首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary In a study of the biochemical basis of seed dispersal by ants, elaiosomes of Acacia myrtifolia and Tetratheca stenocarpa induced seed collection: intact diaspores and elaiosomes were taken rapidly by ants while most seeds remained on the forest floor. Extracts of elaiosomes (non-polar lipids, polar lipids, and aqueous fractions) were differentially collected by ants. Small pieces of pith impregnated with the polar lipid fraction from elaiosomes of either species elicited a removal rate by ants equivalent to that of intact elaiosomes and significantly higher than that of untreated pith. The non-polar lipid fraction, highest in concentration in elaiosomes of both species, elicited removal that did not differ from that of untreated pith. In T. stenocarpa, however, the aqueous fraction also induced removal equivalent to the polar lipid fraction. 1,2-Diglycerides with unsaturated groups are present in the active polar fractions of both species and unsaturated oleate is the major acid group of the glycerides in elaiosomes. Most oleate-containing compounds tested were taken more rapidly by ants than saturated compounds, and oleic acid, associated with corpse-carrying in ants, induced rapid removal. 1,2-Diolein, but not 1,3-diolein, was taken suggesting that the specific configuration of fatty acid moieties influences collection by ants. We hypothesize that a small suite of oleyl-containing compounds in elaiosomes elicit a stereotyped carrying response by a variety of ants. While the nutrient composition of elaiosomes may provide the underlying selective advantage for ants in seed dispersal, specific compounds may manipulate their behaviour and maximize seed dispersal.  相似文献   

2.
Erythronium japonicum (Liliaceae) inhabits deciduous mesic forests of Hokkaido, northern Japan. Myrmecochory of this species was investigated, especially the dispersal frequency, the effect of seed predators and the seed fall pattern. In the quadrat census using marked seeds of E. japonicum, the ant Myrmica kotokui frequently transported the seeds. However, the frequency of seed removal was low and most seeds were dispersed as little as 1 m or less. The spatial distribution of E. japonicum individuals was nearly random and most seedlings were established 5–20 cm away from the fertile plants, indicating that even this small scale of seed dispersal contributes to avoiding crowding of seedlings. Some arthropods, e.g. springtails, spiders and ticks, hindered seed dispersal by devouring elaiosomes and seeds. Although ground beetle species also damaged seeds and elaiosomes, a few of them exhibited seed removal behaviour. E. japonicum dropped their seeds not all at once but bit by bit, taking 3–6 days to drop all seeds. This seed-fall pattern was effective in raising the frequency of seed removal by ants and reducing seed predation by some arthropods.  相似文献   

3.
Rowles AD  O'Dowd DJ 《Oecologia》2009,158(4):709-716
The indirect effects of biological invasions on native communities are poorly understood. Disruption of native ant communities following invasion by the Argentine ant (Linepithema humile) is widely reported to lead indirectly to the near complete collapse of seed dispersal services. In coastal scrub in southeastern Australia, we examined seed dispersal and handling of two native and two invasive alien plant species at Argentine ant-invaded or -uninvaded sites. The Argentine ant virtually eliminates the native keystone disperser Rhytidoponera victoriae, but seed dispersal did not collapse following invasion. Indeed, Argentine ants directly accounted for 92% of all ant-seed interactions and sustained overall seed dispersal rates. Nevertheless, dispersal quantity and quality among seed species differed between Argentine ant-invaded and -uninvaded sites. Argentine ants removed significantly fewer native Acacia retinodes seeds, but significantly more small seeds of invasive Polygala myrtifolia than did native ants at uninvaded sites. They also handled significantly more large seeds of A. sophorae, but rarely moved them >5 cm, instead recruiting en masse, consuming elaiosomes piecemeal and burying seeds in situ. In contrast, Argentine ants transported and interred P. myrtifolia seeds in their shallow nests. Experiments with artificial diaspores that varied in diaspore and elaiosome masses, but kept seed morphology and elaiosome quality constant, showed that removal by L. humile depended on the interaction of seed size and percentage elaiosome reward. Small diaspores were frequently taken, independent of high or low elaiosome reward, but large artificial diaspores with high reward instead elicited mass recruitment by Argentine ants and were rarely moved. Thus, Argentine ants appear to favour some diaspore types and reject others based largely on diaspore size and percentage reward. Such variability in response indirectly reduces native seed dispersal and can directly facilitate the spread of an invasive alien shrub.  相似文献   

4.
Seed dispersal by ants (i.e. myrmecochory) is usually considered as a mutualism: ants feed on nutritive bodies, called elaiosomes, before rejecting and dispersing seeds in their nest surroundings. While mechanisms of plant dispersal in the field are well documented, the behaviour of the ant partner was rarely investigated in details. Here, we compared in laboratory conditions the foraging behaviour of two ant species, the omnivorous Lasius niger and the insectivorous Myrmica rubra to which seeds of two European myrmecochorous plants (Chelidonium majus and Viola odorata) were given. Ant colonies were simultaneously presented three types of items: entire seeds with elaiosome (SE), seeds without elaiosome (S) and detached elaiosomes (E). The presence of elaiosomes on seeds did not attract workers from a distance since ants first contact equally each type of items. Although ants are mass-recruiting species, we never observed any recruitment nor trail-laying behaviour towards seeds. For ants having contacted seed items, their antennation, manipulation and seed retrieval behaviour strongly varied depending on the species of each partner. Antennation behaviour, followed by a loss of contact, was the most frequent ant-seed interaction and can be considered as a “hesitation” clue. For both plant species, insectivorous Myrmica ants removed items in larger number and at higher speed than Lasius. This fits with the hypothesis of a convergence between odours of elaiosomes and insect preys. For both ant species, the small Chelidonium seeds were retrieved in higher proportion than Viola ones, confirming the hypothesis that ants prefer the higher elaiosome/diaspore-ratio. Thus, in these crossed experiments, the ant-plant pair Myrmica/Chelidonium was the most effective as ants removed quickly almost all items after a few antennations. The presence of an elaiosome body increased the seed removal by ants excepting for Myrmica which retrieved all Chelidonium seeds, even those deprived of their elaiosome. After 24 h, all the retrieved seeds were rejected out of the nest to the refuse piles. In at least half of these rejected items, the elaiosome was discarded by ants. Species-specific patterns and behavioural differences in the dynamics of myrmecochory are discussed at the light of ant ecology. Received 10 September 2007; revised 5 February 2008; accepted 5 March 2008.  相似文献   

5.
6.
Seed dispersal by ants is an important means of migration for plants. Many myrmecochorous plants have specialized appendages in their seeds called elaiosome, which provides nutritional rewards for ants, and enable effective seed dispersal. However, some nonmyrmecochorous seeds without elaiosomes are also dispersed by ant species, suggesting the additional mechanisms other than elaiosomes for seed dispersal by ants. The seeds of the achlorophyllous and myco‐heterotrophic herbaceous plant Monotropastrum humile are very small without elaiosomes; we investigated whether odor of the seeds could mediate seed dispersal by ants. We performed a bioassay using seeds of M. humile and the ant Nylanderia flavipes to demonstrate ant‐mediated seed dispersal. We also analyzed the volatile odors emitted from M. humile seeds and conducted bioassays using dummy seeds coated with seed volatiles. Although elaiosomes were absent from the M. humile seeds, the ants carried the seeds to their nests. They also carried the dummy seeds coated with the seed volatile mixture to the nest and left some dummy seeds inside the nest and discarded the rest of the dummy seeds outside the nest with a bias toward specific locations, which might be conducive to germination. We concluded that, in M. humile seeds, volatile odor mixtures were sufficient to induce seed‐carrying behavior by the ants even without elaiosomes.  相似文献   

7.
The potential explosive seed dispersal under controlled conditions and the dispersal by ants in natural populations are compared between two diplochoric species: Jatropha hieronymi Kuntze and J. excisa Griseb. The seeds of J. hieronymi are more than eightfold heavier than J. excisa seeds, and were explosively dispersed considerably further distances, reaching a maximum of almost 18 m. The differences in explosive dispersal distances between the two species seem to depend on both carpel wall thickness of the fruit and aerodynamic shape of the seed. Seed removal by ants was positively correlated with the presence of the elaiosome and was higher for J. excisa (83.6%) than for J. hieronymi (31.6%). Seed size was the major factor affecting the removal by ants, as only large bodied ants were able to transport the large seeds of J. hieronymi. The larger size and the higher oleic acid content of the elaiosomes of J. hieronymi seeds had no influence on the observed removal rates by ants. In contrast, ants transported the J. hieronymi seeds further distances than J. excisa seeds. Jatropha hieronymi distances achieved by both dispersal modes are in the range of the furthest distances described for a diplochorous species. Finally, the possible advantages of this dispersal mode in arid zones are discussed.  相似文献   

8.
It has been suggested that one of the selective advantages of ant dispersal is the burial of seeds in ant nests where predators such as small rodents cannot find them. The elaiosomes of Corydalis aurea (Fumariaceae) are extremely attractive to ants, which assiduously gather the seeds and take them to nests. However, seed production commonly exceeds the gathering capacity of ants so that seeds accumulate beneath the parent plants. In spite of this, no signs of rodent predation are evident. Experiments with a major seed predator, the deer mouse Peromyscus maniculatus, show that when given the choice of seeds with and without elaiosomes, the mice consume significantly more seeds without elaiosomes. This remains true whether or not the intact seeds bear fresh, moist elaiosomes or dry, withered ones. Our experiments strongly suggest that the elaiosome has a dual function, the attraction of the ant seed dispersers and the repulsion of seed predators.  相似文献   

9.
In beech-dominated forests in Central Europe, many spring geophytes show adaptations to seed dispersal by ants (myrmecochory). Ants, however, can be rare in such moist forests. Motivated by observations of slug feeding on seeds we investigated the seed consumption of two plant species, Anemone nemorosa and Asarum europaeum, by slugs, in a series of experiments. In a seed predation experiment in a beech forest, we found that seed removal was strongly reduced when gastropods were excluded from the seed depots. The contribution of insects, including ants, and rodents to seed removal was relatively less but differed between May and July. In the laboratory, slug species, in particular Arion sp., consumed seeds of both plant species. Slugs either consumed the elaiosomes of seeds or swallowed seeds intact. Swallowed seeds were defecated undamaged and germinated as well as control seeds when buried overwinter, indicating the potential for seed dispersal by slugs. We also recovered seeds of myrmecochores in the faeces of several slugs caught in forests. In a slug release experiment in the forest, slugs moved up to 14.6 m (mean 4.4 m) in 15 h, which is the median gut passage time of seeds based on measurements made in the laboratory. We also found that when slug-defecated seeds were offered to rodents, these were less attractive than control seeds, suggesting that passage through the slug gut reduces seed predation risk. Our results demonstrate that slugs are significant consumers of elaiosomes or entire seeds of ant-dispersed plants and that they can function as seed dispersers of these plants.  相似文献   

10.
Both species of Dendromecon are diplochorous, that is, the seeds are first scattered from the mother plant by violently dehiscing capsules and then transported further away by ants, which are strongly attracted to the elaiosome at the micropylar end of the seed. The tensions that cause the capsule to explode develop between the two carpels and also between lateral and central fiber strands in the capsular valves. The elaiosome is unusual in that it contains large quntities of starch in addition to the commonly present fatty oils and that it is more drought resistant than most known elaiosomes. Seed dispersal is very efficient over short distances, but migration barriers a few hundred meters or more cannot be crossed except by chance dispersal. Dendromecon differs strikingly from most ant-dispersed plants in being woody and xerophytic; so far, D. rigida is the only chaparral plant known to be habitually dispersed by ants. The presence of an auto-chorous-myrmecochorous type of seed dispersal in D. rigida may partly explain the polymorphism of this species, since this type of seed dispersal tends to keep local populations isolated. The nearly complete correspondence, anatomically, morphologically, and functionally, between the fruit of Dendromecon and that of Eschscholzia strongly supports the idea of a close taxonomic relationship between these two genera. The seed appendage is believed to be a “recent” specialization in Dendromecon, phylogenetically independent from seed appendages facilitating dispersal by ants in other genera of the Papaveraceae.  相似文献   

11.
Genet survival in seeds of Acacia suaveolens was examined through both dispersal and dormancy in the soil in populations near Sydney. Following initial passive seed-fall, the majority of seeds lie within a 1 m radius of the stem of the parent. Further dispersal is predominately mediated by ants. A. suaveolens seeds possess an elaiosome which attracts ants. When elaiosomes are removed, the potential for further dispersal of seeds is greatly reduced. Three species of ant disperse seeds of A. suaveolens and the fate of seeds following ant dispersal was observed to depend on the particular species of ant involved. Ants of both Iridomyrmex sp. and Pheidole sp. B are too small to drag seeds and, instead, ants of these species usually remove the elaiosome in situ, with little dispersal of the-seed resulting. Ants of Pheidole sp. A are larger and disperse seeds further, frequently taking them into their nests where the elaisosome is removed. Seeds are retained inside the nests and incorporated into the floors and walls of passageways and chambers. Several supposed ‘advantages’ of myrmecochory were examined but none were verified. Instead, two distinct ‘disadvantages’ were identified. These were: burial of seeds by ants of Pheidole sp. A into ‘unsafe sites’; and too deep a burial of seeds in nests for seeds to receive a stimulus to germinate during fires, and for seedlings to emerge successfully. Outside nests of Pheidole sp. A. seeds are concentrated in the top 5 cm of the soil, whilst within nests of these ants, seeds are found up to 15 cm deep. The dynamics of various components of the soil seed-bank were examined using seeds buried in nylon mesh containers. The seed-bank is persistent without annual recruitment to seedlings, enabling a population to persist as seeds after all above-ground plants have perished.  相似文献   

12.
Both rewards and signals are important in mutualisms. In myrmecochory, or seed dispersal by ants, the benefits to plants are relatively well studied, but less is known about why ants pick up and move seeds. We examined seed dispersal by the ant Aphaenogaster rudis of four co-occurring species of plants, and tested whether morphology, chemical signaling, or the nutritional quality of fatty seed appendages called elaiosomes influenced dispersal rates. In removal trials, ants quickly collected diaspores (seeds plus elaiosomes) of Asarum canadense, Trillium grandiflorum, and Sanguinaria canadensis, but largely neglected those of T. erectum. This discrepancy was not explained by differences in the bulk cost-benefit ratio, as assessed by the ratio of seed to elaiosome mass. We also provisioned colonies with diaspores from one of these four plant species or no diaspores as a control. Colonies performed best when fed S. canadensis diaspores, worst when fed T. grandiflorum, and intermediately when fed A. canadense, T. erectum, or no diaspores. Thus, the nutritional rewards in elaiosomes affected colony performance, but did not completely predict seed removal. Instead, high levels of oleic acid in T. grandiflorum elaiosomes may explain why ants disperse these diaspores even though they reduce ant colony performance. We show for the first time that different elaiosome-bearing plants provide rewards of different quality to ant colonies, but also that ants appear unable to accurately assess reward quality when encountering seeds. Instead, we suggest that signals can trump rewards as attractants of ants to seeds.  相似文献   

13.
Ant behaviour and seed morphology: a missing link of myrmecochory   总被引:2,自引:2,他引:0  
Gómez C  Espadaler X  Bas JM 《Oecologia》2005,146(2):244-246
Seed dispersal by ants (myrmecochory) is mediated by the presence of a lipid-rich appendage (elaiosome) on the seed that induces a variety of ants to collect the diaspores. When seeds mature or fall onto the ground, these ant species transport them to their nest. After eating the elaiosome, the seed is discarded in nest galleries or outside, in the midden or farther away, where seeds can potentially germinate. The final location of seeds with their elaiosomes removed was evaluated to assess the importance of possible handles (structures that ants can grasp to carry) in transporting ants during re-dispersal experiments of seeds from nests of six species of ants. The results indicate that seeds remained within the nest because the ants were not able to transport them out of the nest. As a consequence of the elaiosome being removed, small ant species could not take Euphorbia characias seeds out of their nests. Only large ant species could remove E. characias seeds from their nests. Attaching an artificial handle to E. characias seeds allowed small ant species to redistribute the seeds from their nests. On the other hand, Rhamnus alaternus seeds that have a natural handle after the elaiosome removal were removed from the nests by both groups of ant species. If a seed has an element that acts as a handle, it will eventually get taken out of the nest. The ants’ size and their mandible gap can determine the outcome of the interaction (i.e. the pattern of the final seed shadow) and as a consequence, could influence the events that take place after the dispersal process.  相似文献   

14.
Myrmecochory commonly complements the advantages of ballistic dispersal in diplochorous species. We studied the role of the elaiosome in two populations of the two diplochorous Mediterranean spurges Euphorbia boetica and E. nicaeensis, which share an efficient ballistic dispersal mechanism followed by secondary removal by ants. They differ in elaiosome persistence, as most E. boetica seeds lose the elaiosome during explosive dispersal. Self-assessed dietary preferences with seeds with and without elaiosomes of each species showed differences in behaviour among and within ant species. In general, the absence of elaiosome entailed a decrease in the number of disperser ant species interacting with the seeds, whereas the number of predatory ants remains invariable. However, in one population of E. nicaeensis, experimental elimination of the elaiosome did not affect seed removal by mutualistic ants. On the other hand, analysis of refuse piles of the granivorous Messor marocanus and M. bouvieri suggests that they act as seed predators in E. boetica, whereas unintentional dispersal can be important in E. nicaeensis. We suggest, therefore, that the presence of the elaiosome in the seeds of the studied spurges increases the interaction with disperser ant species, but the possible dispersal advantage is not apparent and is spatially variable.  相似文献   

15.
Seeds are often carried by omnivorous ants even if they do not carry elaiosomes. Although many seeds carried by ants are consumed, both seeds abandoned during the seed carrying and leftover seeds are consequently dispersed (dyszoochory). These non-myrmecochorous seeds do not necessarily attract ants quickly. Therefore, these seeds often seem to be exposed to the danger of consumption by pre-dispersal seed predators. We propose the hypotheses, “seed predator deterrence hypothesis” that plants may benefit from seed-carrying ants if they deter seed predators from visiting plants, and seed-carrying ants may play additional roles in plant reproductive success, besides dyszoochory by ants. To test the hypotheses, we investigated the abundance of seed-carrying ants of the species Tetramorium tsushimae Linnaeus and Pheidole noda Smith F., and of the seed predatory stinkbug, Nysius plebeius Distat, on the spotted sandmat, Chamaesyce maculata L. Small, of which the seeds have no elaiosomes but are consumed by both ants and bugs. In the field, ants and stinkbugs seldom encountered each other on the plant. The number of stinkbugs beneath the plants with ants was smaller than that beneath the plants without ants. In laboratory experiments, the number of stinkbugs on the shoot was smaller when ants were present than when they were absent. These results might support the seed predator deterrence hypothesis: the probability of seed predation by stinkbugs seems to be reduced by the ant visits on plants and/or the existence of ants beneath the plants. This study highlights a new ant–plant interaction in seed dispersal by ants.  相似文献   

16.
Reward removal is an essential step for seed dispersal mutualism because residual rewards inhibit germination. Nevertheless, variation in the reward removal efficiency (RRE) among dispersers and its consequences for germination have rarely been reported. In this study, we compared the RREs of two sympatric seed-dispersing ants, Formica japonica and Pheidole noda, using seeds of the ant-dispersed sedge Carex tristachya. Then, we conducted seed sowing experiments in a non-heated glasshouse to evaluate the effect of RRE on the percentage and speed of germination. The majority (85%) of seeds handled by F. japonica had residual elaiosomes, while elaiosomes were completely removed from all seeds handled by P. noda, demonstrating that P. noda has much higher RRE than F. japonica. The seed sowing experiments revealed that RRE, defined by the presence or absence of residual elaiosomes, was not associated with the percentage germination within a year. However, high RRE seeds with no residual elaiosomes germinated significantly faster than low RRE seeds with residual elaiosomes. Similarly, artificial removal of elaiosomes from C. tristachya seeds accelerated germination speed without affecting germination percentage. These results suggest that RRE is one of the most important parameters determining the effectiveness of a seed dispersal agent.  相似文献   

17.
Erythronium dens-canis is a geophyte which produces a single flower each season. The fruits produce small seeds with relatively large elaiosomes. We performed experiments to investigate primary and secondary seed dispersal mechanisms of this species in different habitats in the western part of the Cantabrian Range in northwest Spain. Sticky traps were used to measure primary dispersal of seeds up to 0.5 m from mother plants. Seed cafeteria experiments were performed in different habitats to examine the role of ants and rodents in secondary seed transport and seed predation. Our results indicate that: (a) primary seed dispersal is positively skewed (99% of seeds fall within 20 cm of the mother plant) and seed dispersal distances vary significantly among plants; (b) secondary dispersal is exclusively by myrmecochory, although the proportion of seeds removed by ants differs significantly among habitats; (c) ant species composition and abundances vary among habitats; and (d) freshly dropped seeds are more likely to be removed than seeds that have begun to dry out. We conclude that secondary dispersal of seeds is greatly influenced by habitat but not by small-scale microhabitat. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Myrmecochorous plant seeds have nutrient rich appendages, elaiosomes, which induce some ant species to carry the seeds back to their nest where the elaiosome is consumed and the seed is discarded unharmed. The benefits to plants of dispersal of their seeds in this way have been well documented, but the benefits to the ants from consuming the elaiosomes have rarely been measured and are less clear. Ant benefits from myrmecochory were investigated in a laboratory experiment using the ant Myrmica ruginodis and seeds of Ulex species. To separate the effects of elaiosome consumption on the development of newly produced larvae versus existing larvae, ten ‘Queenright’ colonies containing a queen were compared to ten ‘Queenless’ colonies. Six measures of colony fitness over a complete annual cycle were taken: sexual production, larval weight and number, pupal weight and number, and worker survival. Queenless colonies fed with elaiosomes produced 100.0±29.3 (mean ± SE) of larvae compared to non-elaiosome fed colonies which produced 49.6±19.0; an increase of 102%. Larval weight increased in both Queenright and Queenless colonies. In colonies fed with elaiosomes, larvae weighed 1.02±0.1 mg, but in non-elaiosome fed colonies larvae weighed 0.69±0.1 mg; an increase of 48%. The food supplement provided by Ulex elaiosomes was trivial in energetic terms, under the conditions of an ample diet, suggesting that these effects might be due to the presence of essential nutrients. Chemical analysis of Ulex elaiosomes showed the presence of four essential fatty acids and four essential sterols for ants.  相似文献   

19.
Pizo  Marco A.  Oliveira  Paulo S. 《Plant Ecology》2001,157(1):37-52
Ants are often attracted to diaspores not adapted for dispersal by ants. These diaspores may occasionally benefit from this interaction. We selected six nonmyrmecochorous plant species (Virola oleifera, Eugenia stictosepala, Cabralea canjerana, Citharexylum myrianthum, Alchornea glandulosa and Hyeronima alchorneoides) whose diaspores differ in size and lipid content, and investigated how these features affect the outcome of ant-diaspore interactions on the floor of a lowland Atlantic forest of Southeast Brazil. A total of 23 ant species were seen interacting with diaspores on the forest floor. Ants were generally rapid at discovering and cleaning the diaspore pulp or aril. Recruitment rate and ant attendance were higher for lipid-rich diaspores than for lipid-poor ones. Removal rate and displacement distance were higher for small diaspores. The large ponerine ant Pachycondyla striata, one of the most frequent attendants to lipid-rich arillate diaspores, transported the latter into their nests and discarded clean intact seeds on refuse piles outside the nest. Germination tests with cleaned and uncleaned diaspores revealed that the removal of pulp or aril may increase germination success in Virola oleifera, Cabralea canjerana, Citharexylum myrianthum and Alchornea glandulosa. Gas chromatography analyses revealed a close similarity in the fatty acid composition of the arils of the lipid-rich diaspores and the elaiosome of a typical myrmecochorous seed (Ricinus communis), corroborating the suggestion that some arils and elaiosomes are chemically similar. Although ant-derived benefits to diaspores – secondary dispersal and/or increased germination – varied among the six plant species studied, the results enhanced the role of ant-diaspore interactions in the post-dispersal fates of nonmyrmecochorous seeds in tropical forests. The size and the lipid-content of the diaspores were shown to be major determinants of the outcome of such interactions.  相似文献   

20.
Many plant species use ants as seed dispersers. This dispersal mode is considered to be susceptible to disturbances, but the effect of natural, small-scale disturbances is still unknown. We investigated how small-scale disturbances due to inundation affect seed dispersal in Viola reichenbachiana, a dominant myrmecochorous herb in riparian forests. Inundation disturbances were high in depressions and low on hillocks of the forest floor. We found that V. reichenbachiana was similarly abundant at highly and less disturbed sites, contrary to other, non ant-dispersed species. We also found that the motivation of ants to disperse seeds was higher at highly disturbed sites. Nevertheless, the number of seeds dispersed was similar at highly disturbed and weakly disturbed sites and seedlings of V. reichenbachiana were equally abundant. We conclude that inundation disturbances do not interfere with mutualistic seed dispersal by ants in V. reichenbachiana, and suggest that this may possibly contribute to the persistence of V. reichenbachiana under inundation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号