共查询到20条相似文献,搜索用时 0 毫秒
1.
A comparative developmental study of the inflorescence and flower of Hamamelis L. (4-merous) and Loropetalum (R. Br.) Oliv. (4–5 merous) was conducted to determine how development differs in these genera and between these genera and others of the family. Emphasis was placed on determining the types of floral appendages from which the similarly positioned nectaries of Hamamelis and sterile phyllomes of Loropetalum have evolved. In Hamamelis virginiana L. and H. mollis Oliv. initiation of whorls of floral appendages occurred centripetally. Nectary primordia arose adaxial to the petals soon after the initiation of stamen primordia and before initiation of carpel primordia. In Loropetalum chinense (R. Br.) Oliv. floral appendages did not arise centripetally. Petals and stamens first arose on the adaxial portion, and then on the abaxial portion of the floral apex. The sterile floral appendages (sterile phyllomes of uncertain homology) were initiated adaxial to the petals after all other whorls of floral appendages had become well developed. In all three species, two crescent shaped carpel primordia arose opposite each other and became closely appressed at their margins. Postgenital fusion followed and a falsely bilocular, bicarpellate ovary was formed. Ovule position and development are described. The nectaries of Hamamelis and sterile phyllomes of Loropetalum rarely develop as staminodia, suggesting a staminodial origin. However, these whorls arise at markedly different times and are therefore probably not derived from the same whorl of organs in a common progenitor. This hypothesis seems probable when one considers that the seemingly least specialized genus of the tribe, Maingaya, bears whorls of both staminodia and sterile phyllomes inside its whorl of stamens. 相似文献
2.
Structural changes accompanying the acclimation process were observed in leaves of sweetgum, Liquidambar styraciflua, using light and transmission electron microscopy (TEM). Comparisons were made of leaves obtained from tissue culture, plantlets acclimated after transfer from the in vitro environment to soil, and field grown trees. Leaves of cultured plantlets lacked a differentiated palisade parenchyma and had spongy parenchyma interspersed with large air spaces. Field grown leaves showed distinct palisade and spongy tissues and a high cell density. New leaves from acclimated plantlets showed an elongation of the upper mesophyll with fewer intercellular spaces than cultured plants. Cells from leaves from in vitro plantlets had large vacuoles, limited cytoplasmic content and flattened chloroplast with an irregularly arranged internal membrane system. Acclimated and field leaf cells had a greater cytoplasmic content than cultured leaves, with the former having more dominate vacuoles. Chloroplasts had evident grana. Acclimated and field leaves had a well developed cuticle unlike leaves from culture. 相似文献
3.
Robert B. Kaul 《American journal of botany》1967,54(10):1223-1230
The flowers of Limnocharis flava (L.) Buch. are borne in an indeterminate umbel and each consists of three sepals, three yellow petals, and about 18 carpels surrounded by numerous stamens and staminodia. The androecium is centrifugally developed, and the last-formed members are staminodial; it is supplied by branching vascular systems. Carpels arise almost simultaneously, and a prominent residual floral apex remains. The carpels are partially conduplicately closed and are also primitive in possessing laminar placentation and in lacking differentiation of a style. The gynoecium is essentially apocarpous, but there are slight fusions of adjacent carpels near their ventral margins where they are attached to the receptacle. It is suggested that the Limnocharis flower is the most primitive in the family. 相似文献
4.
Shirley C. Tucker 《American journal of botany》1982,69(5):743-752
The inflorescence development of three species of Piper (P. aduncum, P. amalago, and P. marginatum), representing Sections Artanthe and Ottonia, was studied. The spicate inflorescences contain hundreds or even thousands of flowers, depending on the species. Each flower has a tricarpellate syncarpous gynoecium and 4 to 6 free stamens, in the species studied. No sepals or petals are present. In P. marginatum the apical meristem of the inflorescence is zonate in configuration and is unusually elongate: up to 1,170 μm high and up to 480 μm wide during the most active period of organogenesis. Toward the time of apical cessation both height and diameter gradually diminish, leaving an apical residuum which may become an attenuate spine or may be cut off by an abscission zone just below the meristem. The active apex produces bract primordia; when each is 40–55 μm high, a floral apex is initiated in its axil. Both bract and floral apex are initiated by periclinal divisions in cells of the subsurface layer. The bracts undergo differentiation rather early, while the floral apices are still developing. The last-produced bracts near the tip of the inflorescence tend to be sterile. 相似文献
5.
6.
7.
Gifford , Ernest M., Jr ., and Herbert B. Tepper . (U. California, Davis.) Ontogeny of the inflorescence in Chenopodium album. Amer. Jour. Bot. 48(8): 657–667. Illus. 1961.—Chenopodium album, a short-day plant, was induced to flower by subjecting it to successive cycles of 7 hr light and 17 hr darkness. After 4 inductive days, the first macroscopic change is evident in the appearance of precocious axillary bud primordia. After 5–6 days, a primordial inflorescence is visible, and after 7–8 days a terminal flower appears on the main inflorescence axis. The vegetative apex has a biseriate tunica, the cells of which are larger than those of the corpus. The cells of the tunica stain lighter, possess larger nucleoli, and are more vacuolate than cells of the subjacent corpus. After photoinduction, the tunica-corpus organization is maintained, and after 4 short-days, the shoot apex possesses a mantle of 3–4 layers of cells because there are few periclinal divisions in the cells of the outer corpus. The cells of the mantle stain uniformly and are more chromatic than those of the underlying tissue. Mitotic activity was recorded in the upper 40-μ segment of the apex. In the vegetative apex, mitotic activity is greater in the lower portion of the segment. Following photoinduction, mitoses increase throughout the apex until a maximum is reached on the 4th day. Also, the plastochronic interval decreases after photoinduction. Nucleoli of cells of the corpus enlarge following induction until all nucleoli of the apex are nearly equal. Included in the paper are discussions of the general morphological differences between vegetative and flowering shoots. 相似文献
8.
Shirley C. Tucker 《American journal of botany》1985,72(1):20-31
All flowers of Anemopsis californica, the most specialized taxon of the family Saururaceae, are initiated as individual primordia subtended by previously initiated bracts, in contrast to the common-primordium initiation of all flowers of Saururus cernuus and of most flowers of Houttuynia cordata. Floral symmetry is bilateral and zygomorphic, and the sequence of initiation among floral parts is paired or whorled. In A. californica, the six stamens arise as three common primordia, each of which later bifurcates to form a pair. The three common primordia occupy sites corresponding to the positions of the three stamens in H. cordata flowers. In Anemopsis, the filaments of each pair are connate. Each stamen pair is vascularized by a single bifurcating vascular bundle. The three carpels per flower are usually initiated simultaneously although there may be some variation. Adnation between stamens and carpels results from zonal growth. Downward extension of the locule, and proliferation and expansion of receptacular tissue and inflorescence cortical tissue around the locule below the bases of the carpels produce the inferior ovary. The inflorescence terminates its activity as a flattened apical residuum, surrounded by bracts subtending reduced flowers most of which have stamens only. 相似文献
9.
The deciduous woody genus Liquidambar has four morphologically similar species in eastern and western Asia, eastern North America, and Central America. Liquidambar styraciflua is found in the eastern United States and Central America, L. orientalis is native only to southwest Turkey, and L. formosana and L. acalycina occur in eastern Asia. This genus is one of many that contributes to the floristic similarities observed between these different regions. Allelic variation was scored at 22 isozyme loci from 41 populations. The level of genetic divergence between species on different continents is high. Nei's genetic identity was 0.431 between L. formosana and L. styraciflua, 0.485 between L. acalycina and L. styraciflua, 0.512 between L. orientalis and L. styraciflua, 0.256 between L. formosana and L. orientalis, and 0.305 between L. acalycina and L. orientalis. Estimates of time of divergence from the isozyme data suggest that the current species diverged before or during the Miocene. The pattern of relationships portrayed by the isozyme data suggest a longer period of separation between the eastern and western Asian forms of this genus. In addition, the eastern North American and Turkish species appear to be the most closely related intercontinental pair of species providing evidence for a North Atlantic land bridge as late as the Miocene. It would appear, therefore, that the North American populations were in contact with the Asian populations over the North Pacific and North Atlantic possibly as late as the Miocene, but that the separation between the two Asian populations occurred much earlier. The time of divergence as measured from the isozyme data correlates with an independent assessment of the origin of these disjuncts as determined from the fossil record. 相似文献
10.
Ontogeny of the inflorescence and flower of Mimosa strigillosa has been studied in order to explore the developmental basis for variation in number of parts, patterns of organ arrangement, and inflorescence architecture. Each racemose inflorescence of M. strigillosa has an acropetal order of initiation of bracts and flowers. Although flowers are initiated in acropetal order, they develop synchronously except for the basal flowers, which are retarded. The ring meristem in the calyx may be considered an expression of precocious fusion, a specialized condition within the genus. Two patterns of organ arrangement (nonsagittal and median sagittal) are distributed among 4- and 5-merous flowers along the inflorescences. Variability in number of parts probably has evolved through reduction of a basic, pentamerous structure, through fusion or suppression. It is proposed that the number of parts and pattern of organ arrangement are correlated features. 相似文献
11.
12.
Natalie W. Uhl 《American journal of botany》1976,63(1):82-96
This paper describes inflorescence structure, including organogenesis of the panicle and flower clusters and vasculature of flowering branches, for two species of Ptychosperma, a genus of arecoid palms. The inflorescence is an infrafoliar panicle with up to four orders of branches in a spirodistichous arrangement conforming to an irregular one-half phyllotaxy. The primordium of the inflorescence is crescentic and the apex has two tunica layers, a group of central cells, and a rib meristem. The distal flower-bearing parts or rachillae of all branches develop acropetally early in ontogeny and are vertically oriented in the bud. Although these rachillae terminate branches of different sizes and orders, they are similar in size and in number of flower clusters produced. Internodes and lower parts of branches develop later. Bracts of four types are produced: a prophyll and empty peduncular bract, bracts which subtend lateral branches, bracts subtending triads, and floral bracteoles. The prophyll and peduncular bracts are tubular and completely closed around all branches until about three months before the flowers reach anthesis. Bracts subtending lateral branches and those that subtend triads enlarge by small amounts of apical, adaxial, and marginal growth to cover subtended apices during early ontogeny, but are small to absent at maturity. Flower clusters are triads of two lateral staminate and a central pistillate flower. Organogenesis indicates that the triad is a sympodial unit. Flowers develop successively, each floral apex bearing a bracteole that subtends the next flower. The vasculature of the inflorescence may be divided into two systems. Bundles of the main axis extend acropetally into the vertically oriented branches as they are initiated and form a central cylinder of larger bundles in each branch. Flower clusters are supplied by a peripheral system of smaller bundles that develop later in relation to the developing floral organs. Bundles of the peripheral system branch frequently, but branching levels are irregular. The irregular branching of peripheral bundles appears related to the phyllotaxy of the flower clusters and the random right or left position of the first flower of the triad. The level of branching of a bundle may depend on the position of a floral primordium with respect to an existing procambial strand. Three (-4) bundles supply each staminate flower and six (-10) the pistillate flower. The histologically specialized inflorescence has stomata and contains abundant starch. Tannins and raphides, spherical silica bodies, and various forms of sclerenchyma appear in sequence and apparently provide support and protection during the long exposure of the branches. 相似文献
13.
Lucia R. Dillenburg Dennis F. Whigham Alan H. Teramura Irwin N. Forseth 《American journal of botany》1993,80(3):244-252
Competitive effects of vines on their tree hosts are well documented, but the mechanisms involved in these interactions are poorly understood. The objectives of this study were to measure the effects of below- and/or aboveground competition from the vines Lonicera japonica and Parthenocissus quinquefolia on availability of light, water, and nitrogen to the host tree Liquidambar styraciflua, and to examine the relationship between resource availability and tree growth. Light penetration through tree canopies, pre-dawn leaf water potential, and leaf nitrogen concentration were used as predictors of light, water, and nitrogen availability to the tree, respectively. Vine presence significantly reduced light penetration through the tree canopies, but this reduction was not clearly related to the growth responses of trees. Vines did not reduce the pre-dawn leaf water potential of competing trees, which was consistently above -0.5 MPa for the duration of the study. Leaf nitrogen concentration of trees, on the other hand, was significantly reduced by belowground competition with L. japonica. The positive correlation between the annual average leaf nitrogen concentration and tree diameter growth suggested that competition for nitrogen mediated the effects of belowground competition of vines on tree growth. 相似文献
14.
15.
Laboratory-germinated seedlings from Connecticut, New Jersey, Illinois, Tennessee, Texas, and Florida were compared under four photoperiod temperature programs. Under each controlled condition, seedlings of northernmost provenances demonstrated least stem elongation and earliest dormancy. Greatest sensitivity to cool temperatures and short photoperiods was demonstrated by northernmost provenances. At warm temperatures, dormant bud formation was controlled by photoperiod in all populations tested except those from Texas and Florida. The reported differences among populations reflect the effects of natural selection upon different Liquidambar populations, insuring survival of the species in various habitats. 相似文献
16.
Robert B. Kaul 《American journal of botany》1979,66(9):1062-1066
Two populations of Sagittaria brevirostra from the same lake were sampled 10 years apart and yielded similar data on inflorescence structure and on numbers and ratios of male and female flowers. Larger inflorescences have relatively more male than female flowers than do smaller inflorescences. Pollination success is unrelated to inflorescence size or sex ratio within an inflorescence. 相似文献
17.
Seedlings of Atriplex hortensis were studied to ascertain; 1) in which organ the primary thickening meristem (PTM) first differentiates; 2) the direction of differentiation of the PTM, and 3) the pattern of differentiation of conjunctive tissue. The PTM initially differentiates in pericycle of the primary root base 11 days after emergence of the primary root. It then differentiates in the transition region of the hypocotyl, mostly in cells of pericycle between pairs of vascular bundles. In the upper hypocotyl, PTM differentiates by day 20 in the inner layer of cortical parenchyma. In the epicotyl, PTM apparently differentiates in the inner layer of cortex, by day 24. Desmogic xylem differentiates from radial files of internal conjunctive tissue cells and desmogic phloem differentiates opposite desmogic xylem strands from newly formed cells of external conjunctive tissue. No interfascicular cambium differentiates in the root, hypocotyl, or epicotyl. 相似文献
18.
19.
Development of alkaloidal vesicles in laticifers of opium poppy, Papaver somniferum L., was investigated at the ultrastructural level. Laticifer initials possessed abundant endoplasmic reticulum throughout their dense cytoplasm. During differentiation the endoplasmic reticulum organized into long, folded sheets that were parallel to the longitudinal walls along the periphery of the cell. Vesicles appeared to be derived from dilation of endoplasmic reticulum. This relationship was confirmed through cytochemical data obtained with zinc iodide-osmium tetroxide and osmium tetroxide impregnation. Alkaloidal vesicles had electron-dense regions or caps that occurred early in laticifer differentiation, but these caps became less conspicuous in mature cells. Caps appeared to be derived from small particles which condensed along the inner surface of the vesicle membrane and subsequently accumulated at one or two positions along the membrane of the vesicle. 相似文献
20.
ONTOGENY AND THE HIERARCHY OF TYPES 总被引:1,自引:0,他引:1
OLIVIER RIEPPEL 《Cladistics : the international journal of the Willi Hennig Society》1985,1(3):234-246
Abstract— The long history of belief in a parallelism between ontogeny and a hierarchical order of natural things is reviewed. The meaning of von Baerian recapitulation is analyzed and its implications for cladistic methodology are discussed at two levels: ontogeny and homology. The basic problem inherent in the purported parallelism is that the order of natural things (i.e., the taxic approach to homology) is part of the "world of being" of Platonic ideas, whereas ontogeny and phylogeny (i.e., the transformational approach to homology) belong to Plato's "world of becoming." These two "genera of existence," as Plato put it, being and becoming, are incompatible but complementary views of nature. 相似文献