首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Cultivated chrysanthemums, especially the greenhouse series of ‘Indianapolis’ cultivars, are probably periclinal chimeras for flower color. Therefore, in vitro propagation of chrysanthemum, which has recently been described, might produce plants not true to type. To test this, plantlets were generated from cultures of petal segments, petal epidermis, and shoot tips; these plantlets were grown to flowering to determine whether chrysanthemums with two genetically different chimeral layers in the petals are stable in tissue culture. Layer I displaced layer II in the formation of new meristematic areas in shoot tip and petal culture, showing that such chimeras are unstable in culture. Many more abnormal morphological types were exhibited by the plants which were regenerated from petal cultures rather than those from shoot tip cultures. Abnormalities included quilled and incised petal forms, as well as lack of anthocyanin pigmentation, characteristics which may not be attributable to the rearrangement of chimeral layers. Paramutation, true mutation, and environmenal effects are offered as possible explanations for this phenomenon.  相似文献   

2.
以分布于秦岭的金花忍冬(Lonicera chrysantha Turcz.)、忍冬(L.japonica Thunb.)、葱皮忍冬(L.ferdinandii Franch.)和金银忍冬(L.maackii(Rupr.)Maxim.)为对象,通过定位观察、人工授粉实验、人为设置实验斑块的方法对忍冬属4种植物的开花生物学特性、繁育系统、花色变化现象、传粉过程进行了研究。结果表明,4种植物的单花花期、花部特征存在差异。人工授粉实验显示,4种植物均存在一定的花粉限制,自交不亲和。除葱皮忍冬外,其余3种植物随着花色由白变黄,花粉和花蜜报酬减少、雌雄生殖能力逐渐降低;葱皮忍冬花变色后花蜜量变化不显著,且仍保留较强的雌性生殖能力。变色花的保留被认为是植物的一种生殖策略,通过增大植物的花展示来扩大自身的吸引力,以吸引更多远距传粉者访花。人为控制白、黄花不同数量比的实验结果表明,大多数传粉者偏向访问白花(变色前的花),且白花提供的报酬量和黄花(变色后的花)数量显著影响传粉者的访花频率,即当花蜜量减少或黄花数量增多时,传粉者访花频率随之降低。因此,我们认为忍冬属4种植物的花色变化可能除了增大植物对远距传粉者的吸引力外,对近距传粉者的访花行为也可能具有一定的影响。当传粉者接近植株时,变色后的花可能暗示其花蜜(花粉)报酬已经发生变化,并驱使昆虫离开并飞向同株或异株植物新开放的报酬丰富的白花,这既有利于提高传粉者的觅食效率,又能降低植物同株异花授粉的几率,对忍冬属植物及传粉者都具有重要意义,是植物长期与授粉昆虫相互适应的反映。  相似文献   

3.
Floral gradient in flowering tobacco in relation to free amino acids   总被引:1,自引:0,他引:1  
By employing TCLs (thin cell layers) culture, the floral gradient in flowering tobacco of different developmental stages was confirmed. The TCLs from early flowering tobacco regenerated more floral buds than those from the tobacco plants in full blooming or fruiting stages. Analysis of free amino acid levels revealed the acropetal gradient of Pro in flowering tobacco stem. L-Pro. L-Trp. D,L-Met and L-Arg were respectively added into the culture medium for testing their influence on floral bud formation from tobacco pedicel segments. Only L-Trp evidently enhanced the floral bud neoformation.  相似文献   

4.
The effects of water stress, abscisic acid (ABA), and gibberellic acid (GA3) on flower production and differentiation by Collomia grandiflora were investigated. An untreated plant typically produced both small, closed cleistogamous (CL) and large, open chasmogamous (CH) flowers. The larger corolla of CH flowers was due to a greater cell number and size. When plants were water-stressed or sprayed with ABA, both the percentage of CH flowers and the total number of flowers were reduced significantly. The corolla dimensions and epidermal cell numbers and sizes of CL flowers produced by water-stressed and ABA-sprayed plants did not differ from those of CL flowers produced by control plants. Application of GA3 to both well-watered and water-stressed plants significantly increased the percentage of CH flowers formed compared to well-watered controls. In the absence of GA3, water-stressed plants produced almost entirely CL flowers. GA3-sprayed plants produced CH flowers whose corolla dimensions were intermediate between those of CL and CH flowers formed by control plants. Epidermal cells of these intermediate corollas were reduced only in number and not in size when compared to control CH flowers. Endogenous levels of ABA and gibberellins may control the type of flower produced by C. grandiflora and may mediate some of the observable effects of water stress on flowering.  相似文献   

5.
I examined the adaptive significance of two floral traits in the perennial herb, Lupinus argenteus: 1) the retention of corollas on “spent” flowers, i.e., flowers containing inviable pollen, unreceptive stigmas, and negligible pollinator rewards and 2) a change in corolla color of retained “spent” flowers, which is restricted to a spot on the banner petal. At anthesis, this spot is yellow, and approximately four days later, it changes to purple. After the change, purple flowers remain on plants an additional 5–7 days before corolla abscission occurs; purple flowers were avoided by pollinators, presumably because they contained less pollen (rewards) than yellow ones. I experimentally tested the hypothesis that purple flowers contribute to the floral display of the plant by removing varying numbers of spent flowers and assessing the effect on pollination visitation. Pollinators preferentially approached and foraged on plants with greater numbers of flowers per inflorescence; they did not discriminate between yellow (rewarding) and purple (nonrewarding) flowers at interplant distances greater than 0.4 meters but would preferentially forage on plants with more total flowers, even if these individuals contained fewer rewarding flowers. Thus, spent flowers increased the overall attractiveness of plants to pollinators. In theory, color change may benefit plants in two ways. First, by directing pollinators to rewarding flowers, the change may increase pollinator foraging efficiency, with the result that pollinators visit more flowers before leaving plants (pollinator-tenure mechanism). Second, by directing pollinators to receptive flowers, the color change may prevent incoming pollen from being wasted on unreceptive stigmas and may prevent collection of inviable pollen (pollination-efficiency mechanism). I tested the pollinator-tenure mechanism experimentally by removing pollen from yellow flowers, thereby reducing the reliability of the color-reward signal. Pollinators visited fewer total flowers on experimental plants than on controls, resulting in reduced seed production in one year.  相似文献   

6.
The flowering biology and pollination ecology ofLoranthus acaciae was studied at Hazeva in the northern Arava Valley in Israel. Flowers at anthesis had red anthers, a red stigma and a green corolla which turned red as a postfloral phenomenon. Their flowering period was approximately 10 months long (from mid-June until mid-April) during which time two main flowering patterns were distinguished. Some plants flowered twice a year, with separate summer and winter flowering periods; other plants flowered continuously, with two peaks, one in the summer and one in the winter. Several significant differences between summer and winter flowering and fruiting were found: (1) the summer flowering period was shorter than that of winter, (2) flowering synchrony between individual plants was lower in summer than in winter, (3) in summer the plants produced a larger proportion of female flowers, whereas in winter most of the plants produced a larger proportion of hermaphrodites, (4) in summer a limited number of plants produced smaller flowers while the majority produced normal-sized flowers, whereas in winter the entire population produced only normal-sized flowers, and (5) fruit set percentage was lower in summer than in winter.L. acaciae was found to be self-compatible, but, since it was not spontaneously self-pollinated, it showed high dependence on pollinator activity. In summer the flowers were visited by a wide spectrum of pollinators, both birds and insects, while in winter flowers were visited almost exclusively by the orange-tufted sunbird (Nectarinia osea osea, Nectariniidae). These seasonal changes in flowering characteristics and pollinator activity could explain why reproductive success is higher in winter than in summer.  相似文献   

7.
Plants of the foliarly variegated cultivar Saintpaulia ionantha Tommie Lou and the florally variegated cultivar Candy Lou were regenerated through tissue culture from leaf sections, petal sections, and subepidermal tissue. This provided explants with derivatives of all histogen layers of the shoot apex, layers I and II only, and layers II and III only. Over 1,000 plants of Tommie Lou and Candy Lou were grown to flowering. A low level of phenotypic variation was observed, but in no case could this be attributed to the separation of genotypically distinct cell lines. The foliar variegation pattern of both cultivars was stable through in vitro propagation. In contrast, the chimeral components of the flower color pattern in Candy Lou separated during regeneration. These data demonstrate that Tommie Lou-type foliar variegation is not caused by periclinal chimerism and that all leaf cell layers possess the genetic information necessary to produce variegated foliage. The production of all green and all white plants from a radiation-induced periclinal chimera demonstrated that the system used could detect chimeral separation. These results support the contention that adventitious shoots in Saintpaulia almost always differentiate in vitro from a derivative(s) of a single histogen layer, and this layer is usually the LI.  相似文献   

8.
9.
Cell lineages were followed throughout floral ontogeny in cytochimeral peaches [Prunus persica (L.) Batsch] by observations of chromosome number and nuclear size. The contribution of the three apical cell layers to the organs of the flowers was determined. In addition to the epidermal tissue, L-I produced several layers of cells at the suture of the ovary wall, seven or eight cell layers of the nucellus at the micropylar end of the ovule, and almost all of the integuments. L-II gave rise to extensive internal tissue in the calyx and corolla tubes and to all internal tissue of the petal, anther, and ovule except for a small region at the base of the latter two organs. L-III contributed significantly only to the central region of the calyx and corolla tubes and the ovary wall. A single apical layer gave rise to several different tissues, and at times a single tissue was made up of cells from 1–3 different apical layers. Within the limits imposed by their genotype the final form of differentiated cells was determined by their position in the mature organ and not by the apical layer from which they were derived. The corolla tube was shown to be a single structure, congenitally fused, and the ovary to be ontogenetically fused at the suture.  相似文献   

10.
In many ornithophilous Loranthaceae pollination is accompanied by an explosive opening of the flowers, and diverse mechanisms have evolved in different genera to bring this about. These are described for the African genera Erianthemum, Englerina, Tapinanthus, Globimetula, Vanwykia and Plicosepalus. In many genera tensions within the stamens cause the tubular corolla to split along the petal junctions to form window-like fenestrae. The flowers are pollinated mainly by sunbirds which insert their beaks through the fenestrae in search of the abundant nectar. This action causes the tube to split and the stamens to coil inwards explosively. In Globimetula and many species of Tapinanthus pigment is secreted along the edges of the specialized petal segments of the head, the spathulae. Probing along these secretory junctions causes the spathulae to reflex; further probing splits the corolla tube, and allows the stamens to coil inwards explosively. In Globimetula reflexure of the petals exposes the central column of stamens, between which secondary fenestrae are developed. In Plicosepalus curvature of the corolla tube is connected with a more specialized fenestral structure; flower opening is not explosive, and the open flowers continue to be visited regularly by sunbirds. In Vanwykia an early stage in the development of explosive flower-opening is found.  相似文献   

11.

Key message

Genetic modulation of the carotenogenesis in I. germanica ‘Fire Bride’ by ectopic expression of a crtB gene causes several flower parts to develop novel orange and pink colors.

Abstract

Flower color in tall bearded irises (Iris germanica L.) is determined by two distinct biochemical pathways; the carotenoid pathway, which imparts yellow, orange and pink hues and the anthocyanin pathway, which produces blue, violet and maroon flowers. Red-flowered I. germanica do not exist in nature and conventional breeding methods have thus far failed to produce them. With a goal of developing iris cultivars with red flowers, we transformed a pink iris I. germanica, ‘Fire Bride’, with a bacterial phytoene synthase gene (crtB) from Pantoea agglomerans under the control of the promoter region of a gene for capsanthin–capsorubin synthase from Lilium lancifolium (Llccs). This approach aimed to increase the flux of metabolites into the carotenoid biosynthetic pathway and lead to elevated levels of lycopene and darker pink or red flowers. Iris callus tissue ectopically expressing the crtB gene exhibited a color change from yellow to pink-orange and red, due to accumulation of lycopene. Transgenic iris plants, regenerated from the crtB-transgenic calli, showed prominent color changes in the ovaries (green to orange), flower stalk (green to orange), and anthers (white to pink), while the standards and falls showed no significant differences in color when compared to control plants. HPLC and UHPLC analysis confirmed that the color changes were primarily due to the accumulation of lycopene. In this study, we showed that ectopic expression of a crtB can be used to successfully alter the color of certain flower parts in I. germanica ‘Fire Bride’ and produce new flower traits.  相似文献   

12.
Begonia x elatior plantlets which regenerated from leaf disk callus showed variations in plant morphology, number of flowers per plant, and flower size. Variations in flowering period, number of flowers per plant, and flower morphology were observed in Saintpaulia ionantha L. plants directly regenerated from leaf disk explants. The cytokinins, benzylaminopurine and zeatin, tested in the culture medium did not affect the basic plant characteristics including flower colour which remained stable in both species. Micropropagation of selected somaclones having the desirable trait of high number of flowers per plant was stable in the MV2 and MV3 generations.  相似文献   

13.
Many workers have demonstrated a genetic basis for variation in inflorescence traits, but this variation can also have an environmental component. Because flowering can incur significant water costs, I estimated plasticity of inflorescence traits of three populations of Lobelia siphilitica in response to drought. I manipulated soil water availability in the greenhouse and measured seven inflorescence traits. Under drought conditions, plants from one population flowered later and produced fewer flowers with shorter corollas and narrower landing pads. In contrast, the height of the flowering stalk decreased in response to drought in all three populations. Consequently, pollinator-mediated natural selection on these plastic traits may depend on soil water availability. Plastic responses differed between genotypes only for the height of the flowering stalk and the length of the corolla tube and only in one or two populations. This suggests that genotype × environment interactions would not limit the evolution of inflorescence traits in L. siphilitica. The strength and sign of phenotypic correlations among inflorescence traits did not respond plastically to drought, suggesting that indirect selection on inflorescence traits of L. siphilitica will not vary strongly with water availability. My results suggest that plasticity of inflorescence traits may influence their evolution, but the effects are population- and trait-specific.  相似文献   

14.
Flow cytometry and microsatellite analyses were used to evaluate the trueness-to-type of somatic embryogenesis-regenerated plants from six important Spanish grapevine (Vitis vinifera L.) cultivars. Tetraploid plants were regenerated through somatic embryogenesis from all of the cultivars tested with the exception of ‘Merenzao’. In addition, an octoploid plant was obtained in the cv. ‘Albariño’, and two mixoploids in ‘Torrontés’. The most probable origin of these ploidy variations is somaclonal variation. The cv. ‘Brancellao’ presented significantly more polyploids (28.57%) than any other cultivar, but it must be noted that 50% of the adult field-grown ‘Brancellao’ mother plants analysed were mixoploid. Hence, it is probable that these polyploids originated either from somaclonal variation or by separation of genotypically different cell layers through somatic embryogenesis. Microsatellite analysis of somatic embryogenesis-regenerated plants showed true-to-type varietal genotypes for all plants except six ‘Torrontés’ plants, which showed a mutant allele (231) instead of the normal one (237) at the locus VVMD5. There was not a clear relationship between the occurrence of the observed mutant regenerated plants and the callus induction media composition, the developmental stage of the inflorescences, the type of explant used for starting the cultures or the type of germination (precocious in differentiation medium or normal in germination medium) in any of the cultivars tested, except ‘Torrontés’. The mutant plants described herein have been transplanted to soil for future evaluation of putative phenotypic traits of interest. These mutants can be useful both for breeding programs and for functional genomic approaches aimed at increasing knowledge of the biology of grapevine.  相似文献   

15.
梅花‘南京红须’、‘南京红’的花色主要存在着花发育阶段导致的时间变化,反映其花色受花发育控制。二者的花色都在蕾期最浓艳,在初花期略淡,在盛花期又稍浓,在末花期最淡,尽管花瓣在花开放时便开始衰老;在整个花发育时期,同一朵花不同层次花瓣的颜色浓淡均为:外层花瓣>中层花瓣>内层花瓣,即花瓣在花冠中的具体排列位置决定着该片花瓣的特定颜色深浅;但不同层次花瓣颜色的变化趋势不完全一致。同时,两个品种外层花瓣的总黄酮含量变化与外层花瓣的色度变化成正相关。而花朵在树冠的着生部位导致的花色差异极不显著,表明‘南京红须’、‘南京红’的花色的空间变化极微。本文可为梅花红色花色的机理探索和花色色素生物合成关键酶基因cDNA克隆中的花朵选择提供参考。  相似文献   

16.
Plants were regenerated via adventitious shoot initiation from petal explants of carnation (Dianthus caryophyllus L.) cultivars Crowley Sim, Ember Rose, Orchid Beauty, Red Sim, White Sim and from stem segments of Crowley Sim, Red Sim, White Sim. Differences in cultivar response were observed, with White Sim being the most responsive for both explant types. Plants were also regenerated from receptacles of this cultivar. The effect of different cytokinins on regeneration from petal and stem explants of cultivar White Sim was compared. Thidiazuron was more effective than 6-benzylaminopurine or kinetin. In stem explants, morphogenic capacity was determined by the developmental stage of the explant. Highest percentage of shoot formation was observed in the youngest stem segments, on all the cytokinins tested. Stem-derived plants grew faster than petal or receptacle-derived plants and produced normal, flowering plants eight to ten months after culture.  相似文献   

17.
Rebecca E. Irwin 《Oikos》2000,91(3):499-506
Broad-tailed and rufous hummingbirds avoid plants and flowers that have recently been visited by nectar-robbing bees. However, the cues the hummingbirds use to make such choices are not known. To determine the proximate cues hummingbirds use to avoid visiting nectar-robbed plants, I conducted multiple field experiments and one aviary study using the nectar-robbed, hummingbird-pollinated plant Ipomopsis aggregata . In the first field experiment, free-flying hummingbirds were presented with plants in which I manipulated nectar volume and the presence of nectar-robber holes. Hummingbirds visited significantly more plants with nectar and probed more available flowers on those plants, regardless of the presence of nectar-robber holes. Thus, I hypothesized that hummingbirds may avoid robbed plants based on their spatial memory of unrewarding plants and/or visual cues that nectar absence provides. In an aviary study, I removed spatial cues by re-randomizing the position of plants after each hummingbird-foraging bout, but hummingbirds still selected plants with nectar. Nectar may provide a visual cue in I. aggregata flowers because corollas are translucent, and nectar is visible through the side of the corolla. To determine if hummingbirds use this visual cue to avoid plants with no nectar, I masked corolla translucence in a field study by painting flowers with acrylic paint. Hummingbirds still visited significantly more plants with nectar and probed more flowers on those plants, whether or not the corollas were painted. These results suggest that hummingbirds use nectar as a proximate cue to locate and avoid non-rewarding, nectar-robbed plants, even in the absence of spatial cues and simple visual cues.  相似文献   

18.
Many species of nonmodel deceptively pollinated orchids are polymorphic for corolla color. These species are pollinated by naive insects searching for nectar, and are not mimics. It has been suggested that the foraging behavior of insect pollinators during the avoidance learning process results in these stable corolla color polymorphisms; for this to occur pollinators must induce negative frequency-dependent selection on corolla color. Therefore the hypothesis that pollinator behavior results in a preference for rare color morphs of deceptive species was tested experimentally. Bumblebees (Bombus terrestris) foraged in the laboratory on arrays of artificial flowers with different corolla color morphs. Morphs were varied in frequency, and bumblebee preferences were recorded on arrays where morphs did and did not contain sucrose solution rewards. Bumblebees preferred the most common color morph when flowers contained sucrose solution rewards, but overvisited rare morphs when sampling flowers that contained no rewards. Bumblebees also tended to move between unlike color morphs when these were unrewarding, suggesting that a probabilistic sampling strategy was adopted. Thus experiments demonstrated that pollinator behavior could result in a selective advantage for rare color morphs of plant species that are pollinated by deception without mimicry, which would induce negative frequency-dependent selection on corolla color. The observed pollinator behavior could allow stable corolla color polymorphisms to be maintained by selection in nonmodel deceptively pollinated species.  相似文献   

19.
A protocol for direct differentiation of shoots from leaf segments of Litium cv ‘Orange Pixie’ was developed through in vitro methods. After hardening, tissue-raised plants were transferred in the open field conditions from the very beginning. The acclimatized plants not only grew well but flowered also at 43°C under subtropical climatic conditions and regenerated a new bulb at their base after flowering. The activity of different antioxidant enzymes like superoxide dismutase, peroxidase, catalase and ascorbate peroxidase and their isoenzymes patterns showed differential up and down regulation in control and in different parts of in vitro-raised plants. Characterization of both high and low molecular mass heat-shock proteins (HSPs) was done using HSP70 and HSP 18.1 antibodies against pea (Pisum sativum L), respectively. The level of high molecular mass proteins did not change much and was found to be of constitutive nature, whereas a new small protein of 21 kD was induced only in tissue culture-raised flowering (TF) plants indicating the possible role of this stress protein in acclimatization and flowering of Asiatic hybrid lily plants at 43°C under tropical conditions. The amount of this protein was much higher in petals as compared to stem and leaf.  相似文献   

20.
Recent advances in plant biotechnology hold great potential for the ornamental horticulture industry. In addition to conventional methods, breeders can now introduce genetic variation into ornamentals by the application of recombinant DNA technology. This technology is particularly useful for effecting changes in phenotypic expression encoded by single genes such as corolla and foliage color and texture, stem length, scent, temporal regulation of flowering, vase life of cut flowers and resistance to stressful environments. In part, the commercial success of this technology will depend on developing reliable methods of transformation of ornamentals and on the stability of the introduced or altered genes. In addition, new and improved strategies of in vitro culture have been commercially implemented for the propagation and breeding of a wide variety of ornamental crops and will undoubtedly play a major role in the screening and propagation of chimeric plants developed by recombinant DNA technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号