首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitosis and cytokinesis are described and illustrated for the first time in the mesokaryotic, catenate dinoflagellate Gonyaulax catenella. A structure similar to the central body of G. tamarensis and G. monilata is shown by light and electron microscopy to be situated intranuclearly near the arms of the U-shaped interphase nucleus, and is suggested to function in the segregation of daughter chromosomes. This structure has the fine structure of a nucleolus, and it is suggested that the term central body be replaced by persistent nucleolus (= endosome). The time required for the completion of mitosis is 4–6 hr, while cytokinesis requires at least 2 hr. Cytokinesis begins during the mitotic cycle, and the plane of fission is perpendicular to the mitotic plane of division. Parental fission moieties are retained and shared by the daughter cells while either a new antero-sinistral moiety or a posterodextral moiety is synthesized by the dividing cell.  相似文献   

2.
Phosphorylation of the lysine-rich histones throughout the cell cycle.   总被引:3,自引:0,他引:3  
R Balhorn  V Jackson  D Granner  R Chalkey 《Biochemistry》1975,14(11):2504-2511
The phosphorylating of the lysine-rich histone at various stages in the cell cycle has been studied. In rapidly dividing cell populations the lysine-rich histone is phosphorylated rapidly after synthesis and more slowly once bound to the chromosome. The half-life of hydrolysis of such interphase phosphorylation in 5 hr except during mitosis when the phosphata hydrolysis increases almost three-fold. During mitosis there is extensive phosphorylation at sites different from those phosphorylated during interphase and a smaller measure of sites common to both mitotic and interphase cells. The sites of mitotic phosphorylation are most critically distinguished from those phosphorylated in interphase by the rapidly hydrolysis of M-phase phosphohistone when the cells divide and enter the G1 phase of the cell cycle.  相似文献   

3.
The durations of the cell cycle in physiologically different regions of the meristem of cultured roots of Convolvulus arvensis were determined by the metaphase-accumulation technique involving colchicine. The cell cycle in the root cap increases from 13 hr in the actively dividing initials of the first tier to 155 hr in the slowly dividing initials of tiers 2–4 to an indeterminate value for derivatives of the initials in the root cap columella. The cycle times for the cells of the central cylinder and cortex are 21 and 27 hr, respectively. The cells of the quiescent center have a cycle of an estimated 420 hr. The duration of the cell cycle in these different regions is discussed in relation to the increased duration of G1 in slowly or non-dividing cells. The possible regulation of cell division by the synthesis of a cell-division factor in the quiescent center is also discussed.  相似文献   

4.
Kathleen Church 《Chromosoma》1979,71(3):359-370
The X chromosome can be identified with the light microscope throughout all stages of the gonial cell cycle (including interphase) in the grasshopper Brachystola magna. At gonial mitotic stages the X chromosome gives the appearance of being undercondensed or negatively heteropycnotic. At interphase the X projects out from the body of the nucleus. — Examination with the electron microscope reveals that the X is compartmentalized at least two gonial cell cycles prior to the entry of the cells into meiotic prophase. The membrane layers that envelope the X chromatin at interphase remain associated with the X chromosome throughout gonial mitotic stages providing the ultrastructural basis for the apparent negative heteropycnosis observed with the light microscope. — The X chromosome is inactive in RNA synthesis during gonial mitotic stages but is hyperactive in RNA synthesis when compared to autosomes at gonial interphase. — X chromosome condensation which reaches its maximum at premieotic interphase is initiated at or prior to the pre-pentultimate gonial division.  相似文献   

5.
Small-sized vegetative cells were found to co-occur with normal-sized cells in populations of the European bloom-forming dinoflagellate Gymnodinium cf. nagasakiense Takayama et Adachi, currently known as Gyrodinium aureolum Hulburt, but not in populations of the closely related Japanese species Gymnodiniumn agasakiense. We examined how cell size differentiation may influence growth and cell cycle progression under a 12:12-h light: dark cycle in the European taxon, as compared to the Japanese one. Cell number and volume and chlorophyll red fluorescence in both species varied widely during the photocycle. These variations generally appeared to be related lo the division period, which occurred at night, as indicated by the variations of the fraction of binucleated cells (mitotic index) as well as the distribution of cellular DNA content. “Small” cells of G. cf. nagasakiense divided mainly during the first part of the dark period, although a second minor peak of dividing cells could occur shortly before light onset. In contrast, “large” cells displayed a sharp division peak that occurred 9 h after the beginning of the dark period. The lower degree of synchrony of “small” cells could be a consequence of their faster growth. Alternatively, these data may suggest that cell division is lightly controlled by an endogenous clock in “large” cells and much more loosely controlled in “small” cells. Cells of the Japanese species, which were morphologically similar to “large” cells of the European taxon, displayed an intermediate growth pattern between the two cell types of G. cf. nagasakiense, with a division period that extended to most of the dark period.  相似文献   

6.
Summary Cells of Ditylum brightwellii, a large marine centric diatom, were partially synchronized by employing an appropriate light-dark cycle. At 20°C this consisted of 8 hrs of illumination at an intensity of 0.05 cal/cm2 min. A single 2.8 l culture was studied over a 20 day period by diluting the culture daily to a standard cell concentration. The sequence of events in cell development was as follows: daughter cells were formed late in the light period, in the dark they elongated and the numerous chromatophores began dividing. A minimum cell buoyancy was observed in the dark concurrent with cell elongation. Increase in cell phosphorus took place in the dark period. The photosynthetic rate of cells removed during the dark period decreased to a minimum. In the following light period photosynthetic rate increased to a maximum, photosynthetic pigments, cell carbon, nitrogen, and carbohydrate increased and cell division again took place. Cell silica content increased concomitant with cell division. Details of cell morphology during cell division, based upon light microscopy, are reported.Contribution of the Scripps Institution of Oceanography.  相似文献   

7.
In plants of Silene coeli-rosa, induced to flower by 7 LD, synchronisation of cell division in 20 per cent or more of the cells in the shoot apical dome was found on the 8th and 9th days after the beginning of induction, during the plastochron before sepal initiation. Synchronisation was inferred from the changes in the proportions of cells with the 2C and 4C amounts of DNA, and changes in mitotic index and labelling index. From the peaks of mitotic index a cell cycle of 10 h was measured for the synchronised cells, half that of cells in the apices of uninduced plants in short days. The faster cell cycle and synchronisation in the induced plants was associated with a shortening, of both G1 and G2, suggesting two control points, while S and M remained unchanged. These results are compared with those from other plants in which synchronisation occurs at the beginning rather than the end of evocation.Abbreviations LD long day(s) - SD short day(s) - S DNA synthesis phase of cell cycle - G1 pre-S interphase - G2 post-S interphase - M mitosis  相似文献   

8.
The kinetics of isthmal cells in mouse antrum were examined in three ways: the duration of cell cycle and DNA-synthesizing (S) stage was measured by the 'fraction of labelled mitoses' method; the duration of interphase and mitotic phases was determined from how frequently they occurred; and mice were killed at various intervals after an intravenous injection of 3H-thymidine to time the acquisition of label by the various phases of mitosis. The duration of the isthmal cell cycle was found to be 13.8 hr and that of the DNA-synthesizing (S) stage, 5.8 h. Estimates for the duration of the G1 and G2 stages were 6.8 and 1.0 hr, respectively. From the frequency of mitotic phases, defined as indicated in the preceding article (El-Alfy & Leblond, 1987) and corrected for the probability of their occurrence, it was estimated that prophase lasted 4.8 hr; metaphase, 0.2 hr; anaphase, 0.06 hr and telophase, 3.3 hr, while the interphase lasted 5.4 hr. In accordance with this, the duration of the whole mitotic process was 8.4 hr. Ten minutes after an intravenous injection of 3H-thymidine, 38% of labelled isthmal cells were in interphase and 62% in early or mid prophase, while cells in late prophase and other mitotic phases were unlabelled. After 60 min, label was in late prophase, after 120 min, in mid telophase and after 180 min, in late telophase. We conclude that there is overlap between some mitotic phases and cycle stages. Thus, while nuclei are at interphase during the early third of S, they are in prophase during the late two-thirds as well as during G2. Also, nuclei are in telophase during the early half of G1 but at interphase during the late half. Differences in nuclear diameter show that subdivision of both S and G1 into early and late periods is practical.  相似文献   

9.
The number of dividing and DNA-synthesizing cells in excised pea roots can be regulated by eliminating the carbohydrate normally supplied in the culture medium. When the excised roots were allowed to remain for 24 hr in a medium lacking carbohydrate, the number of mitotic figures and tritiated thymidine (H3-T) labeled cells was reduced almost to zero. After an additional 24 hr in the incomplete culture medium, 15% of the interphase cells were H3-T labeled, the percentage of the cells that were dividing never exceeded 1.4, and 30% of these were H3-T labeled. When the roots remained in the deficient medium for 72 hr, neither cell division nor cells synthesizing DNA were observed. Upon addition of 2% sucrose, cell division and DNA synthesis were resumed in the roots that were maintained for 24 or 72 hr without an exogenous carbohydrate supply. It has been hypothesized that some proliferative systems consist of two cellular subpopulations which selectively stop or remain in either the pre-DNA synthetic (G1) or post-DNA synthetic (G2) periods of the mitotic cycle. The addition of sucrose, H3-T, and 5-aminouracil to the medium, after the roots had been maintained for 24 hr without a carbohydrate, indicated that most of the proliferative cells in the roots had accumulated in either G1, a quasi-G1 condition, i.e., DNA synthesis stopped sometime before completion, or G2 periods of interphase; the majority, however, were in G1 or quasi-G1 conditions. The results suggested that DNA synthesis (S period) and mitosis or the onset of these processes have the highest metabolic requirements in the mitotic cycle and that G1 and G2 were the most probable states for proliferative cells in a meristem with a low metabolic level.  相似文献   

10.
Michio Ito 《Planta》1969,90(1):22-31
Summary In protonemata of Pteris vittata grown for 6 days under red light, which brings about a marked depression of mitotic activity, the first division of the cells was synchronously induced by irradiation with blue light, and subsequent cell divisions were also promoted. The peak of the mitotic index reached a maximum of about 70% at 11.5 hrs, and 90% of all protonemata divided between the 11th and 13th hour after exposure to blue light. When the protonemata were continuously irradiated with blue light, synchronism of the next cell division in the apical cells decreased to a mitotic index of about 30%, and further divisions occurred randomly.The synchronization of cell division was found to be a combined effect of red and blue light. Red light maintained the cells in the early G1 phase of the cell cycle; blue light caused the cells to progress synchronously through the cell cycle, with an average duration of 12 hr. By using 3H-thymidine, the average duration of the G1, S, G2 and M phases was determined to be about 3.5, 5, 2.5 and 1 hr, respectively.Synchronous cell division could be induced in older protonemata grown for 6 to 12 days in red light and even in protonemata having two cells. It could be repeated in the same protonema by reexposure to red light for 24 hrs or more before another irradiation with blue light.  相似文献   

11.
Single and multiple injections of 3H-TdR have been used for measuring the rate of proliferation in morphologically defined cell populations of guinea-pig bone marrow that are committed to erythroid differentiation. The conclusions are based on the analysis of absolute cell numbers in the maturational compartments, the labeling and mitotic indices, labeled mitotic curves, pulse and chase grain counts over dividing and interphase cells, and on the rate or labeling during multiple, repeated injections of 3H-TdR. The average duration of S and the rate of cycling is similar in all maturational compartments of the erythrom. The majority of cells progress to the next maturational compartment by the time they divide for the second time. All proerythroblasts and basophilic erythroblasts are in cycle. Polychromatic erythroblasts incapable of incorporating 3H-TdR reach the orthochromatic population in the span of 5-6 hr. The orthochromatic population is renewed every 20-24 hr. The number of divisions between the proerythroblast and orthochromatic erythroblast does not exceed four and some cells may undergo only two divisions during the maturation pathway. Cell input from a progenitor cell population contributes to the maintenance of the erythron. The kinetic behavior of progenitor cells is similar to that of proerythroblasts. By the time of their second division, progenitor cells may reach either the proerythroblast or basophilic erythroblast compartments. The kinetic behavior of basophilic transitional cells corresponds to the predicted behavior of the erythroblast progenitor cell pool. Several of the conclusions are based on the assumption that grain count halving is the result of cell division. In view of the evidence discussed, this assumption in the present studies seems justified.  相似文献   

12.
Terminal meristems are responsible for all primary growth of roots. It has been asserted that all cells of root meristems are actively dividing (no cells cycle slowly or arrest in the cycle) and stem cell populations expand exponentially. Because cells do not slide relative to each other in roots, relative cell lengths may be used to determine relative cell cycle durations and/or proportions of cells actively dividing in root tissues. If all cells are cycling, no interphase cells should be longer than critical length (length of longest mitotic cell in the meristem) and cells should exhibit an exponential cell-age distribution. Lengths of all cells were obtained radially across entire median longitudinal root sections at 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 mm from the founder cell/root cap boundary for five plant species to estimate percentages of cells longer than critical length. For example, up to 15 and 90% of all interphase cells were longer than critical length in 0.5 and 2.0 mm tissues, respectively, indicating that slow-cycling and/or non-proliferative cells are present in such tissues. In order to determine if the distribution of cell lengths in 0.5 mm segments approximated an exponential cell-age distribution, lengths of interphase cells less than critical length were determined. Such interphase cells were placed into ten groups according to cell length and percentages of cells in each group were compared with percentages of cells in groups calculated from an exponential cell-age distribution. Percentages of cells were significantly different from predicted percentages of between 6 and 9 out of ten groups - cell lengths were not distributed exponentially. Because there are significant numbers of interphase cells longer than critical length and since lengths of interphase cells shorter than critical length do not resemble an exponential cell-age distribution, it must be concluded that not all cells in root segments from 0.5 to 3.0 mm root segments are actively dividing. Heretofore, no databases of cell lengths have been used to test these assertions.  相似文献   

13.
Abstract. The kinetics of isthmal cells in mouse antrum were examined in three ways: (a) the duration of cell cycle and DNA-synthesizing (S) stage was measured by the 'fraction of labelled mitoses' method; (b) the duration of interphase and mitotic phases was determined from how frequently they occurred; and (c) mice were killed at various intervals after an intravenous injection of 3H-thymidine to time the acquisition of label by the various phases of mitosis.
The duration of the isthmal cell cycle was found to be 13.8 hr and that of the DNA-synthesizing (S) stage, 5.8 h. Estimates for the duration of the G1 and G2 stages were 6.8 and 1.0 hr, respectively.
From the frequency of mitotic phases, defined as indicated in the preceding article (El-Alfy & Leblond, 1987) and corrected for the probability of their occurence, it was estimated that prophase lasted 4.8 hr; metaphase, 0.2 hr; anaphase, 0.06 hr and telophase, 3.3 hr, while the interphase lasted 5.4 hr. In accordance with this, the duration of the whole mitotic process was 8.4 hr.
Ten minutes after an intravenous injection of 3H-thymidine, 38% of labelled isthmal cells were in interphase and 62% in early or mid prophase, while cells in late prophase and other mitotic phases were unlabelled. After 60 min, label was in late prophase, after 120 min, in mid telophase and after 180 min, in late telophase.
We conclude that there is overlap between some mitotic phases and cycle stages. Thus, while nuclei are at interphase during the early third of S, they are in prophase during the late two-thirds as well as during G2. Also, nuclei are in telophase during the early half of G1 but at interphase during the late half. Differences in nuclear diameter show that subdivision of both S and G1 into early and late periods is practical.  相似文献   

14.
 The ultrastructure of periclinally dividing fusiform cells was studied in the vascular cambium of Robinia pseudoacacia. Fusiform cell division begins in April at Madison, Wisconsin, when the cambial cells still have many characteristics of a dormant cambium. Soon afterward, the cambial cells acquire the appearance typical of an active cambium. Sequential phases of the microtubule cycle were documented: cortical microtubules bordering the cell wall during interphase, perinuclear microtubules preceding formation of the mitotic spindle, spindle microtubules, and phragmoplast microtubules. A preprophase band of microtubules was not encountered. An extended phragmosome was not encountered in periclinally dividing fusiform cells. During cytokinesis, the phragmosome is represented by a broad cytoplasmic plate which precedes the developing phragmoplast and cell plate as they migrate toward the ends of the cell.  相似文献   

15.
Neither colchicine nor ultracentrifugation, singly or in sequence, significantly alters the normal Rabl distribution of interphase or prophase telomeres in root tip cells of Allium cepa L. The position of telomeres was determined by C-banding, which stains A. cepa chromosomes only at the telomeres. Centrifugation displaces mitotic figures toward one side of the cell, but otherwise their mitotic configurations are little changed. These light microscope results are interpreted to show that a) interphase and prophase telomeres are attached strongly to some component of the nuclear envelope; b) a colchicine-sensitive component apparently does not attach interphase and prophase telomeres to the nuclear envelope; and c) chromosomes at all stages of the cell cycle are attached to some structure, nuclear envelope, and/or spindle fibers.  相似文献   

16.
Cells of Chlamydomonas reinhardi Dangeard were grown synchronouslyunder a 12 hr light-12 hr dark regime. Time courses of nucleardivision, chloroplast division, "apparent cytokinesis" and zoosporeliberation were followed during the vegetative cell cycle inthe synchronous culture. Liberation of zoospores occurred atabout 23–24 hr after the beginning of the light periodat 25°C. Four zoospores were produced per mother cell underthe conditions used. At lower temperatures, the process of zoosporeliberation as well as length of the cell cycle was markedlyprolonged, but the number of zoospores produced per mother cellwas approximately the same. At different light intensities,lengths of the cell cycle were virtually the same, while thenumber of zoospores liberated was larger at higher rather thanat lower light intensities. During the dark period, nuclear division, chloroplast divisionand apparent cytokinesis took place, in diis order, and proceededless synchronously than did the process of zoospore liberation.When the 12 hr dark period was replaced with a 12 hr light periodduring one cycle, the time of initiation as well as the durationof zoospore liberation was litde affected in most cases, whereasnuclear division, chloroplast division and apparent cytokinesiswere considerably accelerated by extended illumination. Whenalgal cells which had been exposed to light for 24 hr were furtherincubated in the light, zoospore liberation started much earlierand proceeded far less synchronously, compared with that under12 hr light-12 hr dark alternation. (Received October 12, 1970; )  相似文献   

17.
18.
Chara tomentosa antheridial plasmodesmata are described during proliferation and spermiogenesis. In antheridial filament cells which are cycling completely synchronously, unplugged plasmodesmata are filled with light cytoplasm. The same plasmodesmata are observed after cessation of mitotic division followed by the onset of synchronous spermiogenesis. Walls separating cells at different cell cycle stages and dividing antheridial filaments into asynchronous domains are plugged with a dense osmophilic substance. Similarly plugged plasmodesmata are present between antheridial cells of different types, e.g., capitular cells and antheridial filaments. In mid spermiogenesis when abundant endoplasmic reticulum (ER) appears temporarily it penetrates into plasmodesmata enabling cell-to-cell transport via ER cisternae. In late spermiogenesis there are no cisternae in plasmodesmata. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
V A Agafonov 《Tsitologiia》1977,19(6):612-618
The dynamics of division and interphase cell size in the growing ovule of Pinus silvestris was studied on histological slides in the year of fertilization. A constant extension in size of dividing cells of the endosperm was shown which, in this respect, do not differ much from the interphase ones. Cell division and elongation in this tissue occur simultaneously to be completed only with the transition of cell to differentiation. The size extention of the dividing cell does not influence the frequency of cell division. In the integument and the nucleus, the value of dividing cells is relatively constant. At the transition of these cells to elongation their mitotic activity decreases shaply to stop completely after-wards. Cell division and elongation are divided here in time.  相似文献   

20.
Summary Observations on the inhibition of root elongation and cell division in Allium cepa showed that the toxic effects of scandium and aluminium were very similar. Tracer uptake studies using 46Sc indicated that the rate of uptake in the apical 3.0 mm of the axis was more rapid than elsewhere in the root and proceeded in two distinct phases; Phase 1, probably superficial adsorption, was characterised by a rapid initial rate which was little affected by low temperature, the rate of Phase 2 was slower but remained constant for 24 hours and was highly dependent on temperature.Autoradiographs from roots treated for 30 min with 46Sc showed that most of the isotope in the root tip was concentrated in a peripheral belt corresponding with the mucigel layer of the root cap and it is suggested that this is the site of Phase 1 adsorption. The underlying root cap and epidermal cells retained little scandium but interior to them some isotope was associated with dividing cells; this increased steadily over 6 hour to an estimated concentration of 30 mM, and possibly represents Phase 2 uptake. Differentiation and secondary wall formation in the cortex restricted the rate of radial penetration of scandium. The primary endodermis restricted the entry of scandium into the stele at a very early stage in its development, which leads to the conclusion that migration of the ion across the root is primarily in the free space.Scandium enters the dividing cells in advance of observable effects on cell division, a situation compatible with the direct involvement of this ion in the inhibition of the mitotic cycle. Suggestions are made on the mechanisms by which polyvalent cations might disturb cell division and extension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号