing cytoprotective autophagy, and inhibition of autophagy may be a useful strategy for improving the efficacy of Ag NPs in anticancer therapy.  相似文献   

20.
B. Williamson 《Planta》1973,112(2):149-158
Summary A cytochemical study was made to examine the possibility that acid phosphatase may be specifically involved in the digestion of endophytic hyphae in orchid mycorrhiza. Esterase activity was studied for comparison. Frozen sections of unfixed or glutaraldehyde-fixed protocorms of Dactylorhiza purpurella infected by Thanatephorus cucumeris (Rhizoctonia solani) were reacted for acid naphthol AS BI phosphatase, acid -glycerophosphatase or naphthol AS D esterase.A marked increase in particulate acid naphthol AS BI phosphatase activity was observed during infection of host, central, parenchyma cells shortly before hyphae lysed; a diffuse reaction of high activity was localised on lysed fungus. Acid -glycerophosphatase was present at particulate sites only in fungal cytoplasm and as a diffuse reaction on lysed fungus.Naphthol AS D esterase showed highest activity at hyphal apices. Esterase seems to be associated with growth and differentiation of hyphae in orchid cells, rather than lysis of the fungus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号