首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is well known that an endodermis with casparian strip always occurs in roots, but few people are aware that it also occurs in stems and leaves of some vascular plants. The rather sparse literature on endodermis in aerial organs was last included in a review in 1943. The present compilation, which does not consider hydathodes, nectaries, or other secretory structures, emphasizes distribution of cauline and foliar endodermis with casparian strip. It occurs unevenly among major taxa: quite common in rhizomes and leaves among pteridophyte groups, with exceptions; absent in gymnosperm stems but found in leaves at least among some conifers; in stems of at least 30 mostly herbaceous angiosperm families, but far less common in leaves, where it is mostly reported from petioles. Etiolation can induce casparian strips in stems and petioles of some herbaceous plants, but results from leaf blades are questionable. There are recent reports of an endodermis with casparian strip in leaves of both woody and herbaceous taxa. The physiological function, if any, of a casparian strip in aerial organs remains unknown.  相似文献   

2.
In trees, after removal of the bark, the vascular tissues of the newly-formed bark usually developed as a continuous layer. However, the stem of the herbaceous Jerusalem artichoke, after girdled, gives rise to regeneration of many irregularly arranged vascular bundles. Early July is the best time for girdling as the vascular bundles are well-developed, One week after girdling, some small groups of vascular tissues appeared in callus. Later on the vascular bundles eventually grew close together sooner or later, yet there were some wide pith rays which separated the various sized vascular bundles and exhibited irregularly contours. From these experiments, it is further evidenced that tile stem of herbaceous plants can also be girdled and regenerates a new rind. Furthermore, the girdled portion of this plant regenerates the vascular tissues which in a rather different way from all the plants that previously studied.  相似文献   

3.
Detailed analysis of the three-dimensional vascular organization in species of Diplazium and Blechnum indicates that these ferns possess reticulate (dictyostelic) vascular systems that closely reflect the helical phyllotaxis of the shoot. In each species, the vascular pattern shows a specific relationship to the phyllotaxis, so that the phyllotactic fraction can be determined by examination of the number of cauline vascular bundles (meristeles) in cross section of the stem. The number of meristeles in a cross section equals the denominator of the phyllotactic fraction, i.e., the number of foliar orthostichies on the stem. The same numerical relationship also exists in the eusteles of seed plants between the number of axial (sympodial) stem bundles and the phyllotaxis. There is a further parallel between the three-dimensional reticulate pattern of fern dictyosteles and the reticulate patterns that characterize some herbaceous dicotyledons. However, the hypothesized separate origins of seed plant eusteles and fern dictyosteles from protostelic precursors preclude any direct homologies between these similar patterns. The parallel evolution of presumably more physiologically efficient reticulate systems in herbaceous seed plants and in ferns that have only a primary plant body is noteworthy. The similar relationships between the primary stem vascular patterns and phyllotaxy in both ferns and seed plants further emphasize the likely similarity of the morphogenetic events that occur at the shoot apex in these taxonomically disparate groups.  相似文献   

4.
Previous studies on large‐scale patterns in plant richness and underlying mechanisms have mostly focused on forests and mountains, while drylands covering most of the world's grasslands and deserts are more poorly investigated for lack of data. Here, we aim to 1) evaluate the plant richness patterns in Inner Asian drylands; 2) compare the relative importance of contemporary environment, historical climate, vegetation changes, and mid‐domain effect (MDE); and 3) explore whether the dominant drivers of species richness differ across growth forms (woody vs herbaceous) and range sizes (common vs rare). Distribution data and growth forms of 13 248 seed plants were compiled from literature and species range sizes were estimated. Generalized linear models and hierarchical partitioning were used to evaluate the relative contribution of different factors. We found that habitat heterogeneity strongly affected both woody and herbaceous species. Precipitation, climate change since the mid‐Holocene and climate seasonality dominated herbaceous richness patterns, while climate change since the Last Glacial Maximum dominated woody richness patterns. Rare species richness was strongly correlated with precipitation, habitat heterogeneity and historical climatic changes, while common species richness was strongly correlated with MDE (woody) or climate seasonality (herbaceous). Temperature had little effects on the species richness patterns of all groups. This study represents the first evaluation of the large‐scale patterns of plant species richness in the Inner Asian drylands. Our results suggest that increasing water deficit due to anthropogenic activities combined with future global warming may increase the extinction risk of many grassland species. Rare species (both herbaceous and woody) may face severe challenges in the future due to increased habitat destruction caused by urbanization and resource exploitation. Overall, our findings indicate that the hypotheses on species richness patterns based on woody plants alone can be insufficient to explain the richness patterns of herbaceous species.  相似文献   

5.
Woody and herbaceous plants are differentially influenced by the environment, with non‐random association with the evolutionary history of these taxa and their traits. In general, woody plants may have climate‐dominated niches, whereas herbaceous plants may have edaphic and microhabitat‐dominated niches. Here, we explored and mapped how the patterns of species richness, phylogenetic diversity, and structures of total, woody, and herbaceous plants vary across the geographical regions and with respect to 12 environmental variables across Ethiopia and Eritrea, in the horn of Africa. Our result showed that both richness and phylogenetic diversity had almost the same tendency in total woody and herbaceous plants, in which they showed positive relationships with annual precipitation, precipitation annual range of climate, all the three variables of topography, and total nitrogen and total extractable phosphorus of soil, and negative relations with mean annual temperature. Compared with the total and herbaceous plants, the environmental variables explained greater variance both in the standardized effect size phylogenetic diversity and net relatedness index for woody plants. Our results highlight that, on the large spatial scales, the environmental filtering process has played a greater role in structuring species into local communities for woody plants than for herbaceous plants.  相似文献   

6.
Tomato (Lycopersicon esculentum Mill. cv. Better Boy) plants were transformed with a fused gene containing a 2.2-kb promoter fragment of the tomato prosystemin gene and the coding region of the β-glucuronidase (GUS) reporter gene. The transgenic plants exhibited a low constitutive level of prosystemin-β-glucuronidase gene expression, assayed by histochemical staining and GUS enzyme activity, that was associated in the vascular bundles of leaf main veins, petiolules, petioles and stems. The GUS activity in the vascular bundles in each tissue was increased by wounding and by treatment of the plants with methyl jasmonate, similar to the induction of prosystemin in wild-type plants. The increase in GUS activity in the vascular bundles of leaves in response to wounding correlated with the wound-inducible increase in prosystemin mRNA. Tissue printing, using rabbit anti-serum prepared against prosystemin, confirmed that inducible prosystemin protein was localized in vascular bundles of petiolules, petioles and stems of wild-type tomato plants. The evidence indicates that the 2.2-kb promoter region of the tomato prosystemin gene contains elements conferring its correct temporal and spatial expression in the vascular bundles of transgenic tomato plants. Received: 7 January 1997 / Accepted: 2 April 1997  相似文献   

7.
beta多样性描述群落物种组成如何随环境梯度而变化。海岛具有边界清晰、面积和离岸距离不同以及环境变化剧烈等自然禀赋。目前, 我们对离岸距离、岛间距离和气候因素在海岛植物beta多样性变化格局中的相对贡献仍认识不足。本研究基于中国东部36个海岛的维管植物物种名录, 以Jaccard相异性指数度量beta多样性, 利用Mantel偏相关分析和beta多样性的变异分解, 探究了海岛不同生活型维管植物的beta多样性格局及其非生物影响因素。结果显示: 36个海岛共记录维管植物1,404种, 其中木本植物481种, 草本植物859种, 藤本植物64种。植物beta多样性随岛间距离和离岸距离差的增大而显著增加(P < 0.001); 海岛面积和气候要素对植物beta多样性无显著影响(P > 0.05)。岛间距离单独对beta多样性总变异的解释度为29.3%, 离岸距离独立解释了2.8%, 面积和气候共同解释了0.5%。木本植物与草本植物的beta多样性格局与总体一致, 距离因子对木本植物beta多样性的解释度高于草本植物(37.5% > 25.3%)。综上, 海岛植物beta多样性主要受岛间距离和离岸距离的影响, 反映了扩散限制是塑造中国东部海岛植物beta多样性格局的主要生态过程。  相似文献   

8.
Volatile organic compounds (VOCs) released from plants are known to mediate indirect defense against herbivores and trigger intra- and interplant signaling. While systemic defense response can be mediated both via volatile and vascular signals, it is not clear whether common ancestry and/or plant growth forms influence the choice of either mode in planta. We hypothesize that larger woody plants with a complex anatomy should rely more on volatile-mediated signaling, apparently to circumvent vascular restrictions that slow down the communication over a large distance. On the other hand, in smaller herbaceous plants faster systemic response can be achieved via vascular signaling. To investigate whether plant VOCs emission is related to plant phylogeny or growth form, we studied the composition of herbivory-induced plant volatiles in 13 Brassicaceae species representing all four evolutionary lineages, because this family is characterized by both a well-resolved phylogeny and highly diverse growth forms. Our results revealed that woody species consistently emitted a more complex blend of volatiles than herbaceous species. However, phylogenetic relatedness of the species did not explain the observed volatile emission patterns. This emphasizes the influence of growth form, rather than phylogenetic relationships on the variation in plant volatile emissions. Our findings suggest that woody, perennial plant species emit diverse VOCs, likely because these compounds comprise a more efficient mode of defense response in these large, anatomically complex plants.  相似文献   

9.
Large-scale patterns of species richness and the underlying mechanisms regulating these patterns have long been the central issues in biogeography and macroecology. Phylogenetic community structure is a result of combined effects of contemporary ecological interactions, environmental filtering, and evolutionary history, and it links community ecology with biogeography and trait evolution. The Qinghai-Tibetan Plateau provides a good opportunity to test the influence of contemporary climate on shaping species richness because of its unique geological history, cold climate, and high biodiversity. In this study, based on high-resolution distributions of ˜9000 vascular plant species, we explored how species richness and phylogenetic structure of vascular plants correlate with climates on the highest (and species rich) plateau on the Earth. The results showed that most of the vascular plants were distributed on the eastern part of the plateau; there was a strong association between species richness and climate, even after the effects of habitat heterogeneity were controlled. However, the responses of richness to climate remarkably depended on life-forms. Richness of woody plants showed stronger climatic associations than that of herbaceous plants; energy and water availability together regulated richness pattern of woody plants; whereas water availability predominantly regulated richness pattern of herbaceous plants. The phylogenetic structure of vascular species clustered in most areas of the plateau, suggesting that rapid speciation and environment filtering dominated the assembly of communities on the plateau. We further propose that biodiversity conservation in this area should better take into account ecological features for different life-forms and phylogenetic lineages.  相似文献   

10.
Abstract: In herbaceous vegetation patterns of light distribution may change over time. Prostrate plants growing in such a dynamic light environment may benefit from petioles that respond plastically to changing light conditions. In an experiment, the response of petioles of Glechoma hederacea to changing light conditions was analyzed. Treatments included continuous shade, continuous high light, a shift from shade to high light and from high light to shade when the plants had formed 10 ramets. In all four treatments, even petioles that had apparently ceased growing, were still able to elongate slightly but the extent of elongation decreased with the age of the petiole. In the oldest petioles relative extension rates were higher in shade than in high light. In plants that were exposed to full daylight in the second half of the experiment, even newly formed petioles were longer than those in plants that grew in full daylight continuously though they had elongated over a shorter period. In plants that were shaded in the second half of the experiment, only the youngest 4 to 5 petioles reached lengths similar to that in continuous shade. This mechanism may enable plants to keep young (productive) leaves in the upper layers of the canopy while other less productive leaves remain at lower levels of the vegetation.  相似文献   

11.
探索和揭示生物多样性的空间格局和维持机制是生态学和生物地理学研究的热点内容, 但综合物种、系统进化和功能属性等方面的多样性海拔格局研究很少。该文以关帝山森林群落为研究对象, 综合物种、谱系和功能α和β多样性指数, 旨在初步探讨关帝山森林群落多样性海拔格局及其维持机制。研究结果表明: 随着海拔的升高(1 409-2 150 m), 关帝山森林群落物种丰富度指数(S)、谱系多样性指数(PD)和功能丰富度指数(FRic)整体上表现出上升的趋势, 特别是海拔1 800 m以上区域。随着海拔的升高, 总β多样性(βtotal)和更替(βrepl)上升趋势明显, 而丰富度差异(βrich)则逐渐下降。不同生活型植物的物种、谱系和功能多样性海拔格局差异较大。随着海拔的升高, 草本植物S和物种多样性指数(H′)上升趋势高于木本植物。影响草本植物S分布的主要因素是地形因子, 而影响木本植物S分布的主要因素是历史过程。随着海拔的升高, 木本植物βtotal上升趋势要比草本植物明显。随着海拔的升高, 木本植物βreplβrich分别表现出单峰格局和“U”形格局, 而草本植物βreplβrich则分别表现出单调递增和单调递减的格局。随着环境差异和地理距离的增加, 群落间物种、谱系和功能β多样性显著增加。环境差异(环境过滤)对木本植物的β多样性具有相对较强的作用; 而环境差异(环境过滤)和地理距离(扩散限制)共同作用于草本植物的β多样性。  相似文献   

12.
Mount Kenya is of ecological importance in tropical east Africa due to the dramatic gradient in vegetation types that can be observed from low to high elevation zones. However, species richness and phylogenetic diversity of this mountain have not been well studied. Here, we surveyed distribution patterns for a total of 1,335 seed plants of this mountain and calculated species richness and phylogenetic diversity across seven vegetation zones. We also measured phylogenetic structure using the net relatedness index (NRI) and the nearest species index (NTI). Our results show that lower montane wet forest has the highest level of species richness, density, and phylogenetic diversity of woody plants, while lower montane dry forest has the highest level of species richness, density, and phylogenetic diversity in herbaceous plants. In total plants, NRI and NTI of four forest zones were smaller than three alpine zones. In woody plants, lower montane wet forest and upper montane forest have overdispersed phylogenetic structures. In herbaceous plants, NRI of Afro‐alpine zone and nival zone are smaller than those of bamboo zone, upper montane forest, and heath zone. We suggest that compared to open dry forest, humid forest has fewer herbaceous plants because of the closed canopy of woody plants. Woody plants may have climate‐dominated niches, whereas herbaceous plants may have edaphic and microhabitat‐dominated niches. We also proposed lower and upper montane forests with high species richness or overdispersed phylogenetic structures as the priority areas in conservation of Mount Kenya and other high mountains in the Eastern Afro‐montane biodiversity hotspot regions.  相似文献   

13.
BACKGROUND AND AIMS: Some frost-tolerant herbaceous plants droop and wilt during frost events and recover turgor and posture on thawing. It has long been known that when plant tissues freeze, extracellular ice forms. Distributions of ice and water in frost-frozen and recovered petioles of Trifolium repens and Escholschzia californica were visualized. METHODS: Petioles of intact plants were cryo-fixed, planed to smooth transverse faces, and examined in a cryo-SEM. KEY RESULTS: With frost-freezing, parenchyma tissues shrank to approx. one-third of their natural volume with marked cytorrhysis of the cells, and massive blocks of extracellular icicles grew under the epidermis (poppy) or epidermis and subepidermis (clover), leaving these layers intact but widely separated from the parenchyma except at specially structured anchorages overlying vascular bundles. On thawing, the extracellular ice was reabsorbed by the expanding parenchyma, and surface tissues again contacted the internal tissues at weak junctions (termed faults). These movements of water into and from the fault zones occurred repeatedly at each frost/thaw event, and are interpreted to explain the turgor changes that led to wilting and recovery. Ice accumulations at tri-cellular junctions with intercellular spaces distended these spaces into large cylinders, especially large in clover. Xylem vessels of frozen petioles were nearly all free of gas; in thawed petioles up to 20 % of vessels were gas-filled. CONCLUSIONS: The occurrence of faults and anchorages may be expected to be widespread in frost-tolerant herbaceous plants, as a strategy accommodating extracellular ice deposits which prevent intracellular freezing and consequent membrane disruption, as well as preventing gross structural damage to the organs. The developmental processes that lead to this differentiation of separation of sheets of cells firmly cemented at determined regions at their edges, and their physiological consequences, will repay detailed investigation.  相似文献   

14.
Attachment of branches in Schefflera is unusual in that it involves fingerlike woody extensions that originate in the cortex and pass gradually into the woody cylinder of the parent shoot. We tested the hypothesis that these structures could be roots since Schefflera is a hemi-epiphyte with aerial roots. These branch traces originate by secondary development in the many leaf traces (LTs) of the multilacunar node together with associated accessory traces. In the primary condition, the LTs may be described as cortical bundles. Leaves are long persistent and can maintain a primary stem connection across a broad cylinder of secondary xylem. Under the stimulus of branch development, the LTs form a template for secondary vascular development. Because the LT system is broad, with many traces, the branch attachment is also broad. The fingerlike extensions are attached to the surface of the woody cylinder of the parent stem but are progressively obscured as a continuous cambium is formed. Bark tissues are included within the branch axil because of the extended cortical origin of the initial attachment. The results are discussed in the context of branch-trunk unions in tropical plants, an important component of canopy development.  相似文献   

15.
太白山森林样地系统发育多样性格局及其影响因素 系统发育多样性指数常被用作区分植物群落构建过程中生态和演化过程的相对作用。系统发育多样性格局的推断方法(如系统树的构建和不同的系统发育多样性指数)、演化历史(如生活型)以及环境梯度都可能影响系统发育多样性格局的估计值,进而可能影响我们对植物群落构建过程的认知。因此,有必要区分这些因素如何作用于系统发育多样性格局的估计值,但其相对重要性及其交互作用仍不清楚。本研究利用位于太白山北坡沿海拔分布的20个森林样地(整体高差2800 m左右)的野外调查数据,包括274种木本植物和581种草本植物。对于上述样地内所有植物,我们构建了当前广泛采用的合成树和分子树以比较系统树的构建,特别是合成树末端的多歧分支结构,及其对系统发育多样性格局估计值的可能影响。同时,我们计算了每个样地的3种不同的系统发育多样性指数,包括Faith’s PD, 平均成对距离(MPD)和平均最近类群距离(MNTD),并分别对木本和草本植物进行计算。多模型比较分析系统发育多样性格局的估计值与系统树重建方法、多样性指数、生活型、海拔及其交互作用的最简约关系。研究结果表明,基于合成树和分子树所得到的系统发育多样性格局之间没有显著差异。海拔和多样性指数与生活型在解释系统发育多样性格局方面存在强烈的交互作用,并且能够解释44%以上的变异。系统发育多样性格局的估计值总体随海拔升高而降低,但草本植物相比木本植物变化更平缓。对于木本植物,3种系统发育多样性指数表现出一致的海拔分布格局(即系统发育聚集),而草本植物的平均成对距离指数则表现为随机的海拔分布格局。因此,分析沿环境梯度的系统发育多样性格局需要考虑系统发育格局的推断方法和演化历史的影响,以帮助我们更好地理解植物群落的构建过程。  相似文献   

16.
The contribution of savannas to global carbon storage is poorly understood, in part due to lack of knowledge of the amount of belowground biomass. In these ecosystems, the coexistence of woody and herbaceous life forms is often explained on the basis of belowground interactions among roots. However, the distribution of root biomass in savannas has seldom been investigated, and the dependence of root biomass on rainfall regime remains unclear, particularly for woody plants. Here we investigate patterns of belowground woody biomass along a rainfall gradient in the Kalahari of southern Africa, a region with consistent sandy soils. We test the hypotheses that (1) the root depth increases with mean annual precipitation (root optimality and plant hydrotropism hypothesis), and (2) the root-to-shoot ratio increases with decreasing mean annual rainfall (functional equilibrium hypothesis). Both hypotheses have been previously assessed for herbaceous vegetation using global root data sets. Our data do not support these hypotheses for the case of woody plants in savannas. We find that in the Kalahari, the root profiles of woody plants do not become deeper with increasing mean annual precipitation, whereas the root-to-shoot ratios decrease along a gradient of increasing aridity.  相似文献   

17.
Allometric neoteny and the evolution of succulence in cacti   总被引:1,自引:0,他引:1  
With the objective of analysing the role of heterochrony in the evolution of succulence in the cactus family, a comparative study of xylem development in six species with contrasting morphologies was carried out. Two woody leaf-bearing cacti and four succulent cactus species belong to different subdivisions within the family were analysed. In each species and for different ages, vessel-element length was measured, vessel-element lateral wall-pitting described and the percentage of xylem and parenchyma in the stem quantified. In the succulent species it was found that vessel element length did not change between juvenile and adult wood, that wall-pitting in adult plants was similar to that of seedlings, and that the woody tissue in adult plants was organized in vascular bundles as in the primary tissue of seedlingS. Leaf-bearing cacti, in contrast, changed in both vessel element length and wall-pitting when secondary wood was produced, and the secondary woody tissue of adult plants was organized in a continuous cambial cylinder as in most dicotyledonS. An allometric analysis suggests that a retardation in the developmental rate of woody tissues (allometric neoteny) is the main mechanism in the development of succulence in cacti.  相似文献   

18.
Poplar 741 [Populus alba × (P. davidiana + P. simonii) × P. tomentosa] leaves were rooted within 8 days when cultured on 1/2 MS medium. The spatial distribution of endogenous indole-3-acetic acid (IAA) and its dynamic changes in the rhizogenesis were investigated, using an immunohistochemical approach. Anatomical analyses showed that the root primordia arose from vascular cambium cells in the basal regions of the petioles of the leaves. Before root induction, immunostaining patterns showed a basipetally decreasing gradient of IAA along the leaves. Three days after induction, the IAA immunostaining pattern observed along the leaves was high at both ends and low in the middle. And IAA in the basal regions of the petiole was distributed mainly in the vascular bundles. Localized application of 2,3,5-triiodobenzoic acid (TIBA) on laminas of the leaves delayed the accumulation of IAA in the vascular bundles of the basal regions of the petioles, but not in the mesophyll of the laminas. These data indicate that an accumulation of IAA in the vascular bundles of the basal regions of the petioles induces the occurrence of rhizogenesis of poplar leaves. And IAA accumulated in the vascular bundle of the basal region of the petiole results from its polar transportation from mesophyll of the laminas, rather than by in situ IAA generation.  相似文献   

19.
To clarify how root-synthesized cytokinins (CKs) are transported to young shoot organs, CK distribution patterns were analysed in free-CK-responsive ARR5::GUS transformants of Arabidopsis thaliana (L.) Heynh. together with free plus bound CKs using specific CK monoclonal antibodies. Plants were subjected to two different growth conditions, completely protected from any air movement, or exposed to gentle wind 3 h before harvesting. In wind-protected plants the strongest ARR5::GUS expression was found in the root cap statocytes, spreading upwards in the vascular cylinder. This pattern in roots was congruent with that found by CK immunolocalization. Shoots of wind-protected plants displayed either no or only low ARR5::GUS expression in the stem vascular bundles, nodal ramifications, and the bases of flower buds; shoot vascular bundles showed patterns of acropetally decreasing staining and the apical parts of buds and leaves were free from ARR5::GUS expression. In wind-exposed plants ARR5::GUS expression was considerably increased in shoots, also in basal-to-apical decreasing gradients. Immunolabelled shoots showed differential staining, with the strongest label in the vascular bundles of stems, leaves, and buds. The fact of the apparent absence of free CK in the buds of wind-protected plants and the typical upward decreasing gradients of free and conjugated CKs suggest that the bulk of the CK is synthesized in the root cap, exported through the xylem and accumulates at sites of highest transpiration where cuticles do not yet exist or do not protect against water loss.  相似文献   

20.
Niall P. Hanan 《Biotropica》2012,44(2):189-196
This paper examines the feasibility of applying self‐thinning concepts to savannas and how competition with herbaceous vegetation may modify self‐thinning patterns among woody plants in these ecosystems. Competition among woody plants has seldom been invoked as a major explanation for the persistence of herbaceous vegetation in mixed tree–grass ecosystems. On the contrary, the primary resource‐based explanations for tree–grass coexistence are based on tree–grass competition (niche‐separation) that assumes that trees are inferior competitors unless deeper rooting depths provide them exclusive access to water. Alternative nonresource‐based hypotheses postulate that trees are the better competitors, but that tree populations are suppressed by mortality related to fire, herbivores, and other disturbances. If self‐thinning of woody plants can be detected in savannas, stronger evidence for resource‐limitation and competitive interactions among woody plants would suggest that the primary models of savannas need to be adjusted. We present data from savanna sites in South Africa to suggest that self‐thinning among woody plants can be detected in low‐disturbance situations, while also showing signs that juvenile trees, more so than adults, are suppressed when growing with herbaceous vegetation in these ecosystems. This finding we suggest is evidence for size‐asymmetric competition in savannas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号