首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Meiofauna were collected from adjacent areas with and without Spartina alterniflora Loisel culms. Environmental complexity resulting from root structure cannot be determined by simply observing S. alterniflora culm distribution. There were no significant differences between the two areas with respect to root density or root sizes; however, the number of live roots was significantly higher in the area containing Spartina culms. Nematodes, the most abundant taxon were positively correlated with live root density. In contrast, the number of dead roots and harpacticoid copepods were higher in the area without culms. This study suggests that nematodes are positively associated with micro-oxygenated zones produced by live S. alterniflora roots. Other measures of biogenic structure, such as total root density or root size fractions are not important in affecting nematode abundance.  相似文献   

2.
Specifically radiolabeled 14C-(cellulose)-lignocellulose and 14C-(lignin)-lignocellulose were isolated from labeled cuttings of Spartina alterniflora (cordgrass) and Pinus elliottii (slash pine). These were used to estimate the rates of mineralization to CO2 of lignocelluloses of estuarine and terrestrial origin in salt marsh estuarine sediments. The lignin moiety of pine lignocellulose was mineralized 10 to 14 times more slowly than that of Spartina lignocellulose, depending on the source of inoculum. Average values for percent mineralization after 835 h of incubation were 1.4 and 13.9%, respectively. For Spartina lignocellulose, mineralization of the cellulose moiety was three times faster than that of the lignin moiety. Average values for percent mineralization after 720 h of incubation were 32.1 and 10.6%, respectively. Lignocellulose and lignin contents of live pine and Spartina plants were analyzed and found to be 60.7 and 20.9%, respectively, for pine and 75.6 and 15.1%, respectively, for Spartina.  相似文献   

3.
The fate of 100 seedling plants of Lolium perenne L. was studied over a period of 2 years in a field plot. The birth and death of tillers and the production of inflorescences was followed, and the components of seed yield were recorded in detail in the first year. The pattern of distribution of 14CO2 assimilated by the main shoot was examined at monthly intervals and during the first flowering season the distribution of 14C-assimilate from individual leaves and from the inflorescence was also studied. The capacity of individual tillers to assimilate 14CO2 prior to flowering and the re-distribution of previously accumulated assimilate during seed growth were also assessed. Plants died at a more or less constant rate with time and only 54 survived to the end of the 2–yr period. First year mortality was associated with severe grazing or cutting but in the second year the death of ungrazed plants was observed. There was great variability in the production of tillers by surviving plants. In both years the number of live tillers per plant increased from July to the end of April with particularly rapid tillering in March and April establishing the maximum value for each year. There was a similar phase of rapid tillering after flowering in July. The number of live tillers per plant declined by 50% during stem elongation and inflorescence emergence and the majority of dead tillers were young secondary (in the first year) and tertiary (in the second year) tillers with a mean age of 40 days. Such tillers had poor assimilatory capacity prior to the onset of death and were not supplied with assimilate from the main shoot. Most of the plants surviving at the end of the experiment flowered in both years and one quarter of the maximum number of live tillers per plant recorded in April of each year produced inflorescences. The earlier a tiller was produced the greater was its chance of flowering and the greater its production of seed. The greater weight of seed produced was associated with the development of more seed-bearing florets per spikelet. There was relatively little export of “C-assimilate from the flowering main shoot, and the lower internodes formed the major sink for post-anthesis assimilate. The growth of seeds appeared to be relatively independent of the leaves for current assimilate. There was some evidence that assimilate accumulated in lower internodes was remobilised and utilised in the growth of seeds and new tillers. Overall, the results confirm the view that the grass plant is a dynamic population of short-lived tillers and indicate that increasing competition for assimilate at flowering exerts a major influence on the production and survival of tillers.  相似文献   

4.
The purpose of this study was to develop and validate a habitat-specific production simulation model to quantify annual benthic microalgal production in North Inlet estuary, South Carolina. Using hourly measurements of incident irradiance during 1990–1991 as the forcing function, the simulation model was used to obtain hourly estimates of areal benthic microalgal gross primary production in five habitat types. The model, which was validated using actual measurements of production, showed good (r2= 0.63, P < 0.001) agreement between observed and predicted production in the short Spartina alterniflora Loisel zone habitats showed the highest mean hourly production (61.1 mg C m?2 h?1) while intertidal mudflats had the maximum hourly rate (166.9 mg C m?2 h?1). Daily production was highly variable, primarily due to daily fluctuations in irradiance. Annual estimates of habitat-specific production were multiplied by the mates of habitat-specific production were multiplied by the known area of each habitat type to determine total microalgal production for the estuary (3.423 × 109 g C yr?1). Short Spartina zone habitats provided 45% of total microalgal annual production, followed by intertidal mudflats (22%), tall Spartina zones (18%), shallow subtidal (13%) and microalgal production exceeds phytoplankton and microalgal production but is less than Spartina production.  相似文献   

5.
ABSTRACT Over the past 15 yr, an invasive cordgrass, Spartina alterniflora, has covered more than 5000 ha of tidal mudflats in Willapa Bay, Washington, threatening key shorebird habitat on the Pacific Flyway. Although chemical and mechanical control methods have been used to manage Spartina in Willapa Bay, little is known about how these methods affect subsequent use by shorebirds and waterfowl. During 2003–2004, four sites were monitored for 10‐min periods for use by shorebirds [Dunlin (Calidris alpina), Western Sandpiper (C. mauri), Least Sandpiper (C. minutilla), Black‐bellied Plovers (Pluvialis squatarola) and Long‐billed and Short‐billed dowitchers (Limnodromus sp.)] and waterfowl [Mallard (Anas platyrhynchos), Gadwall (A. strepera), American Wigeon (A. americana), Green‐winged Teal (A. crecca), and Canada Goose (Branta canadensis)]. The four sites were bare mudflat (never infested with Spartina), tilled Spartina meadow (free of live Spartina and dead stubble), herbicide‐sprayed Spartina meadow (10% living Spartina and 30% dead stubble), and an untreated Spartina meadow. Untreated Spartina meadow was rarely used by birds, with a mean of seven small Calidris sandpipers (peeps) and 0.8 waterfowl ha?1. Mean numbers of peeps and waterfowl observed using the herbicide‐treated Spartina meadow were 62 and 16 ha?1, and the tilled Spartina meadow were 700 and 27 ha?1, respectively. Mean use of the adjacent bare mud site by peeps and waterfowl was 450 and 11 ha?1, respectively. The untreated Spartina meadow, sprayed meadow, tilled meadow and the bare mud site had mean densities of Black‐bellied Plovers and dowitchers of 26, 24, 6, and 0 ha?1, and 0.8, 6, 0.3, and 0 ha?1, respectively. Our results demonstrate that, within several years of removal of invasive Spartina from mudflats in a large Washington estuary by either mechanical or chemical means, use by shorebirds and waterfowl will increase dramatically.  相似文献   

6.
Juncus kraussii, which is the dominant emergent macrophyte in the marshes of the Blackwood River Estuary, has an estimated net above-ground production there of 0.3 to 1.3 kg dry weight m-2 yr-1. A high standing crop of live culms is present throughout the year and dead material generally exceeds live. New culms are produced throughout the year, but especially during the warm season. Growth and senescence of culms also occurs throughout the year although there is evidence for increased growth in the warm season. Concentrations of nitrogen and phosphorus are given on a per g dry weight and per m2 basis. Some 60% of the nitrogen and 50% of the phosphorus remain in the dead culm material, the remainder being retranslocated. Sodium and, especially, potassium are readily retranslocated during senescence, but calcium and magnesium are much less mobile.  相似文献   

7.
A comparison of the N2 fixers in the tall Spartina alterniflora and short S. alterniflora marsh soils was investigated. Zero-order kinetics and first-order kinetics of acetylene reduction were used to describe the activity of the N2 fixers in marsh soil slurries. It was found that the Vmax values were approximately 10 times greater for the N2 fixers in the tall Spartina than in the short Spartina marsh when raffinose was used as the energy source. In addition, the (Ks + Sn) values were approximately 4 to 15 times lower for the N2 fixers in the tall Spartina than in short Spartina marsh. First-order kinetics of nitrogen fixation for several substrates indicate that the N2 fixers in the tall Spartina marsh were two to seven times more active than those in the short Spartina marsh. Ammonium chloride (25 μg/ml) did not inhibit nitrogen fixation in the tall Spartina marsh, but there was a 50% inhibition in nitrogen fixation in the short Spartina marsh. On the other hand, sodium nitrate inhibited nitrogen fixation almost 100% at 25 μg/ml in both soil environments. Amino nitrogen (25 to 100 μg/ml) had little or no effect on nitrogen fixation. The results indicate that the N2 fixers in the tall Spartina marsh were physiologically more responsive to nutrient addition than those in the short Spartina marsh. This difference in the two populations may be related to the difference in daily tidal influence in the respective areas and thus provide another explanation for the enhanced S. alterniflora production in the creek bank soil system.  相似文献   

8.
Productivity of Podostemum ceratophyllum, the dominant aquatic macrophyte in the New River, was measured at four sites representing soft- and hardwater reaches of the river. Available dissolved inorganic carbon (DIC) was 4–5 times greater in the hardwater reach. The difference in available DIC was reflected in standing crop and productivity of P. ceratophyllum. Maximum standing crops of P. ceratophyllum at the two hardwater sites (Sites 1 and 2) were 244.8 ± 30.7 g ash-free dry wt (AFDW) m−-2 and 193.8 ± 18.7 g AFDW m−-2 compared to 128.5 ± 14.9 g AFDW m−-2 and 101.3 ± 6.9 g AFDW m−-2 for the softwater sites (Sites 3 and 4). Productivity, based on differences in standing crops, was: Site 1, 1.08 ± 0.12 g C m−-2 d−-1; Site 2, 0.86 ± 0.08 g Cm−-2d−-1; Site 3,0.58 ± 0.06 g C m−-2 d−-1; Site 4,0.45 ± 0.03 g C m−-2 d−-1. Corresponding values for productivity as 14C uptake were: 2.77 ± 0.44 g C m−-2 d−-1; 2.10 ± 0.45 g C m−-2 d−-1; 0.34 ± 0.04 g C m−-2 d−-1; 0.28 ± 0.03 g C m−-2 d−-1. Productivity/biomass (P/B) based on 14C uptake and standing crop revealed that P. ceratophyllum productivity was inhibited at the softwater sites perhaps due to carbon limitation. Because of its abundance and its high productivity, P. ceratophyllum is hypothesized to contribute significantly to the New River organic matter budget.  相似文献   

9.
Spartina alterniflora Loisel. culms were collected from tall (creekbank), short (highmarsh) and dieback sites in a North Carolina salt marsh and grown in aerobic and anaerobic simulated marsh systems in the greenhouse. There were no significant differences between density, aerial live biomass, height, leaf width or root biomass and sprig source. All variables were significantly different between aeration treatments. Aerated systems had an average of 6.3 times more biomass than the unaerated treatments. There was a significant interaction between sprig source and aeration treatments based on a multivariate analysis of variance representing overall plant performance. These results demonstrated that pioneer sprigs from the dieback sites had an advantage over the other sprigs when exposed to unaerated systems. Tall plants performed better than plants from short or dieback zones in the aerobic systems.  相似文献   

10.
Gas exchange characteristics of three major Louisiana Mississippi River deltaic plain marsh species, Spartina patens (Ait.) Muhl., Spartina altemiflora Lois., and Panicum hemitomon Shult., was studied under controlled environment conditions. The optimum temperature for maximum photosynthesis was ≈ 36 °C for S. patens, 27 °C for S. alterniflora, and 28 °C for rP. hemitomon. Net photosynthesis rates at optimum temperature averaged 20.1 μmol · mt-2 · st-1 in S. patens, 22.8 μmol · m−2 · s−1 in S. alterniflora, and 11.4 μmol · m−2 · s−1 in P. hemitomon. Photosynthetic light saturation occurred ≈720, 530, and 750 μmol · m−2 · s−1 in S. patens, S. alterniflora, and P. hemitomon, respectively. Only S. patens had a midday depression of stomatal conductance, but net photosynthesis was not reduced by the depression. Maximum stomatal conductances were 285 mmol · m−2 · s−1 in S. patens, 238 mmol · m−2 · s−1 in S. alterniflora, and 335 mmol · m−2 · s−1 in P. hemitomon. In contract, net photosynthesis values were lower in P. hemitomon compared with the Spartina species, indicating a greater degree of water use efficiency of photosynthesis for both Spartina species.  相似文献   

11.
Summary Lacunal allocation as the fraction of the total cross sectional area of leaves, stem bases, rhizomes, and roots was determined in both tall and short growth forms of Spartina alterniflora collected from natural monospecific stands. The results indicate that in both growth forms lacunal allocation is greater in stem bases and rhizomes than in leaves and roots and that tall form plants allocate more of their stem and rhizome to lacunae than short form plants.Measurements made in natural stands of Spartina alterniflora suggest that total lacunal area of the stem base increases with increasing stem diameter and that stem diameter increases with increasing plant height and above-ground biomass. However, the fraction of cross section allocated to lacunae was relatively constant and increased only with the formation of a central lacuna.Experimental manipulations of surface and subsurface water exchange were carried out to test the influence of flooding regime on aerenchyma formation. No significant differences in lacunal allocation were detected between plants grown in flooded (reduced) and drained (oxidized) sediments in either laboratory or field experiments. While aerenchyma formation in Spartina alterniflora may be an adaptation to soil waterlogging/anoxia, our results suggest that lacunal formation is maximized as a normal part of development with allocation constrained structurally by the size of plants in highly organic New England and Mid-Atlantic marshes.The cross sectional area of aerenchyma for gas transport was found to be related to the growth of Spartina alterniflora with stands of short form Spartina alterniflora exhibiting a lower specific gas transport capacity (lacunal area per unit below ground biomass) than tall form plants despite having a similar below-ground biomass supported by a 10 fold higher culm density. The increased specific gas transport capacity in tall vs. short plants may provide a new mechanism to explain the better aeration, higher nutrient uptake rates and lower frequency of anaerobic respiration in roots of tall vs. short Spartina alterniflora.  相似文献   

12.
Summary Dead parts of salt-marsh plants form a considerable fraction of their annual average standing crop. A microbial assemblage living on and in the standing-dead leaves and stems of Spartina alterniflora and Juncus roemerianus responds to saltwater, freshwater or water-vapor wetting by immediately beginning to release CO2. Water-saturated, standing-dead leaves and culms of S. alterniflora release CO2 at steady rates of as much as about 200 and 140 g CO2–C·g-1 dry·h-1, respectively, at temperatures of 25–30°C, after an initial burst of higher rates. These CO2-release rates are within the range of maximal rates reported for decaying terrestrial litter, and are as high as most rates reported for S. alterniflora decaying under continuously wetted or submerged conditions.  相似文献   

13.
The standing crop and primary productivity of a small eutrophic, prairie-parkland lake were measured. In general, both standing crops and primary productivity were large, 29.4 and 73.09 mg chlorophyll a m−3 and m−2 and 78.71 and 196.77 mg C hr −1m−3 and m−2 respectively. Productivity decreased with increasing depth, therefore, decreasing light intensity. Relations between productivity and chlorophyll a content, productivity and light intensity, phytoplankton productivity efficiency and light intensity, productivity and water temperature were investigated, as was the photosynthetic index. Experiments designed to determine the photosynthetic capacity of the phytoplankton distinguished between actively growing and senescent populations. The latter were present during the winter ice cover.  相似文献   

14.
Summary Studies of the seasonal CO2 and water vapor exchange patterns of Juncus roemerianus and Spartina alterniflora were conducted in an undisturbed marsh community on Sapelo Island, Georgia. Daily patterns of net photosynthesis, transpiration, leaf diffusive conductance and water-use efficiency in response to ambient conditions were monitored on intact, in situ plants. Net primary productivity was calculated from the daytime CO2 fixation totals, nighttime CO2 loss, leaf standing stock and aboveground to belowground biomass ratios for each plant type.The tall form of S. alterniflora had higher rates of photosynthesis and higher water-use efficiency values which, in conjunction with low respiratory losses and large leaf standing crop, results in high values of net primary productivity. The environmental factors in the marsh which permit these physiological responses occur in less than 10% of the marsh. Overall, the physiological capabilities of the short form of S. alterniflora were reduced in comparison to the tall form, but the combination of environmental factors which determine the physiological responses of this form occur in a much greater portion of the marsh, and the short form of S. alterniflora dominates the Sapelo Island marshes.The response patterns of the C3 species, J. roemerianus, differed somewhat from the height forms of S. alterniflora. A large, seasonally constant leaf standing crop coupled with moderate rates of photosynthesis resulted in a net primary productivity value which was between the tall and short height forms of S. alterniflora. However, as with the tall S. alterniflora, the environmental conditions under which this high productivity and high water loss rate can be sustained are restricted to specific regions of the environmental gradient in the marsh.Contribution No. 435 from the University of Georgia Marine Institute  相似文献   

15.
We used 15N to quantify rates of N translocation from aerial to belowground tissues, foliar leaching, and turnover and production of root and rhizome biomass in the plant-sediment system of short Spartina alterniflora areas of Great Sippewissett Marsh, Massachusetts. Decay of belowground tissues in litterbag incubations at 1- and 10-cm depths resulted in 80% remineralization of the original plant (15N-labeled) N and 20% burial after 3 years. Translocation of 15N from plant shoots in hydrologically controlled laboratory lysimeters maintained under field conditions was 38% of the aboveground pool while leaching of N was 10% from June to October. Most of the translocated N was not retranslocated to new aboveground growth in December but appeared to be either remineralized or buried in the sediment. Injection of 15N into field stands of grass showed initially high incorporation into plants followed by a continuous decline over the next 7 years yielding a gross tumover time of 1.5–1.6yr. Correcting the gross N turnover for recycling of label via translocation and uptake of remineralized label during this period, a net root and rhizome turnover time of 1.0–1.1 yr was obtained. Combining the turnover time with independent estimates of seasonal belowground biomass yielded an estimate of belowground production of 929–1,022 g C m−2 yr−1, similar to measurements by traditional biomass harvest, CO2 based budgets and models for comparable areas of this marsh. Integration of the production and nitrogen balance estimates for short Spartina marsh yielded translocation, 1.4 g N m−2 yr−1, leaching, 0.4 g N m−2 yr−1, remineralization, 14.9–16.3 g N m−2 yr−1, and burial, 3.7–4.1 g N m−2 yr−1.  相似文献   

16.
We conducted a 12-week field manipulation experiment in which we raised the nitrogen availability (ammonium sulfate fertilization to roots) and/or water potential (freshwater misting) of decaying leaf blades of a saltmarsh grass (smooth cordgrass, Spartina alterniflora) in triplicate 11-m2 plots, and compared the manipulated plots to unmanipulated, control plots. The ascomycetous fungi that dominate cordgrass leaf decomposition processes under natural conditions exhibited a boosting (>2-fold) of living standing crop (ergosterol content) by misting at the 1 st week after tagging of senescent leaves, but afterwards, living-fungal standing crop on misted blades was equivalent to that on control blades, confirming prior evidence that Spartina fungi are well adapted to natural, irregular wetting. Misting also caused 2-fold sharper temporal declines than control in instantaneous rates of fungal production (ergosterol synthesis), 5-fold declines in density of sexual reproductive structures that were not shown by controls, and 2-fold higher rates of loss of plant organic mass. Extra nitrogen gave a long-term boost to living-fungal standing crop (about 2-fold at 12 weeks), which was also reflected in rates of fungal production at 4 weeks, suggesting that saltmarsh fungal production is nitrogen-limited. Although bacterial and green-microalgal crops were boosted by manipulations of nitrogen and/or water, their maximal crops remained 0.3 or 2% (bacteria or green microalgae, respectively) of contemporaneous living-fungal crop. The fungal carbon-productivity values obtained, in conjunction with rates of loss of plant carbon, hinted that fungal yield can be high (>50%), and that it is boosted by high availability of nitrogen. We speculate that one partial cause of high fungal yield could be subsidy of fungal growth by dissolved organic carbon from outside decomposing leaves.  相似文献   

17.
Over the last century, Phragmites australis (common reed) has been expanding rapidly from the marsh–upland boundary into Spartina patens (salt hay)-dominated high marsh communities of the eastern US coast. Whereas direct and indirect human disturbances and changes in hydrology or salinity are likely to influence rates of spread at the landscape scale, the susceptibility of specific plant communities to invasion also influence rates of Phragmites expansion at the local scale. I measured microscale (0.25 m2) spatial patterns of culms (emerging buds and mature stems) in October 1993 at both expanding and stable boundaries of Phragmites populations within a S. patens-dominant matrix. In both expanding and stable plots, Phragmites culms were observed more frequently than expected on hummocks that were created by S. patens tussock-forming root structure. Culm density within a plot was correlated with the percent hummock cover within a plot. Further, Phragmites culms, particularly mature stems, were concentrated along the perimeter of the hummocks. Because the culms were not evenly distributed between hummocks and hollows, I suggest that invasion rates of Phragmites are limited in S. patens communities by microscale differences in hummock availability. The pattern of emergence suggests that expanding rhizomes of Phragmites encounter both competition with S. patens roots on the hummocks and physiological stressors (salinity, anoxia, sulfide concentrations) in the hollows.  相似文献   

18.
Dwarf bamboo species are monocarpic. They flower simultaneously and die after several decades. The type of flowering in the genus Sasa ranges from sporadic to gregarious. In order to determine whether or not the sporadic flowering of dwarf bamboo is fixed genetically, we investigated the distribution of clones using eight microsatellite (SSR) loci in a sporadic flowering patch of Sasa cernua Makino, a major dwarf bamboo species found in central Hokkaido. In May 2006, flowering occurred on 60.5% of living culms in a 1600 m2 patch. We established a 50 × 10 m study plot in this patch and noted 1267 clumps consisting of 2529 living culms. We investigated all 1267 clumps and identified six multilocus genotypes as clones using five variable SSR loci. All flowering clumps belonged to the same clone. On the other hand, non-flowering vegetative clumps were also discovered to be of the same clone. These data suggest that all flowering culms originated from a single clone of a sporadic flowering patch of S. cernua. Clonal analysis for investigation of sporadic flowering of S. cernua revealed that only a portion of a clone flowers and dies instead of the whole clone.  相似文献   

19.
Whether plant invasion increases ecosystem carbon (C) stocks is controversial largely due to the lack of knowledge about differences in ecophysiological properties between invasive and native species. We conducted a field experiment in which we measured ecophysiological properties to explore the response of the ecosystem C stocks to the invasion of Spartina alterniflora (Spartina) in wetlands dominated by native Scirpus mariqueter (Scirpus) and Phragmites australis (Phragmites) in the Yangtze Estuary, China. We measured growing season length, leaf area index (LAI), net photosynthetic rate (Pn), root biomass, net primary production (NPP), litter quality and litter decomposition, plant and soil C and nitrogen (N) stocks in ecosystems dominated by the three species. Our results showed that Spartina had a longer growing season, higher LAI, higher Pn, and greater root biomass than Scirpus and Phragmites. Net primary production (NPP) was 2.16 kg C m−2 y−1 in Spartina ecosystems, which was, on average, 1.44 and 0.47 kg C m−2 y−1 greater than that in Scirpus and Phragmites ecosystems, respectively. The litter decomposition rate, particularly the belowground decomposition rate, was lower for Spartina than Scirpus and Phragmites due to the lower litter quality of Spartina. The ecosystem C stock (20.94 kg m−2) for Spartina was greater than that for Scirpus (17.07 kg m−2), Phragmites (19.51 kg m−2) and the mudflats (15.12 kg m−2). Additionally, Spartina ecosystems had a significantly greater N stock (698.8 g m−2) than Scirpus (597.1 g m−2), Phragmites ecosystems (578.2 g m−2) and the mudflats (375.1 g m−2). Our results suggest that Spartina invasion altered ecophysiological processes, resulted in changes in NPP and litter decomposition, and ultimately led to enhanced ecosystem C and N stocks in the invaded ecosystems in comparison to the ecosystems with native species.  相似文献   

20.
During the last decades the Mondego estuary has been under severe ecological stress mainly caused by eutrophication. In this salt march system, Spartina maritima covers about 10.5 ha of the intertidal areas. The objective of the present study was to evaluate the effect of Spartina maritima marshes on the dynamics of phosphorus (P) binding in the surface sediment. We compare phosphate and oxygen fluxes, P-adsorption capacity, phosphate concentrations and total amount, and the extractable P forms in the upper 20 cm of sediment in vegetated sediment with adjacent mudflats without vegetation. Sediment pore-water profiles followed a clear trend, with lower P concentrations in more superficial layers, and increasing with depth. The vegetated mudflats presented lower concentrations of dissolved inorganic phosphorus than adjacent bare bottom mudflats, lower phosphate total amount, as well as higher P-adsorption capacity. Results from the extraction procedure show that the superficial layers are the most important for estuarine phosphorus dynamics, since maximum concentrations of labile P pools are present here. In contrast, higher proportions of refractory P pool are found in deeper layers. Spartina marsh sediments had less total P, less iron bound P, and less exchangeable P than adjacent bare bottom mudflats. Also the pool of loosely sorbed P is lower in the Spartina marsh. Phosphate regeneration from the sediment to the overlying water was only 11.8 kg ha−1 year−1 in vegetated sediment while 25.8 kg ha−1 year−1 in the bare mud flat. Plant uptake for growth combined with an enhanced P-adsorption capacity of the sediment, may explain these differences. Therefore, Spartina marshes are very important agents in the sedimentary P cycle worldwide, and can be considered a useful management tool in estuarine ecosystem recovery efforts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号