首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Species composition shifts in mangrove forests may alter organic matter dynamics. The purpose of this study was to predict the effect of species replacements among mangrove trees on organic matter dynamics in a mangrove forest on the island of Kosrae, Federated States of Micronesia. We were particularly interested in elements of the carbon cycle that affect peat accumulation rates, organic matter exports to the estuary and coral reef systems, and soil microbiology. We compared organic matter production and decomposition rates among three mangrove species that commonly grow in similar hydrogeomorphic settings: Rhizophora apiculata BL, which is selectively harvested; Bruguiera gymnorrhiza, which may gradually replace Rhizophora; and Sonneratia alba, which is producing few mature fruits. Sonneratia had significantly higher rates of root production (estimated with ingrowth chambers) than Bruguiera or Rhizophora. Sonneratia foliage had significantly faster decomposition rates and significantly lower lignin:nitrogen ratios than Bruguiera foliage. Live root mass was positively correlated with ingrowth and soil carbon, although soil carbon and ingrowth were not significantly correlated with each other. Humic acid concentrations were significantly higher in Sonneratia rhizospheres than in either Bruguiera or Rhizophora rhizospheres and were positively correlated with root ingrowth. The species changes taking place on Kosrae are likely to result in lower rates of root production and foliage decomposition, and more refractory carbon pools in soil.  相似文献   

2.
Soil redox potentials and pore water sulfide concentrations on a mangrove island in the Belizean barrier reef system were significantly correlated with the presence of the aerial roots of mangrove trees. Sulfide concentrations were three to five times lower near the prop roots of Rhizophora mangle (red mangrove) and the pneumatophores of Avicennia germinans (black mangrove) than in adjacent (≤ 1 meter away) unvegetated sediment. Soil redox potentials were also significantly higher near the aerial roots. A comparison of the two species revealed that sulfide concentrations in the rhizosphere of R. mangle were as low as that of A. germinans. However, sulfide concentrations in areas occupied by the black mangrove were variable and a function of pneumatophore density. The occurrence of an oxidized rhizosphere around the roots of both species suggests that the adult trees are equally capable of exploiting reduced sediments as long as their respective pathways for root aeration are functional.  相似文献   

3.
Nutrient cycling often moves between litter fall and decomposition. It is hypothesized that hydrocarbon pollution will slow down mangrove litter decomposition because of the reduction in microbial activities. We studied decomposition rates at different levels of pollution (i.e. high and low) and amongst different mangrove species (i.e. red, white and black). For the first experiment, fresh leaves of Rhizophora racemosa were collected, sealed in a litter bag and placed on the mangrove floor for 1.24 years at which all the leaves had completely decomposed to humus and were oven‐dried and weighed to calculate the decomposition rate constant (k) of mass loss. Although there was no significant difference in the rate of decomposition (> 0.05), leaves at the highly polluted plot had lower rate of decomposition (6.58 × 10?4) when compared to leaves at the lowly polluted plot (1.75 × 10?3). In the second experiment, there was a significant difference in decomposition rates amongst species (< 0.05). Red mangrove leaves (0.41) decomposed more than white (0.28) and black (0.28) mangrove leaves. This implies that hydrocarbon pollution slowed, but did not stop the decomposition of mangrove leaves.  相似文献   

4.
The macroalgae asSociated with the mangrove vegetation of the Japanese Islands Okinawa, Ishigaki and Iriomote were investigated. The flora includes members of the red algal genera Bostrychia, Caloglossa and Catenella, as well as the brown alga Dictyotopsis propagulifera Troll, which may be considered typical of mangrove forests. The distribution of the low molecular weight carbohydrates sorbitol, dulcitol, mannitol and floridoside was studied in the mangrove algae. Their physiological role as osmoprotectors was assessed by investigating the effect of salinity on the intracellular sorbitol and dulcitol concentration in Bostrychia pinnata J. Tanaka et Chihara and on the mannitol content in D. propagulifera. In both species the polyol values increased with increasing salinity.  相似文献   

5.
A mathematical model is presented from which one can predict the likely dimensions of oxidised rhizospheres due to oxygen diffusing from roots into anaerobic media such as wet soil. The analysis applies Fick's law of diffusion to the diffusion of oxygen from a cylindrical object (the root) into a sink (the soil) which is absorbing oxygen at a constant rate M. Solution of the final equation gives the dimensions of the oxygenated rhizosphere, i.e. the distance from the root at which the oxygen concentration becomes zero. The results obtained supoprt the view that oxygen diffusing from roots will produce a rhizosphere ‘sheath’ charged with oxygen. Furthermore, some of the predicted limits for this oxygen sheath correspond with those of ferric iron sheaths around roots in waterlogged soils. Calculations also show that oxygenated rhizospheres around the roots of plants very tolerant of reducing conditions. e.g. Menyanthes trifoliata, Oryza sativa and Eriophorum angustifolium, should be from two to three times as broad as for Molinia coerulea which is a species intolerant of strong reducing conditions. Consequently if oxidation reactions are not instantaneous but occur only gradually as quantities of reduced products enter the oxygenated zone, then the plants with the larger rhizospheres will be significantly better protected from absorbing large amounts of reduced products than will those plants with smaller oxygenated zones. This may in part explain the reason for intervarietal defferences in physiological disease resistance in rice. Finally the observation is made that small lateral roots can be expected to oxygenate a zone nearly as large as, or probably larger, than the primary root from which they have arisen.  相似文献   

6.
[目的]红树林沉积物中有机物丰富,通过研究认识参与难降解天然有机多聚物的微生物降解过程及其环境作用,并获得新颖的难培养厌氧微生物。[方法]对漳州九龙江河口红树林沉积物中降解纤维素、几丁质和木质素的厌氧细菌定向富集和平板分离纯化,并对其多样性进行分析。[结果]共筛选分离获得202株厌氧细菌(82株专性厌氧细菌,120株兼性厌氧细菌),包括4个疑似新属(Lachnotalea sp.MCCC 1A16036、Varunaivibrio sp.MCCC 1A15903、Clostridium sp.MCCC 1A15884、Caminicella sp.MCCC 1A17445)和4个疑似新种(Sunxiuqinia sp.MCCC 1A15904、Pseudodesulfovibrio sp.MCCC 1A16040、Pseudodesulfovibrio sp.MCCC 1A16038、Mangrovibacterium lignilyticum MCCC1A15882)。不同天然有机多聚物富集菌群分离到的优势可培养细菌主要属于变形菌门、拟杆菌门和厚壁菌门,但种群略有差异。在纤维素和几丁...  相似文献   

7.
To examine the natural colonisation of native mangrove species into remediated exotic mangrove stands in Leizhou Bay, South China, we compared soil physical–chemical properties, community structure and recruitments of barren mangrove areas, native mangrove species plantations, and exotic mangrove species—Sonneratia apetala Buch.Ham—between plantations and natural forest. We found that severely degraded mangrove stands could not regenerate naturally without human intervention due to severely altered local environments, whereas some native species had been recruited into the 4–10 year S. apetala plantations. In the first 10 years, the exotic species S. apetala grew better than native species such as Rhizophora stylosa Griff and Kandelia candel (Linn.) Druce. The mangrove plantation gradually affected soil physical and chemical properties during its recovery. The exotic S. apetala was more competitive than native species and its plantation was able to restore soil organic matter in about 14 years. Thus, S. apetala can be considered as a pioneer species to improve degraded habitats to facilitate recolonisation by native mangrove species. However, removal to control proliferation may be needed at late stages to facilitate growth of native species. To ensure sustainability of mangroves in South China, the existing mangrove wetlands must be managed as an ecosystem, with long-term scientific monitoring program in place.  相似文献   

8.
A high frequency of dieback and mortality was found in Rhizophora mangle (red mangrove) in coastal mangrove forests of southwest Puerto Rico. Eight plots were established in a variety of mangrove environments to assess the extent and severity of the dieback and mortality. The imperfect fungus Cytospora rhizopborae was isolated consistently from stem dieback and associated canker tissues. No other pathogenic microorganisms were isolated. Pathogenicity was demonstrated in greenhouse and field inoculation experiments with C. rhizophorae using young R. mangle seedlings. In field studies of seedlings inoculated, mortality was 33 percent, and greenhouse mortality was as high as 50 percent. Cytospora rhizophorae was isolated consistently from diseased mangrove tissue; the fungus was grown in pure culture and then inoculated into healthy red mangroves, causing cankers. Koch's postulates were fulfilled by infecting R. mangle with C. rhizophorae, producing disease symptoms, and successfully re‐isolating C. rhizophorae from the diseased tissue. This is the first documentation of the pathogenicity of C. rhizophorae associated with mortality in red mangrove. In the coastal mangrove forests of southwest Puerto Rico, C. rhizophorae may play an important role in the frequency of dieback and mortality in R. mangle, producing slow stem diameter growth and causing frequent stem and root wounds.  相似文献   

9.
Fourteen microsatellite markers were isolated from the red mangrove Rhizophora mangle (Rhizophoraceae), a widely distributed mangrove plant in the New World and West Africa. The range of expected heterozygosity of these markers was 0.000–0.672 in the two populations of R. mangle. Cross-species testing was examined for five other species of Rhizophora, and Kandelia candel and Bruguiera gymnorrhiza. All 14 markers could be amplified in R. samoensis, thirteen in R. racemosa, and six markers in all other species of Rhizophora. Our findings greatly increase the utility of these markers.  相似文献   

10.
Mangrove soils are anaerobic environments rich in sulphate and organic matter. Although the sulphur cycle is one of the major actors in this ecosystem, little is known regarding the sulphur bacteria communities in mangrove soils. We investigated the abundance, composition and diversity of sulphur‐oxidizing (SOB) and sulphate‐reducing (SRB) bacteria in sediments from three Brazilian mangrove communities: two contaminated, one with oil (OilMgv) and one with urban waste and sludge (AntMgv), and one pristine (PrsMgv). The community structures were assessed using quantitative real‐time polymerase chain reaction (qPCR), polymerase chain reaction‐denaturing gradient gel electrophoresis (PCR‐DGGE) and clone libraries, using genes for the enzymes adenosine‐5′‐phosphosulphate reductase (aprA) and sulphite reductase (Dsr) (dsrB). The abundance for qPCR showed the ratio dsrB/aprA to be variable among mangroves and higher according to the gradient observed for oil contamination in the OilMgv. The PCR‐DGGE patterns analysed by Nonmetric Multidimensional Scaling revealed differences among the structures of the three mangrove communities. The clone libraries showed that Betaproteobacteria, Gammaproteobacteria and Deltaproteobacteria were the most abundant groups associated with sulphur cycling in mangrove sediments. We conclude that the microbial SOB and SRB communities in mangrove soils are different in each mangrove forest and that such microbial communities could possibly be used as a proxy for contamination in mangrove forests.  相似文献   

11.
The genotypic diversity of rhizospheric bacteria of 3 legumes including Vigna radiata, Arachis hypogaea and Acacia mangium was compared by using cultivation-dependent and cultivation-independent methods. For cultivation-dependent method, Random amplified polymorphic DNA (RAPD) profiles revealed that the bacterial genetic diversity of V. radiata and A. mangium rhizospheres was higher than that of A. hypogaea rhizosphere. For cultivation-independent method, Denaturing gradient gel electrophoresis (DGGE) profiles of PCR-amplified 16S rRNA genes revealed the difference in bacterial community and diversity of rhizospheres collected from 3 legumes. The ribotype richness which indicates species diversity, was highest in V. radiata rhizosphere, followed by A. hypogaea and A. mangium rhizospheres, respectively. Three kinds of media were used to cultivate different target groups of bacteria. The result indicates that the communities of cultivable bacteria in 3 rhizospheres recovered from nutrient agar (NA) medium were mostly different from each other, while Bradyrhizobium selective medium (BJSM) and nitrogen-free medium shaped the communities of cultivable bacteria. Nine isolates grown on BJSM were identified by 16S rRNA gene sequence analysis. These isolates were very closely related (with 96% to 99% identities) to either one of the three groups including Cupriavidus-Ralstonia group, Bacillus group and Bradyrhizobium-Bosea-Afipia group. The rhizospheres were also examined for their enzymatic patterns. Of 19 enzymes tested, 3 rhizospheres were distinguishable by the presence or the absence of leucine acrylamidase and acid phosphatase. The selected cultivable bacteria recovered from NA varied in their abilities to produce indole-acetic acid and ammnonia. The resistance to 10 antibiotics was indistinguishable among bacteria isolated from different rhizospheres.  相似文献   

12.
Plant community composition can impact ecosystem processes via litter feedbacks. Species variation in litter quality may generate different patterns of nutrient supply for plants that are dependent on litter inputs. However, it is not known whether plants grow faster in their own litter, litter from other species, or in litter mixtures from multiple species. To test whether litter identity and mixture status influenced mangrove seedling growth, biomass allocation, and stoichiometry, we performed mesocosm experiments. Two species of mangrove seedlings, Avicennia germinans, black mangrove and Rhizophora mangle, red mangrove, were exposed to all possible combinations of three mangrove litter types and were isolated from all other nutrient inputs. Litter treatments significantly altered seedling growth. Seedlings from both mangrove species grew most rapidly in litter from a different species rather than their own, irrespective of litter chemical quality, decomposition rate, and nitrogen release. Litter mixtures from white and black mangroves caused black mangroves to grow 65% more than expected. Litter treatments did not impact seedling root:shoot ratios or tissue C:N. Our finding that seedlings grow best in litter from other species may indicate a mechanism that helps sustain the coexistence of dominant species.  相似文献   

13.
Anaerobic conditions developing under ice cover affect winter survival and spring regrowth of economically important perennial crops. Our objective was to assess interspecific differences in the resistance to anaerobic conditions at low temperature, and to relate those differences to plant metabolism. Four perennial forage species, alfalfa (Medicago sativa L.), red clover (Trifolium pratense L.), timothy (Phleum pratense L.) and orchardgrass (Dactylis glomerata L.), were subjected to a progressively developing anoxic stress by enclosing potted plants in gas‐tight bags in late autumn and exposing them to simulated winter conditions in an unheated greenhouse. Near‐anaerobic conditions were reached after 60 d of enclosure for orchardgrass, alfalfa and red clover, and after 80 d for timothy. The sensitivity of the species to anaerobic conditions, based on plant regrowth, was: red clover and orchardgrass > alfalfa > timothy. The concentration of ethanol increased in response to oxygen deprivation, and reached the highest value in the sensitive red clover, whereas its concentration was the lowest in timothy. The expression of the alcohol dehydrogenase (ADH) gene was markedly lower in timothy than in the other three species for which the expression was equivalent. We conclude that the greater resistance of timothy to anaerobic conditions at low temperature is associated with a slower glycolytic metabolism.  相似文献   

14.
Plant invasions pose a serious threat to native ecosystem structure and function. However, little is known about the potential role that rhizosphere soil microbial communities play in facilitating or resisting the spread of invasive species into native plant communities. The objective of this study was to compare the microbial communities of invasive and native plant rhizospheres in serpentine soils. We compared rhizosphere microbial communities, of two invasive species, Centaurea solstitialis (yellow starthistle) and Aegilops triuncialis (barb goatgrass), with those of five native species that may be competitively affected by these invasive species in the field (Lotus wrangelianus, Hemizonia congesta, Holocarpha virgata, Plantago erecta, and Lasthenia californica). Phospholipid fatty acid analysis (PLFA) was used to compare the rhizosphere microbial communities of invasive and native plants. Correspondence analyses (CA) of PLFA data indicated that despite yearly variation, both starthistle and goatgrass appear to change microbial communities in areas they invade, and that invaded and native microbial communities significantly differ. Additionally, rhizosphere microbial communities in newly invaded areas are more similar to the original native soil communities than are microbial communities in areas that have been invaded for several years. Compared to native plant rhizospheres, starthistle and goatgrass rhizospheres have higher levels of PLFA biomarkers for sulfate reducing bacteria, and goatgrass rhizospheres have higher fatty acid diversity and higher levels of biomarkers for sulfur-oxidizing bacteria, and arbuscular mycorrhizal fungi. Changes in soil microbial community composition induced by plant invasion may affect native plant fitness and/or ecosystem function.  相似文献   

15.
 Five arbuscular mycorrhizal (AM) fungal species were isolated and propagated from surface and deep rhizospheres of Faidherbia albida trees growing in two ecoclimatic zones of West Africa: the semi-arid Sahelian and the more humid Sudano-Guinean areas. Of these species, Glomus aggregatum, Glomus caledonium, and Glomus mosseae were trapped by F. albida roots when cultivated with either surface or deep soils. Glomus fasciculatum was found exclusively at the semi-arid Sahelian sites of Louga and Diokoul and Gigaspora margarita was isolated only from 16.5-m and 34-m-deep samples. Comparable glomalean fungal species richness was identified in deep (1.5–34 m) and surface (0.15 m) samples. The isolation and the propagation of glomalean fungi from F. albida rhizospheres confirmed the presence of viable AM fungal propagules, down to the water table, as deep as 34 m. Accepted: 27 August 2000  相似文献   

16.
Ecosystem dynamics and the responses to climate change in mangrove forests are poorly understood. We applied the biogeochemical process model Biome-BGC to simulate the dynamics of net primary productivity (NPP) and leaf area index (LAI) under the present and future climate conditions in mangrove forests in Shenzhen, Zhanjiang, and Qiongshan across the southern coast of China, and in three monocultural mangrove stands of two native species, Avicennia marina and Kandelia obovata, and one exotic species, Sonneratia apetala, in Shenzhen. The soil hydrological process of the model was modified by incorporating a soil water (SW) stress index to account for the impact of the effective SW availability in the coastal wetland. Our modified Biome-BGC well predicted the dynamics of NPP and LAI in the mangrove forests at the study sites. We found that the six mangrove systems differed in sensitivity to variations in the effective SW availability. At the ecosystem level, however, soil salinity alone could not entirely explain the limitation of the effective SW availability on the productivity of mangrove forests. Increasing atmospheric CO2 concentration differentially affected growth of different mangrove species but only had a small impact on NPP (<7%); whereas a doubling of atmospheric CO2 concentration associated with a 2°C temperature rise would increase NPP by 14–19% across the three geographically separate mangrove forests and by 12% to as much as 68% across the three monocultural mangrove stands. Our simulation analysis indicates that temperature change is more important than increasing CO2 concentration in affecting productivity of mangroves at the ecosystem level, and that different mangrove species differ in sensitivity to increases in temperature and CO2 concentration.  相似文献   

17.
We surveyed nonbreeding Northern Waterthrushes (Seiurus noveboracensis) in several coastal habitats in southwestern Puerto Rico, West Indies. Waterthrush abundance was highest (mean = 2.2/point) in well‐developed mangrove habitats characterized by large trees and standing water, and lowest (mean = 0.1/point) in dry coastal scrub and savannah. Within the latter habitats, waterthrushes were more common in moist microhabitats such as temporary ponds and dry washes. Abundance in most habitats declined between October and January, probably a result of the presence of transients during the October surveys, Between January and March, abundance in mature red mangrove (Rhizophora mangle) forests increased dramatically, suggesting that this habitat provides a refuge for birds at the end of the dry season and prior to northward migration. In conjunction with other data demonstrating the use of coastal red mangroves as nocturnal roosting sites, these results suggest that mangroves are the most important nonbreeding habitat for this species. Conservation of this globally threatened habitat may thus be important for the long‐term stability of waterthrush populations.  相似文献   

18.
Most oil from oceanic spills converges on coastal ecosystems, such as mangrove forests, which are threatened with worldwide disappearance. Particular bacteria that inhabit the rhizosphere of local plant species can stimulate plant development through various mechanisms; it would be advantageous if these would also be capable of degrading oil. Such bacteria may be important in the preservation or recuperation of mangrove forests impacted by oil spills. This study aimed to compare the bacterial structure, isolate and evaluate bacteria able to degrade oil and stimulate plant growth, from the rhizospheres of three mangrove plant species. These features are particularly important taking into account recent policies for mangrove bioreme-diation, implying that oil degradation as well as plant maintenance and health are key targets. Fifty-seven morphotypes were isolated from the mangrove rhizospheres on Bushneil-Haas (BH) medium supplemented with oil as the sole carbon source and tested for plant growth promotion. Of this strains, 60% potentially fixed nitrogen, 16% showed antimicrobial activity, 84% produced siderophores, 51% had the capacity to solubilize phosphate, and 33% produced the indole acetic acid hormone. Using gas chromatography, we evaluated the oil-degrading potential of ten selected strains that had different morphologies and showed Plant Growth Promoting Rhizobacteria (PGPR) features. The ten tested strains showed a promising degradation profile for at least one compound present in the oil. Among degrader strains, 46% had promising PGPR potential, having at least three of the above capacities. These strains might be used as a consortium, allowing the concomitant degradation of oil and stimulation of mangrove plant survival and maintenance.  相似文献   

19.
We investigated the distribution of primary xylovores in Rhizophora mangle (red mangrove) first-order branches, i.e., “twigs”, along an architectural gradient on Belizean mangrove cays. Greater structural diversity in R. mangle architecture, xylovore availability, occurrence of natural enemies, and habitat do not result in variable xylovore species richness. Despite large differences in architectural complexity, tall, fringe, dwarf, and sapling trees host the same set of primary wig borers. However, tall trees support greater diversity and abundance of twig inquilines than other tree forms. Primary twig borers have a key role in structuring these mangrove communities because their galleries and pupal chambers provide habitats for numerous species of secondary xylovores and inquilines. We also measured the amount of leaf area removed from R. mangle's canopy by wood- and leaf-feeding herbivores. Vigorously growing tall and sapling trees sustain greater losses because of twig borers than dwarf trees. However, xylovory in fringe trees was not different from any of the other categories. Cumulative herbivory was greatest in the tall trees. In most cases, leaf-area loss as an indirect or collateral result of primary xylovory equaled or exceeded leaf-area loss as a direct result of folivory.  相似文献   

20.
To better understand the relationship between salinity and the carbon stable isotope composition (expressed as δ13C) of mangrove plants and to test whether the patterns of variation in δ13C of mangrove plants differ from those of nonhalophytes as response to salinity, the effect of salinity on leaf δ13C in two dominant mangrove species, Aegiceras corniculatum and Kandelia candel, was studied. Furthermore, to determine whether the variation in δ13C of mangrove species is adjusted by stomatal conductance, K. candel was selected as an example, and leaf gas-exchange characteristics of the seedlings were measured. It was observed that both mangrove species had a lower leaf δ13C under their optimum salinity (1.50% for Ae. corniculatum and 2.00% for K. candel). This variation in δ13C of mangrove plants was attributable largely to stomatal adjustment as for nonhalophytes in which a strong correlation between δ13C and relevant photosynthetic properties is observed. This result suggests that the different response pattern in δ13C was a consequence of the variation in stomata in relation to the different tolerance to salinity. The optimum salinity inferred by leaf δ13C provides a feasible method for comparing salt tolerance between mangrove plants belonging to different species, which is useful for mangrove restoration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号