首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Murine bone marrow was separated on continuous Percoll density gradients to analyze the distribution of cells of the megakaryocyte lineage. Eighty-seven percent of the recovered megakaryocytes were found in fractions of density less than 1.058 g/cm3, with 63% of these cells found between 1.020 and 1.036 g/cm3. When megakaryocytes were classified according to size, 92% of the large (greater than or equal to 18 micron) acetylcholinesterase (AchE) positive cells were found in the least dense fractions (1.016-1.039 g/cm3), whereas 86% of the small (less than or equal to 10.6 micron) AchE positive cells were found in fractions of higher density (1.039-1.078 g/cm3). The distribution of enzymatic AchE activity of the separated fractions corresponded to the location of the histochemically positive cells. When ploidy measurements were made of various fractions, most of the high ploidy (32N and 64N) cells were found at low density (1.028-1.036 g/cm3), whereas no cells greater than 4N were found at density greater than 1.071 g/cm3. Thus, large AchE positive cells and the cells of highest ploidy were found at lower densities of Percoll, while small AchE positive cells and cells of low ploidy were found at higher densities. An exception to this inverse relationship was found in fractions of lowest density (less than 1.030 g/cm3) where an anomalous distribution of size and ploidy was found. The majority of megakaryocytic colony-forming cells (CFU-MK) were found at high density, as were the granulocyte-macrophage colony-forming cells (CFU-GM; approximately 1.074 g/cm3). The density distribution of the incorporation of tritiated thymidine into liquid marrow cultures was concordant with the high density distribution of colony-forming cells. The data show that megakaryocytic maturity and Percoll density varies inversely and that fractionation of marrow on continuous Percoll gradients may be a useful method for the separation and/or enrichment of megakaryocytes at different stages of differentiation.  相似文献   

2.
S Ebbe 《Radiation research》1991,127(3):278-284
Megakaryocytic macrocytosis was evaluated in mice after irradiation with 6.5 Gy 60Co gamma rays. During the second and third months after sublethal irradiation, one or more of the following abnormalities of thrombocytopoiesis was present: thrombocytopenia, megakaryocytopenia, macromegakaryocytosis, a shift to higher ploidies, and enlargement of cells within ploidy groups. After transfusion-induced thrombocytosis, reductions in megakaryocyte size were delayed or absent relative to non-irradiated mice, and there was more of a tendency to shift to lower values for megakaryocyte ploidy. Mice with radiation-induced megakaryocytopenia failed to show rebound thrombocytosis during recovery from immunothrombocytopenia, in spite of further increases in megakaryocyte size and ploidy. The findings support the hypotheses that numbers of megakaryocytes may influence the regulation of megakaryocytopoiesis even when there is an excess of platelets and that ploidy distribution is not the sole determinant of the average size of a population of megakaryocytes. After irradiation, persistent megakaryocytopenia may not severely affect platelet production under steady-state conditions, but the ability of the marrow to respond to homeostatic regulation is compromised.  相似文献   

3.
The effects of interleukin-11 (IL-11) and thrombopoietin (TPO) on murine megakaryocytopoiesis were studied using a serum-free culture system. Acting alone, both IL-11 and TPO increased the number of acetylcholinesterase (AchE)(+)cells (megakaryocytes), the latter being more potent than the former. TPO, but not IL-11, increased the mean AchE activity per megakaryocyte (AchE activity/megakaryocyte). TPO increased both the number of megakaryocytes with high ploidy, and of those with low ploidy. In contrast, IL-11 increased only the number of megakaryocytes with high ploidy. The effect of TPO on megakaryocyte ploidy was stronger than that of IL-11. Both IL-11 and TPO increased the proportion of large megakaryocytes, but the latter was more potent than the former. While the stimulatory effects of IL-11 and TPO on the number of megakaryocytes were enhanced by IL-3 or stem cell factor (SCF), synergism of IL-11 or TPO with IL-3 or SCF in stimulating AchE activity/megakaryocyte was inconsistent. IL-11 and TPO stimulated the formation of colony-forming units of megakaryocyte in the presence of IL-3, but not alone, with similar maximum colony numbers for both cytokines. Our findings thus demonstrate that IL-11 principally stimulates megakaryocyte maturation rather than the proliferation of megakaryocytes, whereas TPO stimulates both.  相似文献   

4.
The effects of recombinant cytokines on the ploidy of human megakaryocytes derived from megakaryocyte progenitors were studied using serum-free agar cultures. Nonadherent and T cell-depleted marrow cells were cultured for 14 days. Megakaryocyte colonies were identified in situ by the alkaline phosphatase anti-alkaline phosphatase technique, using monoclonal antibody against platelet IIb/IIIa. The ploidy of individual megakaryocytes in colonies was determined by microfluorometry with DAPI (4',6-diamidino-2-phenylindole) staining. Recombinant human interleukin 3 (rhIL-3) and recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) supported megakaryocyte colony formation in a dose-dependent manner. However, both rhIL-3 and rhGM-CSF had no definite ability to increase the ploidy values. Recombinant human erythropoietin (rhEpo) or recombinant human macrophage colony-stimulating factor (rhM-CSF) by itself did not stimulate the growth of megakaryocyte progenitors. rhEpo or rhM-CSF, however, stimulated increases in the number, size and ploidy values of megakaryocyte colonies in the presence of rhIL-3 or rhGM-CSF. Recombinant human interleukin 6 (rhIL-6) showed no capacity to generate or enhance megakaryocyte colony formation when added to the culture alone or in combination with rhIL-3. rhIL-6, however, increased the ploidy values in colonies when added with rhIL-3. These results show that rhEpo, rhM-CSF and rhIL-6 affect endomitosis and that two factors are required for megakaryocyte development.  相似文献   

5.
The first goal of the present studies was to determine if Sl/Sld megakaryocytes have features in common with the macrocytic megakaryocytes that genetically normal mice produce in response to acute platelet depletion. The second was to test the hypothesis that megakaryocyte abnormalities in Sl/Sld mice are due to genetically determined hemopoietic stromal cell abnormalities. Sizes and ploidies of mature Sl/Sld megakaryocytes were measured. Macrocytosis and a shift to higher ploidy values were found compared with normal. Within ploidy groups 16N-64N, Sl/Sld megakaryocytes were larger than normal megakaryocytes of the same ploidy. Transmission electron microscopy revealed that Sl/Sld megakaryocyte nuclei contain more and larger nucleoli, and the chromatin was more dispersed than in normal megakaryocyte nuclei of comparable maturity. Asynchronous megakaryocyte cytoplasmic maturation was found. Sl/Sld macrophages were also ultrastructurally abnormal. Megakaryocytic macrocytosis was reproduced in long-term bone marrow cultures in which the adherent layer was formed by Sl/Sld cells. It was the same if cultures were recharged with Sl/Sld or +/+ hemopoietic cells. Previously reported ambiguities in mixed cell cultures were avoided by recharging the adherent layers with only a million cells. These results were correlated with previously published observations. Sl/Sld megakaryocytes have features in common with megakaryocytes from acutely thrombocytopenic animals. One feature, macrocytosis, appears to be due to abnormal Sl/Sld stromal cells that are reproduced as adherent layer cells in long-term cultures. The responsible stromal cells in Sl/Sld mice may be counterparts of megakaryocytopoietic regulatory cells in the marrow stroma of normal animals.  相似文献   

6.
Following experimental platelet destruction in animals, large platelets, which are more hemostatically active, are produced before any change in bone marrow megakaryocyte DNA content. When platelet production is stimulated by administration of i.v. vincristine in rats, megakaryocyte ploidy is increased, but mean platelet volume is unchanged. When platelet production and destruction are both stimulated by chronic hypoxia or administration of anti-platelet serum, mean platelet volume and megakaryocyte DNA content are both increased. Since platelet volume is determined primarily at thrombopoiesis, these results imply that mean platelet volume and megakaryocyte DNA content are under separate hormonal control. Therefore, it has been postulated that changes in mean platelet volume occur following changes in platelet production rate, whereas changes in megakaryocyte ploidy are associated with an increased rate of platelet production. In myocardial infarction, platelets have increased mean volume and reduced bleeding time more than in controls. In addition, men with myocardial infarction have increased megakaryocyte size and increased DNA content when compared to controls. These changes are similar to those observed in rabbits following cholesterol feeding. If megakaryocyte polyploidy and mean platelet volume are under separate hormonal control, this suggests that in myocardial infarction, both hormones are active--one stimulating an increased platelet size, the other stimulating the increased megakaryocyte DNA content. In contrast, patients with lymphoma exhibiting a secondary thrombocytosis have no change in mean platelet volume. However, these subjects also have larger bone marrow megakaryocytes when compared to controls. The relation between megakaryocyte size and ploidy implies that the DNA content of these cells is increased in lymphoma.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Discrete nuclear lobe scores and flow- or image-cytometry DNA values of classically identified megakaryocytes behave as a grouped geometric distribution. This model is fully specified by a geometric mean and standard deviation (GM and GSD), the latter typically being ca 1.16 for volumes of diploid blood cell populations. Via log-normal probability paper, the 30 to 50 megakaryocytes in clinical marrow smears readily yield the ploidy model's GM and GSD which are named MPM and MPD for megakaryocyte polyploidy median and dispersion. In euthrombopoietic outbred mammals, MPMs are ca 12N ploidy units, and MPDs approximate a factor of 1.41. Both are unitless criteria. Thus, the thrombon is characterized by three populations exhibiting the high size dispersion which unmasks canonical operation of the log-normal population law: picoliter megakaryothrombocytes with their MPD ca 1.41, femtoliter thrombocytes with a volume GSD ca 1.74, and the end product of locally delivered pieces of subattoliter platelet dust with a volume GSD ca. 2.0.  相似文献   

8.
Recombinant human interleukin 11 (rhIL-11) has previously been shown to ameliorate thrombocytopenia in several animal models. To elucidate the mechanisms involved in rhIL-11-induced hematopoiesis, a kinetic analysis of megakaryopoiesis was performed in mitomycin C (MMC)-induced myelosuppressive mice. Mice intravenously injected with MMC (2 mg/kg) for two consecutive days from day -1 developed severe thrombocytopenia with a nadir of platelet counts at 24x10(4)/microl on day 12 and neutropenia. Treatment with rhIL-11 (500 microg/kg/day) from day 1 to 21 significantly ameliorated the degree and duration of thrombocytopenia and enhanced the platelet recovery, and also enhanced the recovery from neutropenia. In MMC-treated mice, the decreases in bone marrow megakaryocyte progenitors and megakaryocyte counts preceded the decrease in platelet counts by MMC treatment. RhIL-11 induced an increase in the number of megakaryocyte progenitors from day 4 to 14, followed by an increase in the megakaryocytes by day 20. There was a ploidy shift in megakaryocytes towards lower ploidy cells by day 9 in myelosuppressed mice. RhIL-11 caused a shift towards a higher ploidy with 32 and 64N on day 4, and 32N on day 14. These results suggest that rhIL-11 ameliorates the thrombocytopenia via the stimulation of both the maturation and commitment followed by the proliferation of megakaryocytic cells.  相似文献   

9.
10.
WEHI-3 cell-conditioned medium with the capacity to stimulate megakaryocyte colony formation was separated by Sephadex G-150 column chromatography. The development of colonies containing megakaryocytes was observed only when mixing experiments were performed. Individual fractions did not support megakaryocyte colony growth. The two factors in WEHI-3 CM required for megakaryocyte colony growth had apparent average molecular weights of 35,000 daltons (megakaryocyte CSF) and 100,000 daltons (megakaryocyte potentiator). The results were confirmed in serum-free conditions in which colonies were directly identified in the cultures by acetylcholinesterase staining. Two growth factors may be necessary for the genesis of megakaryocytic colonies.  相似文献   

11.
A technique for the purification of rat megakaryocytes is described. Velocity sedimentation in a previously described isokinetic gradient of Ficoll (polysucrose) in tissue culture medium was more effective than isopycnic sedimentation for the purification of megakaryocytes and resulted in preparations of megakaryocytes which contained 2.4 ± 0.8% (range 1.85–3.60%) megakaryocytes. Megakaryocytes exhibited a broad range of density between 1.06 and 1.15 gm/ml. The inaccuracy which is inherent in the use of velocity sedimentation without isopycnic sedimentation as a means of particle size analysis is discussed.  相似文献   

12.
An assay describing conditions for the maturation of single immature megakaryocytes in vitro is reported. Enriched populations of small, relatively immature megakaryocytes have been found to develop into single, mature megakaryocytes by 60 hours in semisolid agar cultures. Continued incubation of these cells did not lead to the formation of colonies within 5–7 days. Maturation was indicated by increasing cell size and cytoplasmic and acetylcholinesterase content. Factors stimulating the development of immature megakaryocytes were found in preparations of human embryonic kidney cell-conditioned media (a source of in vivo Thrombopoietic Stimulatory Factor), peritoneal exudate cell-conditioned medium, lung-conditioned medium, or bone marrow cellular sources of activity (adherent cells or cells that sediment at 5–6 mm hr-1). Immature megakaryocytes cultured serum free responded to sources of an auxiliary megakaryocyte potentiating activity by developing into single, large megakaryocytes but did not respond to a megakaryocyte colony-stimulating factor devoid of detectable potentiator activity present in WEHl-3-conditioned medium. In contrast, serum-free proliferation of the megakaryocyte progenitor cell required both megakaryocyte colony-stimulating factor and the auxiliary potentiator activity. In the presence of megakaryocyte colony-stimulating factor alone, progenitor cells did not form colonies of easily detectable megakaryocytes. However, groups of cells comprised entirely of small acetylcholinesterase containing immature megakaryocytes were observed, thus establishing that megakaryocyte colony development passes through a stage of immature cells prior to detectable megakaryocyte development and that some acetylcholinesterase-containing cells can undergo cellular division.  相似文献   

13.
Megakaryocytes are a distinct population of bone marrow cells that have the unique feature of increasing their DNA content without undergoing division. The biological effect of ploidy distribution on gene expression, receptor expression and protein synthesis is still unknown. Using molecular hybridization techniques, we have started a systematic analysis of mRNA expression in megakaryocytes for a number of proteins involved in clot formation. These data will be related to ploidy. Platelets are the unnucleated product of megakaryocytes, having their protein content derived from the precursor cell. Therefore, the understanding of the molecular mechanisms regulating megakaryocyte biology and the consequent type and reactivity of platelets produced is of fundamental importance in both physiological and pathological conditions.  相似文献   

14.
15.
Flow cytometric analysis of megakaryocyte differentiation   总被引:1,自引:0,他引:1  
Megakaryocytes were isolated quantitatively from rat bone marrow by centrifugal elutriation (CE). CE-enriched megakaryocytes were stained supravitally for either DNA content with Hoechst 33342, surface membrane immunofluorescence with fluorescein isothiocyanate (FITC)-conjugated antiplatelet antibody, or both. The cells were then measured using a Becton Dickinson FACS IV flow cytometer. The following correlations were analyzed: DNA content and light scatter, light scatter and antiplatelet immunofluorescence, and DNA content and antiplatelet immunofluorescence. Although the range of light scatter increased as a function of DNA content, discrete subpopulations of megakaryocytes with different light scatter properties were detected within each of the three principal ploidy classes (8C, 16C, and 32C). Other discrete megakaryocyte subpopulations were revealed in the analysis of antiplatelet surface immunofluorescence as a function of degree of light scatter. The nonlinear relationship between the latter suggested that the degree of membrane immunofluorescence did not bear a simple relationship to cell size as reflected in light scatter. Megakaryocyte DNA content, on the other hand, varied in a linear fashion with membrane immunofluorescence, supporting the conclusion that there may be a proportional increase in the expression of platelet antigens with DNA content. The use of multiple markers, correlated multiparameter flow cytometry and multivectorial analysis to define differentiation on a single cell basis have revealed new complexities in this process. Flow cytometric analysis holds promise as a useful method for further characterization of megakaryocyte differentiation.  相似文献   

16.
Megakaryocytes are platelet precursor cells that undergo endomitosis. During this process, repeated rounds of DNA synthesis are characterized by lack of late anaphase and cytokinesis. Physiologically, the majority of the polyploid megakaryocytes in the bone marrow are cell cycle arrested. As previously reported, cyclin E is essential for megakaryocyte polyploidy; however, it has remained unclear whether up-regulated cyclin E is an inducer of polyploidy in vivo. We found that cyclin E is up-regulated upon stimulation of primary megakaryocytes by thrombopoietin. Transgenic mice in which elevated cyclin E expression is targeted to megakaryocytes display an increased ploidy profile. Examination of S phase markers, specifically proliferating cell nuclear antigen, cyclin A, and 5-bromo-2-deoxyuridine reveals that cyclin E promotes progression to S phase and cell cycling. Interestingly, analysis of Cdc6 and Mcm2 indicates that cyclin E mediates its effect by promoting the expression of components of the pre-replication complex. Furthermore, we show that up-regulated cyclin E results in the up-regulation of cyclin B1 levels, suggesting an additional mechanism of cyclin E-mediated ploidy increase. These findings define a key role for cyclin E in promoting megakaryocyte entry into S phase and hence, increase in the number of cell cycling cells and in augmenting polyploidization.  相似文献   

17.
The DNA content of bone marrow megakaryocytes was analyzed in 24 patients with myeloproliferative disorders, 23 patients with secondary thrombocytosis and 15 normal volunteers using 2-color flow cytometry. Compared with normal controls, the majority of patients with secondary thrombocytosis, polycythemia vera and essential thrombocytosis exhibited a relative increase in higher ploidy (greater than 16N) cells. In contrast, patients with chronic myelogenous leukemia exhibited an increase in lower ploidy cells (less than 16N), with a modal DNA content of 8N. Patients with myeloproliferative disorders tended to show a decrease in the 16N megakaryocyte population compared with patients with secondary thrombocytosis. No correlation between ploidy distribution and platelet count was observed.  相似文献   

18.
Platelet GPIIbIIIa is only synthesized in megakaryocyte or in cell lines with megakaryocytic features. The sequence for GPIIb and GPIIIa have recently been derived from cDNAs obtained from HEL cells. The sequence of these proteins produced by the megakaryocyte, has however, not been determined yet. This study describes full length cDNAs for GPIIb and GPIIIa isolated from megakaryocyte cDNA libraries. The cDNA sequences indicate the presence of nucleotide differences, between the sequence of the GPIIIa cDNAs from HEL cells, endothelial cells and megakaryocytes. One difference was also observed between HEL and megakaryocyte GPIIb at position 633 where a cystein in the megakaryocyte GPIIb, is replaced by a serine in the HEL sequence. The mRNA species for GPIIb (3.4kb) and GPIIIa (6.1 kb) were of the same size in HEL cells and human megakaryocytes.  相似文献   

19.
In an effort to explain the different platelet production capabilities of both normal and hypoxic male and female C3H and BALB/c mice, megakaryocyte size and number were determined utilizing bone marrow from both normal and hypoxic mice. The results indicate that normal BALB/c female mice have increased numbers of megakaryocytes, but of smaller size compared with either BALB/c male mice or to both sexes of C3H mice. An inverse relationship between the size and number of megakaryocytes was found in both normal and hypoxic mice; therefore, to evaluate total megakaryocyte characteristics, we calculated total megakaryocyte masses (TMM). With hypoxia, megakaryocyte number decreased, whereas megakaryocyte size increased. Despite the increase in megakaryocyte size, hypoxia caused a significant decrease in TMM (P less than 0.005) in all mice, but female C3H mice had higher TMM (P less than 0.05) than did female BALB/c mice. These data show that hypoxia decreases TMM in mice, and that the effect is greater in C3H mice than in BALB/c mice.  相似文献   

20.
 We devised a new microfluorometric method for determining the ploidy of megakaryocytes identified immunologically in bone marrow smears. The smears were immunostained by incubation with mouse monoclonal anti-glycoproteins (GP) IIb antibodies, followed by fluorescein isothiocyanate-conjugated goat anti-mouse IgG antibodies. They were then stained with 4′,6-diamidino-2-phenylindole (DAPI). Megakaryocytes were identified by their GPIIb immunofluorescence using a microfluorometer and, after the filters were changed, their DNA content was assayed by measuring the intensity of DAPI fluorescence. This intensity was shown to be proportional to the DNA content when the aperture of the objective lens was reduced. We compared these results with those obtained when megakaryocytes were identified morphologically, using DAPI staining after Wright-Giemsa destaining. In all 12 normal controls, the ploidy peaks were shown to be 16N by both methods, and the mean ploidy detected by the immunological method was only reduced 0.961 times relative to the estimate from the morphological method. In contrast, in eight myelodysplastic syndrome (MDS) patients, the ploidy peaks were either 8N or 4N and the mean was reduced by 0.906 times (P=0.018). Thus we could immunologically identify small megakaryocytes which we could not identify morphologically. Therefore, this method is useful for measuring megakaryocytic ploidy, especially in the pathological megakaryocytes of MDS patients. Accepted: 29 April 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号