首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined genetic variation in sympatric diploid and polyploid brine shrimp Artemia parthenogenetica from each of three populations (China, Italy and Spain). Italian and Spanish tetraploids are closely related (I=0.964). Diploids and tetraploids within each of the two European populations are also closely related (mean I=0.905). Most alleles found in diploids also exist in sympatric polyploids. In contrast, the asexual Artemia (2N, 4N and 5N) in our study share few alleles with their close sexual relative, A. tunisiana (mean I=0.002). These results, as well as the work of other authors, strongly suggest that at least the tetraploid Artemia in our study have an autopolyploid origin.Clonal diversity of polyploid Artemia can be very high at least in some population. Both diploids and polyploids had low clonal diversities in the populations dominated by polyploids and high clonal diversities in the population dominated by diploids.The most common genotypes of sympatric diploid and polyploid Artemia frequently differed. Some alleles occurred only in diploids, while others were restricted to polyploids. These results suggest that polyploidy in Artemia has led to genetic divergence from diploid progenitors, and that ploidy-level variation must also be considered in developing an understanding of spatial and temporal allozyme polymorphism in asexual populations.  相似文献   

2.
Analysis of 368 plants derived from 239 natural populations showed that this taxonomically perplexing and wide-ranging species-complex consists of diploids (n = 8), tetraploids, hexaploids and octoploids. Microsporocytes were the source of most of the chromosome counts. Meiosis was basically regular. Multivalent formation was uncommon, but 11 % of all the plants examined had one or more full-sized extra chromosomes. The frequency of plants with extra chromosomes varied significantly among the taxa, from 0 (five varieties) to over 20 % (two varieties). Except in one instance, where one population yielded a diploid and a triploid, different ploidy levels were not found in the same population. The frequency of diploid, tetraploid, hexaploid and octoploid populations was, respectively, 71, 22, 4 and 2%. Variety obovatum appears to be exclusively diploid, and var. aphanactis exclusively tetraploid. Diploids and one or more polyploid levels occurred in the other taxa. No correlation was found between polyploidy and geological history, soils, topography or climate, nor were the polyploids more widely distributed than the diploids. Some of the polyploid populations seem to have been derived from inter-varietal hybridizations, but others do not. The complex has a “pillar” structure in which 10 diploid taxa support a three-level polyploid superstructure. The available evidence suggests that the major role of polyploidy here has been to stabilize the products of intra- and inter-varietal hybridizations.  相似文献   

3.
104 populations of 15 Nordic species (2x–16x) of the taxonomically complex genusDraba were investigated using enzyme electrophoresis. The polyploids were genetic alloploids showing high levels of fixed heterozygosity and electrophoretic variation; the diploids were homozygous and genetically depauperate. Thus, the data suggest that alloploidy in arctic-alpineDraba serves as an escape from genetic depauperation caused by inbreeding at the diploid level. Although some populations probably have local alloploid origins, electrophoretic data indicate that several polyploids have migrated repeatedly into the Nordic area.Draba crassifolia (2n = 40) is probably octoploid based on x = 5. A hypothesis on the evolutionary history of the polyploids based on x = 8 is presented. Diploids contributing to numerous polyploid genomes and multiple origins of polyploids have seriously blurred taxonomic relationships. Relationships inferred from genetic data do not always correspond to those based on morphology; two morphologically very similar polyploids,D. alpina andD. oxycarpa, were, for example, genetically distant and probably represent independent lineages.  相似文献   

4.
Shifting drainage patterns in western North America, shaped by geological activity and changing global climates, have influenced the evolution of many aquatic taxa. We investigated the role of late Pleistocene high stands in pluvial Lake Lahontan on the genetic structure of Richardsonius egregius, a minnow endemic to the Lahontan Basin of the western Great Basin. We used the mitochondrial cytochrome b gene to generate a phylogeny and assess intraspecific genetic diversity, to estimate divergence times between clades, and to evaluate whether gene flow currently occurs. The results obtained show that R. egregius exhibits genetic divergence between eastern and western Lahontan Basin populations. Divergence time estimates show that intraspecific genetic diversification began in the Pliocene or early Pleistocene, before the pluvial lake high stands associated with the last glacial maximum. These results imply that the fluctuating water levels in pluvial Lake Lahontan had a minimal effect on shaping the genetic architecture of R. egregius. Coalescent analyses using the immigration with migration model show that contemporary gene flow between eastern and western Lahontan Basin populations does not occur. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 163–176.  相似文献   

5.
Establishment of polyploid individuals within diploid populations is theoretically unlikely unless polyploids are reproductively isolated, pre-zygotically, through assortative pollination. Here, we quantify the contribution of pollinator diversity and foraging behaviour to assortative pollen deposition in three mixed-ploidy populations of Chamerion angustifolium (Onagraceae). Diploids and tetraploids were not differentiated with respect to composition of insect visitors. However, foraging patterns of the three most common insect visitors (all bees) reinforced assortative pollination. Bees visited tetraploids disproportionately often and exhibited higher constancy on tetraploids in all three populations. In total, 73% of all bee flights were between flowers of the same ploidy (2x–2x, 4x–4x); 58% of all flights to diploids and 83% to tetraploids originated from diploid and tetraploid plants, respectively. Patterns of pollen deposition on stigmas mirrored pollinator foraging behaviour; 73% of all pollen on stigmas (70 and 75% of pollen on diploid and tetraploid stigmas, respectively) came from within-ploidy pollinations. These results indicate that pollinators contribute to high rates of pre-zygotic reproductive isolation. If patterns of fertilization track pollen deposition, pollinator–plant interactions may help explain the persistence and spread of tetraploids in mixed-ploidy populations.  相似文献   

6.
A brief history of Great Basin pikas   总被引:3,自引:1,他引:2  
Aim Within the past few decades, seven of the 25 historically described populations of American pikas (Ochotona princeps) in the Great Basin of arid western North America appear to have become extinct. In this paper, the prehistoric record for pikas in the Great Basin is used to place these losses in deeper historical context. Location The Great Basin, or area of internal drainage, of the western United States. Methods The location, elevation, and age of all reported prehistoric Great Basin specimens of American pikas were extracted from the literature. Elevations of extinct pika populations were arrayed through time, and latitudes and longitudes of those populations used to determine changing distances of those populations from the nearest extant populations. Results The average elevation of now‐extinct Great Basin pika populations during the late Wisconsinan (c. 40,000–10,000 radiocarbon years ago) and early Holocene (c. 10,000–7500 years ago) was 1750 m. During the hot and dry middle Holocene (c. 7500–4500 years ago), the average elevation of these populations rose 435 m, to 2168 m. All prehistorically known late Holocene (c. 4500–200 years ago) populations in the Great Basin are from mountain ranges that currently support populations of this animal, but historic period losses have caused the average elevation of pika populations to rise an additional 152 m. The total elevational increase, from the late Wisconsinan and early Holocene to today, has been 783 m. As lower elevation pika populations were lost, their distribution increasingly came to resemble its modern form. During the late Wisconsinan, now‐extinct pika populations were located an average of 170 km from the nearest extant population. By the late Holocene, this distance had declined to 30 km. Main conclusions Prehistoric alterations in the distribution of pika population in the Great Basin were driven by climate change and attendant impacts on vegetation. Today, Great Basin pikas contend with both climate change and anthropogenic impacts and thus may be on the brink of extinction.  相似文献   

7.
The Mylagaulidae are a family of burrowing rodents abundant in Miocene faunas from western North America. Recent taxonomic revisions of mylagaulids from the Great Plains suggest that their systematics may be best understood on a regional basis. Previous studies addressed the taxonomy and evolutionary history of mylagaulids from the Great Basin, but recent discoveries of specimens, new phylogenetic data, and more detailed stratigraphical information necessitate a thorough reanalysis of their relationships and occurrences. We present a revision of the systematics of the mylagaulids from the Great Basin. In addition to rare large mylagaulids of uncertain taxonomic affinity, we recognize four species of mylagaulids distributed throughout Oregon and Nevada from the late Hemingfordian through to the early late Hemphillian: Alphagaulus vetus, Hesperogaulus gazini, Hesperogaulus wilsoni, and a new species from the genus Hesperogaulus. All species are known from large sample sizes of isolated premolars, allowing consideration of ontogenetic variation in determining the key morphological differences that allow recognition of different species. Although the number of enamel lakes varies within a given taxon, the presence of some of these lakes is taxonomically significant. This result emphasizes the importance of understanding ontogeny in describing species of fossil hypsodont mammals. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 164 , 427–450.  相似文献   

8.
Aim Recent work indicates that desert assemblages have elevated beta (β) diversity (between‐locality turnover of species composition). This study compares β diversities between the Great Basin and the Great Plains of the western USA over the last 17 Myr. Today, the Great Basin is a topographically diverse desert scrubland to woodland and the Great Plains are low‐relief temperate grassland, but 17 Ma they were more similar in topography, climate and land cover. A georeferenced database of mammal occurrences, complied from several sources, is used to test two hypotheses for the elevation of Great Basin β diversity: (1) that tectonic change of the topography has driven increased habitat packing in high‐ and low‐elevation habitats, and (2) that climatic cycling in the Pleistocene has driven faunas from neighbouring provinces to overlap in the region. Location The Great Basin of the USA, centred on Nevada, and the central Great Plains of the USA, centred on Nebraska. Methods Mammalian faunal lists compiled from published records and the records of many museums, available online, were partitioned into time‐slices ranging from the recent to 17 Myr old. Beta diversity was calculated for each time‐slice in two ways: multiplicative β diversity using first‐order jackknife richness, and additive beta diversity using Simpson's evenness. Results Beta diversity is elevated in Nevada relative to Nebraska today. Beta diversity has been higher in the Great Basin since the Pleistocene and possibly since the late Early Hemphillian (c. 7 Ma). Beta diversity in the Late Barstovian (c. 13.5 Ma) of the Great Plains was higher even than β diversity in the Great Basin of today. Main conclusions The elevated β diversity in the Hemphillian supports the tectonic change hypothesis. The patterns of β diversity in the Recent, Pleistocene and Hemphillian all suggest that local‐scale processes are important. The β diversity of the Late Barstovian Great Plains supports other studies indicating increased primary productivity or species packing.  相似文献   

9.
During the last 12,000 to 30,000 years, a large proportion of the dominant trees and shrubs in modem assemblages of woodland and shrub steppe vegetation in the northwestern Great Basin have undergone relatively small changes in their geographic ranges. A woodland tree, Juniperus osteosperma, has an extensive temporal and spatial fossil record from 11 woodrat midden locales that were sampled in the northwestern Great Basin. Above 1,300 m elevation, J. osteosperma has been continuously present in that fossil record for at least the last 30,000 years. However, J. osteosperma was lost at elevations below 1,300 m sometime during the last 10,000 years, during the Holocene. Although the elevational ranges of six shrub taxa show changes during the Holocene, geographic ranges of 11 other shrub taxa have been largely static. Of the woodland and shrub steppe species examined, Pinus monophylla has experienced the greatest change in its geographic range during the late-Pleistocene and Holocene. Pinus monophylla has migrated northward across the Great Basin from Pleistocene refugia in the southern portions of this region. The rate of latitudinal migration was more rapid along the eastern side of the Great Basin than on the western side. Thus, the species that comprise modern woodland and shrub steppe communities of the northwestern Great Basin appear to have two strategies to cope with climate change. First are species, as exemplified by J. osteosperma, whose geographic ranges were relatively insensitive to climate change and are termed orthoselective species. High genetic variation within species and the formation of coenospecies likely allowed these species to cope with climatic change by genetic adaptation. Secondly, other species, as exemplified by P. monophylla, have experienced shifts in their geographic range during past climate changes and more clearly fit the migration model of species response to climate change.  相似文献   

10.
Pinus sabiniana Dougl. (grey pine) forms savanna forests in the foothills surrounding California's Great Central Valley. However, its fossil record, which dates from the late Miocene through the Pliocene and Pleistocene, is found exclusively in southern California, south of the species’ present range. A total of twenty-nine isozyme loci, representing eighteen enzyme systems, was assayed to analyse the genetic structure in eight populations of grey pine and attempt to track its migration history from southern to northern California. Expected heterozygosity in the two southernmost samples was 0.128 and 0.150, and heterozygosity tended to decrease with increasing latitude, suggesting the loss of diversity as grey pine dispersed northward. However, genetic distances between populations were very small, even on opposite sides of the treeless Great Central Valley; and estimated time since divergence was 900 to 9000 years at a maximum. Wright's FST, the proportion of total genetic diversity among populations, was only 0.057, which is similar to values found in many conifers with continuous distributions. Nm, the number of migrants among populations per generation, was 4.1 to 6.7, depending on estimator, and indicates that gene flow is extensive, or was so in the recent past. In every population, observed heterozygosity was less than expected heterozygosity, and the fixation index, FIS, for the progeny was 0.128, which indicates a fairly high rate of inbreeding. The genetic similarity of disjunct populations, in combination with paleogeographic and paleoclimatic evidence, suggests that grey pine formed a continuous population throughout the Great Central Valley, perhaps between 12,000 and 8000 yrs BP . Its range became fragmented during the Xerothermic, when it ascended into the foothills. Gaps in its range correlate with late Pleistocene–early Holocene lakes in adjacent basins and with the Sacramento–San Joaquin Delta.  相似文献   

11.
Three widespread ploidy levels have evolved in Claytonia virginica, a diploid represented by n = 8, 7, and 6 races, a triploid primarily by n = 12 and 11, and a tetraploid by n = 16, 15, 14, and other aneutetraploids. In addition, sporadic higher polyploids (5x–24x) occur throughout eastern North America. These data are considered briefly in relation to meiotic behavior, to coexistence of major cytotypes, and to speciation.  相似文献   

12.
Cytogeographical variability among 564 plants from 26 populations of Turnera sidoides subsp. pinnatifida in mountain ranges of central Argentina was analysed with meiotic chromosome counts and flow cytometry and is described at regional and local scales. Populations were primarily tetraploids (2n = 4x = 28), although diploid (2n = 2x = 14), hexaploid (2n = 2x = 42), and mixed populations of diploids and triploids (2n = 3x = 21) were also found. Diploids, triploids, and hexaploids were fewer in number and restricted to narrow areas, while tetraploids were the most common and geographically widespread cytotype. Diploids grew at higher altitudes and in colder and wet locations; tetraploids had the broadest ecological spectrum, while hexaploids occurred at the lowest altitudes and in drier conditions. The cytotypes were also spatially segregated at a microgeographical scale. Diploids grew in the piedmont, tetraploids were in the adjacent valley, and in the contact zone of both cytotypes, patches of diploids and triploids were found. At a regional scale, the distribution of the cytotypes may be governed by a combination of ecological and historical variables, while segregation in the contact zone may be independent of the selective environment because the cytotypes are unable to coexist as a result of reproductive exclusion. The role of triploids is also discussed.  相似文献   

13.
The diversity of Laurentian Great Lakes ciscoes (Coregonus artedi, sensu lato) arose via repeated local adaptive divergence including deepwater ciscoes that are now extirpated or threatened. The nigripinnis form, or Blackfin Cisco, is extirpated from the Great Lakes and remains only in Lake Nipigon. Putative nigripinnis populations were recently discovered in sympatry with artedi in a historical drainage system of glacial Lake Algonquin, the precursor of lakes Michigan and Huron. Given the apparent convergence on Great Lakes form, we labeled this form blackfin. Here, we test the hypothesis that nigripinnis may have colonized this area from the Great Lakes as a distinct lineage. It would then represent a relict occurrence of the historical diversity of Great Lakes ciscoes. Alternatively, blackfin could have evolved in situ in several lakes. We captured more than 600 individuals in the benthic or pelagic habitat in 14 lakes in or near Algonquin Provincial Park (Ontario, Canada). Fish were compared based on habitat, morphology, and genetic variation at 6,676 SNPs. Contrary to our expectations, both cisco and blackfin belonged to an Atlantic lineage that colonized the area from the east, not from the Great Lakes. Sympatric cisco and blackfin were closely related while fish from different lakes were genetically differentiated, strongly suggesting the repeated in situ origin of each form. Across lakes, there was a continuum of ecological, morphological, and genetic differentiation that could be associated with alternative resources and lake characteristics. This study uncovers a new component of cisco diversity in inland lakes of Canada that evolved independently from ciscoes of the Laurentian Great lakes. The diversity of cisco revealed in this study and across their Canadian range presents a challenge for designating conservation units at the intraspecific level within the framework of the Committee on the Status of Endangered Wildlife in Canada (COSEWIC).  相似文献   

14.
Draba (Brassicaceae) is well known for its taxonomic complexity in arctic and alpine floras, and the polyploids in particular present vexing taxonomic problems. It has been suggested that polyploids in Draba may have formed recurrently from different populations of the parental species (polytopy), and it is also possible that a given taxonomic species may actually comprise several polyploid races, each originating from different progenitor species (polyphyly). To unravel the taxonomic complexity of polyploid Draba in the Nordic area, we investigated three of the most morphologically variable species and their possible progenitors using enzyme electrophoresis and restriction site analysis of chloroplast DNA (cpDNA) and nuclear ribosomal RNA genes (rDNA): D. norvegica (6x), D. lactea (6x), and D. corymbosa (16x). Electrophoretic analyses of progeny showed high levels of fixed heterozygosity in all three polyploids, demonstrating that all are genetic alloploids. Electrophoretic and rDNA data indicate that polytopic and/or polyphyletic origins have contributed to the complexity of these polyploids. However, a lack of cpDNA variation among the species limited the usefulness of this molecule for analysis of polyploid origins. The considerable electrophoretic variation observed in D. norvegica necessitates a minimum of three and probably 13 independent origins. Electrophoretic and rDNA data suggest that D. lactea and D. corymbosa are polyphyletic polyploids. Crossing data also support that D. corymbosa is polyphyletic. Given the widespread geographic distributions of these species and their possible progenitors, and that the populations analyzed represent only a small fraction of their geographic distributions, it is likely that these species have formed numerous times in different areas. As more molecular analyses of polyploids are completed, the data continue to suggest that multiple origins of polyploids are the rule rather than the exception.  相似文献   

15.
During the Pleistocene, when the climate was wetter and cooler, aquatic habitats in the Great Basin of western North America were much more extensive and connected. As the climate warmed over the last 10000 years, many of these habitats dried but others remained as isolated springs and inland lakes. The isolation of desert springs and lack of dispersal between populations of non-vagile species (e.g. fish, spring snails) has led to genetic differentiation and speciation. However, the extent to which vagile species of aquatic insects disperse from spring to spring is unknown. We examined the population genetics of two caddisflies, Hesperophylax designatus (Limnephilidae) and Lepidostoma ojanum (Lepidostomatidae) that occur in isolated springs in Nevada and eastern California to determine the extent of their dispersal from spring to spring. Mitochondrial DNA sequences indicate that the populations of L. ojanum are isolated and that the populations represent management units. In contrast, H. designatus individuals are flying from spring to spring and their populations are connected by dispersal. Disturbance impacts (e.g. grazing by ungulates, water extraction) that eliminate poor dispersers (e.g. L. ojanum) locally may result in permanent losses of genetic diversity; this is less likely with broader dispersers such as H. designatus.  相似文献   

16.

Alkaline soda lakes are unique habitats found in specific geographic regions, usually with dry climate. The Carpathian Basin is one of those regions very important for habitat and biodiversity conservation in Europe, with natural soda lakes found in Austria, Hungary and Serbia. In comparison to other two countries from Central Europe, algal biodiversity studies of saline soda lakes in Serbia are scarce. Lake Velika Rusanda has the highest measured salinity of all saline lakes in the Carpathian Basin and there were no reports of its diatom species richness and diversity till now. We conducted 2-year investigation programme to study biodiversity and seasonal dynamics of diatoms in this lake. A total of 27 diatom taxa were found, almost all of them attached to reed and much less in benthos and plankton. Five new diatom species for Serbia were recorded, Craticula halopannonica, Navicymbula pusilla, Hantzschia weyprechtii, Nitzschia thermaloides and Navicula staffordiae. The last mentioned is new for Europe as well. Lake Velika Rusanda is inhabited mostly by alkaliphilous and halophilic diatoms. Since diatoms are used as bioindicators in soda lakes, our results will improve their further application in ecological status assessment of these fragile habitats in the Carpathian Basin.

  相似文献   

17.
Analysis of 512 plants derived from 200 populations shows that the widely distributed western North American Chaenactis douglasii species-complex consists of diploids (n = 6), triploids, tetraploids, and hexaploids. Microsporocytes were the source of most of the chromosome counts. About 9% of all plants examined had one or more full-sized extra chromosomes. Multivalents, usually a ring or chain of four chromosomes, were almost entirely restricted to polyploids, where one or more were identified in 38% of the tetraploids and 33% of the hexaploids. With two exceptions, diploids and polyploids were not found in the same population. Frequencies of diploid, triploid, tetraploid, and hexaploid populations were, respectively, 34, 1.5, 55 and 9.5%. With significant exceptions, diploid populations predominate in the Pacific and Rocky Mountain Systems, whereas polyploid ones are most frequent in the intervening plateaus. Ploidy level is correlated with age of substrate, rather than with climate, elevation, vegetation, or soil type. Range, morphology, ploidy level, and meiotic behavior suggest that var. achilleifolia tetraploids and hexaploids are descendents of hybrids between other variants of the complex. The diploid-tetraploid-hexaploid geographic distribution and the age of the substrates where each tends to occur suggest that the complex evolved in late Cenozoic time in response to major climatic and geologic changes that induced migration and hybridization. The hybrid derivatives, stabilized by polyploidy and tolerant of increasing aridity, came to occupy newly available habitats in areas disturbed by volcanic activity and glacial or glacial-related processes.  相似文献   

18.
Selfish genetic elements may be important in promoting evolutionary change. Paternal sex ratio (PSR) is a selfish B chromosome that causes all‐male families in the haplodiploid parasitic wasp Nasonia vitripennis, by inducing paternal genome loss in fertilized eggs. The natural distribution and frequency of this chromosome in North American populations of N. vitripennis was investigated using a combination of phenotypic and molecular assays. Sampling throughout North America failed to recover PSR except from populations in the Great Basin area of western North America. Extensive sampling of Great Basin populations revealed PSR in frequencies ranging from 0 to 6% at different collection sites, and extended its distribution to Idaho and Wyoming. Intensive sampling in upstate New York did not detect the chromosome. Frequencies of the maternal‐sex ratio distorter (MSR), son killer (SK) and virgin females ranged from 0 to 12%. Paternal sex ratio may be restricted to the Great Basin because its spread is hampered by geographical barriers, or because populations in other areas are not conducive to PSR maintenance. However, it cannot be ruled out that PSR occurs in other regions at very low frequencies. The apparent limited distribution and low frequency of PSR suggest that it will have relatively little impact on genome evolution in Nasonia.  相似文献   

19.
Chromosome numbers are presented for 99 populations of 13 species of Antennaria, including A. plantaginifolia, A. neglecta, A. virginica, A. solitaria, A. racemosa, A. corymbosa. A. rosea, A. media, A. Parlinii, A. fallax, A. neodioica, A. canadensis, and A. petaloidea. Four species from the eastern United States (A. plantaginifolia, A. neglecta, A. solitaria, and A. virginica) were determined as diploid (n = 14), and these are all sexual. Diploid counts were also obtained for two sexual species (A. racemosa and A. corymbosa) from the western United States. Chromosome counts are presented for two heteroploid agamic complexes occurring in the eastern United States; these include what have traditionally been referred to as A. Parlinii, A. fallax, A. neodioica, A. canadensis, and A. petaloidea. Determinations of 2n = 56, 70, 84, and 112 were obtained for the A. Parlinii and A. fallax groups, where 2n = 84 had been the only number previously reported. Numbers of 2n = 84 were confirmed for A. petaloidea and A. canadensis and 2n = 56 for A. neodioica. The western United States polyploid species (A. rosea and A. media) are reported as 2n = 56. The presence of apomixis is correlated with polyploidy. The distribution of chromosome numbers in eastern United States Antennaria demonstrates that two diploids and many polyploids occur above the glacial margin, and thus there is an increase in the frequency of polyploidy with latitude. Colonization of the glaciated region by Antennaria following the recession of the Wisconsin ice sheet is also discussed. Many of the polyploids occur only in the glaciated region, thus suggesting a recent origin for these cytotypes. There is evidence indicating that the original base number in Antennaria may be x = 7.  相似文献   

20.
The highland fish fauna of eastern North America consists of Appalachian and Ozark centers of endemism separated by the intervening Glacial Till Plains. Clades within these areas are more closely related phylogenetically to each other than to clades occurring in the intervening formerly glaciated region, suggesting that the Pleistocene glaciations fragmented a widespread highland region and its associated fauna. Alternatively, it is possible that these faunal assemblages predate the glaciations or that recent dispersals may have been more important than vicariance in determining faunal compositions. We examined the relationships among mitochondrial DNA (mtDNA) haplotypes within five clades of highland fishes, each with a distribution suggestive of a Pleistocene vicariance event. Darters of the subgenera Litocara and Odontopholis have distributions and mtDNA relationships that are consistent with the Pleistocene integration and burial of the Teays-Mahomet valley, a major drainage of the early Pleistocene. The distribution and mtDNA relationships among subspecies of Erimystax dissimilis are not consistent with Pleistocene vicariance, but relationships among Appalachian haplotypes are consistent with the late Pleistocene integration of the modern Ohio River system. Both Cottus carolinae and the Fundulus catenatus species group have representatives in the Mobile basin consistent with pre-Pleistocene divergences. Three haplotype clusters were found in C. carolinae, corresponding to the Appalachian, Ozark, and upper Kanawha River populations. However, Appalachian and Ozark F. catenatus populations are paraphyletic with respect to each other. This, coupled with a relatively low degree of sequence divergence, suggests that no long-term barriers to gene flow exist for C. carolinae and F. catenatus. These three distinct phylogeographic patterns indicate that Pleistocene vicariance is not the only explanation for the Appalachian-Ozark distribution of highland fish communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号