首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Patterns of interfertility for intersectional hybridizations in Gaura are generally consistent with current taxonomic hypotheses regarding the sectional division of the genus. Crossability is generally lower for intersectional crosses than for intrasectional, interspecific crosses. Average intersectional cross-success ranged from 0–14% among the eight sections, and a total of 54 intersectional hybrids were produced from 1,872 intersectional pollinations. Low rates of capsule-set and no intersectional hybrids were produced by G. mutabilis (section Gauridium), an early offshoot of a primitive ancestor of Gaura. Two species of section Xerogaura that are regarded as relicts of the primitive ancestor of all other Gaura showed low averages for cross-success, but did produce hybrids in combination with three relatively advanced sections (Campogaura, Stipogaura, Pterogaura). Low capsule-set and no intersectional hybrids were produced by G. parviflora (section Schizocarya). Extreme morphological specialization for autogamous reproduction has been accompanied by reproductive isolation of G. parviflora. Only three hybrids resulted from crosses using G. coccinea (section Campogaura), a polyploid complex. Each successful cross paired G. coccinea with a putative progenitor, either a species of section Xerogaura or G. villosa of section Stipogaura. Hybrids of G. coccinea with odd ploidy number showed reduced pollen staining. Species of Stipogaura produced only three hybrids, one each in combination with species of sections Xerogaura, Campogaura, and Pterogaura. Gaura drummondii (section Xenogaura) registered the highest average cross-success despite being a tetraploid. All 25 hybrids of G. drummondii resulted from crosses with G. suffulta, and were triploids that showed reduced pollen staining. Intersectional crosses fail to support the hypothesized relationships of G. drummondii either to G. coccinea or to species of section Stipogaura. Section Gaura produced moderate averages of cross-success, but all 20 hybrids resulted from crosses with G. suffulta. Fifty of the 54 intersectional hybrids were descended from a species of section Pterogaura. Crosses that used G. suffulta as one parent produced 49 of these hybrids. Four hybrids were from crosses with G. macrocarpa (section Xerogaura), and the remaining 45 were due to the recurrent success of crosses that paired G. suffulta as maternal parent with either G. drummondii or a species of section Gaura.  相似文献   

2.
Observations of meiotic chromosomes are reported for all 21 species and 3 additional sub species ofGaura (Onagraceae), based upon a study of 647 individuals from 509 naturally occurring populations throughout the range of the genus. The basic chromosome number for the genus isx = 7, and 18 species are diploid withn = 7. Among these, the self-incompatible ones are often highly chromosomally heterozygous, with no homozygous individuals having been found in nature in the perenrennialsGaura lindheimeri andG. villosa, and two-thirds or more of the individuals apparently heterozygous in the following well-sampled species:G. calcicola, G. longiflora, andG. suffulta subsp.suffulta. In contrast, the autogamous species are entirely chromosomally homozygous or nearly so. Two species ofGaura are reported as chromosomal structural heterozygotes, with about 50% pollen abortion:G. biennis andG. triangulata; the translocation systems originated independently of one another. Two of the three polyploid species,G. sinuata andG. drummondii (G. odorata of many authors), are consistently tetraploid (n = 14) and, despite their cytological autotetraploidy, are thought to have originated following interspecific hybridization. They are the only rhizomatous species in the genus and may have had one ancestor in common. The remaining polyploid,G. coccinea, includes populations withn = 7, 14, 21, and 28, as well as evident interploid hybrids and, frequently, supernumerary chromosomes. The relationship among these populations is close and is maintained by frequent hybridization and exchange of genetic material. No other species seems to have participated in their origin, and the association of their chromosomes is consistently that characteristic of autopolyploidy in plants with tetraploid and higher chromosome numbers.  相似文献   

3.
Gaura (Onagraceae: Onagreae) is a small North American genus of 21 species consisting mostly of night-blooming, moth-pollinated annuals and perennials. The current infrageneric classification based on differences in habit, floral symmetry, and fruit morphology recognizes eight sections within the genus. We examine the phylogenetic relationships of all 21 species of Gaura using DNA sequence data from the internal transcribed spacer region (ITS), the external transcribed spacer region (ETS), and the plastid trnL-F region. Combined analysis of these regions indicate Gaura is monophyletic only if it includes Stenosiphon, a monotypic genus comprised of S. linifolius. Within Gaura, our studies indicate that sections Gauridium, Schizocarya, Campogaura, Stipogaura, Xenogaura, and Gaura are monophyletic, but sections Xerogaura and Pterogaura are not and should be reevaluated. In addition, molecular data provide support for the hypothesis that G. sinuata and G. drummondii arose via interspecific hybridization followed by genome doubling; their influence on phylogenetic reconstruction is discussed.  相似文献   

4.
Summary A demographic study was carried out on two closely related species of the isopods Jaera (albifrons) ischiosetosa and J. (a.) albifrons and their F 1 hybrids. The results from the 16 possible combinations of crosses have permitted an analysis of the nature of the mechanisms assuring the isolation of the species studied. Although intraspecific crosses yield an immediate success, interspecific crosses in the absence of choice of mates progress only slowly during the course of weeks. The results of both crosses between hybrids and back-crosses turn out to be intermediate between those of intra- and interspecific crosses. The hybrids of the first generation are perfectly viable and their survival curves are identical to those of the parents. The fertility of parents in intra- and interspecific crosses is comparable, with the exception of the fragility of female descendants (heterogametic sex) in one direction of crossing. The fertility of the F 1 hybrids, however, crossed either among themselves or with their parents, is quite noticeably decreased: the time needed to double the size of the population is 2.5 times longer for the hybrids than for the parents. This hybrid breakdown completes the pre-fertilization isolating mechanisms: partial ecological isolation, and especially ethological isolation, is practically total when a choice of mates exists. The two species studied, for which demographic parameters are quite close, were raised together for ten generations and yielded only exceptional hybrids with a frequency which does not exceed that found under natural conditions.  相似文献   

5.
The genus Glycine is composed of two subgenera, Glycine and Soja. Soja includes the cultivated soybean, G. max, and its wild annual counterpart G. soja, while Glycine includes seven wild perennial species. Hybridization was carried out within and between wild perennial species of the subgenus Glycine. The success rate (pods set/flowers crossed) was 11% for intraspecific and 8% for interspecific crosses. A total of 220 F1 hybrids was examined morphologically and cytologically where possible. Hybrids within G. canescens (2n = 40) and G. latifolia (2n = 40) were fertile as expected. Glycine clandestina (2n = 40) was morphologically separable into at least three groups, which produced fertile hybrids within each group. One cross between two groups gave vegetatively vigorous but sterile hybrids. The majority of crosses within G. tabacina (2n = 80) were fertile, except that extremely narrow-leaved forms gave sterile hybrids in combination with more usual forms. Sterility was also encountered in G. tomentella when aneuploids (2n = 78) from New South Wales, Australia, were crossed with tetraploids (2n = 80) from either Queensland, Australia, or Taiwan; crosses between the latter two populations resulted in seedling lethality. Cytological behavior of sterile hybrids followed a similar pattern, whether at the diploid or tetraploid level. The frequency of chromosome pairing was approximately half that expected if genomes showed full pairing homology. Bivalent disjunction at anaphase I was usually followed by precocious division of the majority of univalents. Telophase I and II were characterized by lagging chromosomes and micronuclei, so that resulting pollen was misshapen and sterile. Chromosome pairing data from sterile intraspecific hybrids at the tetraploid level may indicate a polyphyletic origin of tetraploids, whereby different diploid populations were involved in their formation. Similarly, chromosome pairing in sterile intraspecific diploid hybrids may indicate that the various diploid groups arose independently of one another. Both 40- and 80-chromosome forms are fully diploidized, however, and if they are of ancient origin, divergence since that time could have resulted in the chromosomal differentiation which becomes apparent when intraspecific hybridization is effected. Diploid (2n = 40) interspecific hybrids G. falcata × G. canescens, and G. falcata × G. tomentella grew poorly and did not reach flowering stage. Diploid (2n = 40) crosses between G. latifolia and G. tomentella produced inviable seedlings. Tetraploid (2n = 80) hybrids between G. tomentella and G. tabacina were vegetatively vigorous but sterile owing to low chromosome pairing at meiosis, indicating little pairing homology between the two species. Diploid hybrids between G. canescens and G. clandestina, however, showed almost complete chromosome pairing at diakinesis and partial fertility. Although morphologically distinct, these two species have not diverged sufficiently to prevent hybridization and possible gene exchange through recombination. Self compatibility, perennial growth habit, and geographic isolation have favored divergence among Glycine populations to the point that gene exchange appears no longer possible in many cases. Internal isolating mechanisms have been shown to operate at various levels of plant development from hybrid lethality at seedling stage, to failure of seed-set in sterile but vegetatively vigorous hybrids.  相似文献   

6.
Crosses were made in all combinations of the six diploid species of the Solarium nigrum complex that occur in North America. Some interspecific pollinations failed to yield viable seed; successful crosses gave rise to moderately to highly sterile F1 hybrids. Results of interspecific crosses suggested phylogenetic relationships that were not completely in accord with those suggested by morphology. Interspecific crosses also gave varied results. All interpopulational crosses within S. interius and S. sarachoides produced fully fertile hybrids. In contrast, hybrids within S. americanum and S. douglasii varied from fully fertile to almost completely sterile. Populations of S. pseudogracile could be divided into two groups which are geographically separated but not morphologically differentiated. Fully fertile hybrids resulted from crosses within a group, whereas crosses between groups gave hybrids with reduced fertility. Four crossing groups were observed within 5. nodiflorum; three of the parental groups are sympatric and are morphologically differentiated. Although hybrid sterility in interspecific crosses is sometimes used to support delimitation of species, the presence of sterility in intraspecific crosses suggests that such an interpretation is unwarranted for the S. nigrum complex. Hybrid sterility, therefore, is not considered to have special taxonomic significance in this complex.  相似文献   

7.
Two diploid taxa, Grindelia procera and G. camporum, and 3 tetraploid ones, G. camporum, G. hirsutula, and G. stricta, have been studied to ascertain their interrelationships. Meiosis in diploid parental strains was regular, the common chromosome configuration being 5 rod bivalents and 1 ring bivalent. The average chiasmata frequency per chromosome was 0.60. Pollen fertility was about 90% in all strains examined. Diploid interspecific hybrids had normal meiosis with an average chiasmata frequency of 0.56 per chromosome. No heterozygosity for inversions or interchanges was detected, and pollen fertility was above 85%. Meiosis in parental tetraploid strains was characterized by the presence of quadrivalents in addition to a complementary number of bivalents. The average chiasmata frequency per chromosome was 0.59 and pollen fertility was generally about 80%. Tetraploid interspecific hybrids also had quadrivalents, normal meiosis, and high pollen fertility. Close genetic relationships between the diploids and between the tetraploids are indicated, and geographical, ecological, and seasonal barriers to gene exchange exist. Attempts to obtain hybrids between diploids and tetraploids were successful in a few cases. The hybrids were tetraploid and had normal meiosis and fertility similar to parental and F1 tetraploids. Their origin was by the union of unreduced gametes of the diploid female parent and normal pollen from the tetraploid parent. On the basis of chromosome homology, normal meiosis, plus high fertility exhibited in the diploid, tetraploid, and diploid X tetraploid interspecific hybrids, these species of Grindelia are considered to be a part of an autopolyploid complex. Gene exchange between diploids and diploids, tetraploids and tetraploids, and diploids and tetraploids is possible. Tetraploid G. camporum may have originated by hybridization between G. procera and diploid G. camporum with subsequent doubling of chromosomes and selection for the combined characteristics of the diploids.  相似文献   

8.
The seed fertility of 172 interspecific and 32 intraspecific F1 hybrids in the genus Tragopogon was determined. Intrageneric barriers to interbreeding were variable; some were weak and others quite strong. Maternal influences on fertility were found in 18 pairs of reciprocal interspecific crosses. It was postulated that cytoplasmic and nuclear factors interacted to determine the level of seed fertility. Although F1's were generally sterile or semi-sterile, the proportion of fertile seeds produced in most crosses increased in the F2 generation. In two cases, however, a significant decrease was observed.  相似文献   

9.
Observations were made on the morphology, seed fertility, pollen viability and meiotic configurations of 22 different interspecific hybrids of 12 North American taxa representative of 3 sections of Ruellia. The hybrids were classified as (1) fully vigorous and fertile; (2) vigorous but with reduced fertility; (3) reduced vigor and fertility; (4) weak and sterile. Hybrids showed meiotic irregularities in microsporogenesis: univalents, chains, precocious separation of bivalents, nondisjunction, and micronuclei were commonly observed. Interspecific pollinations within sect. Dipteracanthus resulted in fertile or partially sterile F1 hybrids. Intersectional crosses produced partially or completely sterile hybrids or failed. Assuming that crossability is correlated with degree of evolutionary relationship, the parental species are interpreted in genecological terms to be grouped in polytypic ecospecies. Hybridization experiments doubtless would be of value in clarifying relationships in tropical and subtropical species of Ruellia.  相似文献   

10.
The risk of release of genetically modified oilseed rape (Brassica napus) was investigated in relation to interspecific gene flow with hoary mustard (Hirschfeldia incana). Microscopic studies showed polymorphism within the population of hoary mustard for pollen germination on oilseed rape flowers. The transgenic herbicide-resistant and a commercial cultivar of oilseed rape were not different for pollen behaviour and ovule fertilization. Pollen tube growth was slow and erratic in interspecific crosses. Fertilization efficiency of oilseed rape and hoary mustard pollen in interspecific crosses was 15% and 1.3%, respectively, of that in intraspecific crosses. This unequal efficiency in reciprocal crosses was confirmed by hybrid seed set in pods. There was no post-zygotic barrier to the development of hybrid embryos in hoary mustard pods. Up to 26 spontaneous hybrids per male sterile oilseed rape plant, and one per hoary mustard plant, were obtained in field experiments. Hybrids were identified by isozyme electrophoresis, morphology and cytology. All hybrids were triploid with 26 chromosomes, and had low fertility. They produced 0.5 seeds per plant after spontaneous backcrossing with hoary mustard. Some of these descendants were produced from unreduced gametes. Our results suggest that gene flow is likely to occur, but its actual frequency under crop growing conditions remains to be estimated.  相似文献   

11.
Schwenk  Klaus  Bijl  Maartje  Menken  Steph B. J. 《Hydrobiologia》2001,442(1-3):67-73
Hybridization is a common phenomenon in Daphnia (Cladocera; Anomopoda); interspecific hybrids have been found between several species and hybrids are found in many European lakes. Although much information on the morphology, ecology and genetics of hybrids is available, little is known about the level of reproductive isolation among species or about the relative fitness of hybrids and parental species. In order to facilitate studies on differentiation and speciation processes and comparative experimental studies on hybrids and recombinant genotypes, we present the first successful laboratory crossing experiments of two different Daphnia species, D. galeata and D. cucullata. Males and sexual females from two D. galeata and two D. cucullata clones were reciprocally crossed, juveniles hatched from resting eggs and reared until maturity. Hatching and juvenile survival rates of hybrids were relatively low (12.1% and 24%, respectively). D. galeata and D. cucullata clones vary in their level of successful interspecific matings and in the number of subsequent offspring. In general, hybrid crosses between D. cucullata females and D. galeata males were more successful than reciprocal crosses.  相似文献   

12.
The aim of this study is to investigate the evolution of intrinsic postzygotic isolation within and between populations of Mimulus guttatus and Mimulus nasutus. We made 17 intraspecific and interspecific crosses, across a wide geographical scale. We examined the seed germination success and pollen fertility of reciprocal F1 and F2 hybrids and their pure-species parents, and used biometrical genetic tests to distinguish among alternative models of inheritance. Hybrid seed inviability was sporadic in both interspecific and intraspecific crosses. For several crosses, Dobzhansky–Muller incompatibilities involving nuclear genes were implicated, while two interspecific crosses revealed evidence of cytonuclear interactions. Reduced hybrid pollen fertility was found to be greatly influenced by Dobzhansky–Muller incompatibilities in five out of six intraspecific crosses and nine out of 11 interspecific crosses. Cytonuclear incompatibilities reduced hybrid fitness in only one intraspecific and one interspecific cross. This study suggests that intrinsic postzygotic isolation is common in hybrids between these Mimulus species, yet the particular hybrid incompatibilities responsible for effecting this isolation differ among the populations tested. Hence, we conclude that they evolve and spread only at the local scale.  相似文献   

13.
A series of experimental pollinations involving six species ofEpimedium provided strong evidence for an outbreeding system and no internal (postmating, postpollination) barrier to hybridization in the taxa concerned. Self-pollinations of four species,E. diphyllum, E. trifoliatobinatum, E. grandiflorum andE. sempervirens indicated high self-incompatibility (at most 5.4%, usually 0% in capsule-set). Field experiments in a population revealed the occurrence of cross-pollination. On the other hand, interspecific cross-pollinations showed high crossability at any combination of species (33.3%–100% in capsule-set). Furthermore, the interspecific F1s obtained germinated at a high rate (usually more than 20%) and three of them, which bloomed, are highly fertile (more than 68.6% in pollen viability). The results were discussed in connection with the isolating mechanisms between the species ofEpimedium.  相似文献   

14.
Cultivated common bean (Phaseolus vulgaris L.) and tepary bean (Phaseolus acutifolius A. Gray) genotypes possessing desirable agronomic traits were hybridized. The F1 hybrids were backcrossed twice with the common bean (i.e., recurrent backcrossing). Also, alternate backcrosses with common and tepary beans (i.e., congruity backcrossing) were carried out. Embryo culture was necessary for all initial interspecific crosses, and its requirement was proportionally lower when the common bean was used as the recurrent parent and as the last parent of congruity backcrosses. Modification of the embryo culture technique was necessary to produce congruity hybrids. Effects of both tepary and common bean genotypes on the success rate of hybridization were observed. Tepary accession G 40001 and common bean cultivar ICA Pijao facilitated interspecies hybridization. Growth of hybrid embryos before rescue, recovery of mature hybrid plants, and the vigor and fertility of F1 hybrids all increased with increased recurrent and congruity backcrosses and intermatings between male-sterile F1 and selected fertile F2 plants of the third and fifth congruity backcrosses. Introgression of tepary genes was verified by means of seed protein electrophoretic analysis and morphological markers. The results suggest that congruity backcrossing can help to gradually reduce or overcome P. vulgaris x P. acutifolius hybridization barriers such as genotype incompatibility, early embryo abortion, hybrid sterility, and lower frequencies of hybridization.  相似文献   

15.
The degree of relationships withinLactuca sativa and three wild relativesL. serriola, L. saligna, andL. virosa was studied by observing the performance, vigour and fertility of the F 1 hybrids obtained from crosses made in and between the four species. The crosses ofL. saligna ×L. virosa and the reciprocal crosses produced no hybrids.L. saligna andL. virosa are the least related of the four species.L. sativa ×L. serriola and the reciprocal crosses were successful and produced fertile hybrids These two species are genetically very closely related.L. saligna is known to produce, as a female parent, hybrids withL. sativa andL. serriola. Now the reciprocal cross was successful for the first time, so the unability to obtain hybrids in the past was based on the choice of accessions and not caused by unilateral incompatibility.L. virosa ×L. sativa and the reciprocal combination produced hybrids. The combinationL. serriola ×L. virosa produced hybrids with very limited fertility. In contrast to earlier reports (sterile hybrids) one combination of the reciprocal cross too produced hybrids with very limited fertility.—Some of theL. saligna ×L. sativa (and reciprocal) hybrids were found to look strikingly likeL. serriola. This adds evidence for the descent ofL. serriola andL. sativa:L. saligna also made part of the ancestral complex of the cultivated lettuce.  相似文献   

16.
Summary Meiosis and fertility of interspecific hybrids obtained from reciprocal crosses between Phaseolus vulgaris and P. acutifolius were examined. Bivalents as well as univalents were found at Metaphase I. The majority of the microsporocytes had four or more univalents and the average was 6.3 univalents per cell. The average number of lagging chromosomes at Anaphase I was 2.3 per cell and the most frequent chromosome distribution at late Anaphase I was 10–12. The lower than expected number of lagging chromosomes as compared with the number of univalents at Metaphase I suggests the possible occurrence of precocious separation of bivalents. The male fertility as measured by pollen stainability was 17%, however, the frequency of pollen germination in selfing was 3.5%. Upon selfing of the interspecific hybrids, no dividing embryos were found even though 7 and 26% of the ovules were fertilized at 12 hours and four days after pollination. In backcrosses to P. vulgaris (male), 6 and 20% of the ovules were fertilized and 0 and 4% of the ovules contained dividing embryos at the same sampling times. When P. acutifolius was the male parent, respective values were 8 and 31% for fertilization and 0 and 13% for ovules with dividing embryos. The frequencies of backcross embryos recovered at 14–26 days were in agreement with the frequencies of dividing embryos at four days. The ability to obtain backcross plantlets demonstrates the feasibility to further utilize interspecific hybrids for the improvement of P. vulgaris Technical paper No. 5311 of the Oregon Agricultural Experiment Station. Research was supported by the Oregon Agricultural Experiment Station, the Science and Education Administration of the U.S. Department of Agriculture under Grant 5901-0410-8-0028-0 from the Competitive Research Grants Office, the Research Council of Oregon State University (NIH Biomedical Research Support Grant RR 07079) and the Processor Research Council of Oregon, A.R. and C T.S. are respectively supported by an African Graduate Fellowship from the African-American Institute and a fellowship from the National Science Council of the Republic of China  相似文献   

17.
Artificial crosses between Helianthus annuus and H. petiolaris using 1:9, 1:1, and 9:1 mixtures of intraspecific: interspecific pollen were conducted to determine the role of interspecific pollen competition as a reproductive barrier in Helianthus. Of 1,245 achenes analyzed from the pollen competition experiments, only 49 were hybrids. The number of hybrids observed was significantly less than expectations for all three pollen mixtures, regardless of the identity of maternal parent (P < 0.01). Stigma age and pollen ratio had no significant impact on hybrid frequency. However, hybrids were significantly more frequent with H. annuus than with H. petiolaris as the maternal parent (P < 0.01). Analysis of pollen tube growth rates revealed no differences in the rate of growth of intraspecific vs. interspecific pollen. Likewise, pollinations with either intraspecific or interspecific pollen or with different pollen ratios did not affect the percentage of filled achenes. Thus, the mechanism responsible for selective fertilization by intraspecific pollen in mixed pollen loads remains unclear. Nonetheless, these findings suggest that interspecific pollen competition plays an important role in controlling the formation of hybrids between H. annuus and H. petiolaris and may partially account for patterns or differential cytoplasmic vs. nuclear introgression in Helianthus.  相似文献   

18.
Hybrid embryos resulting from crosses between Phaseolus species often fail to reach maturity and some combinations frequently abort at early developmental stages. The genetic or molecular basis for these consistent developmental defects is at present not clear. However, an extremely complex genetic system, thought to be caused by major epigenetic changes associated with gene expression changes, has been shown to be active in plant species. We have investigated DNA methylation in two interspecific hybrids, Phaseolus vulgaris × Phaseolus coccineus and its reciprocal crosses, using methylation sensitive amplification polymorphism (MSAP). The potential use of MSAP for detecting methylation variation during embryogenesis in interspecific hybrids is discussed. Significant differences in the DNA methylation patterns were observed in abortive (interspecific hybrids) and non abortive (parental) genotypes. Taken together, our results strongly suggest that generalized alterations in DNA methylation profiles could play a causative role in early interspecific embryo abortion in vivo. A considerable change in the methylation pattern during embryogenesis could be involved in the disruption of the regulation or maintenance of the embryogenesis process of Phaseolus interspecific hybrids. The results also support the earlier hypothesis that DNA methylation is critical for the regulation of plant embryogenesis and gene expression.  相似文献   

19.
An interspecific hybridization study has been carried out between seven diploid species of Lotus (L. alpinus Schleich., L. japonicus (Regel) Larsen, L. filicaulis Dur., L. schoelleri Schweinf., L. krylovii Schischk. and Serg., L. tenuis Waldst. et Kit., and L. corniculatus var. minor Baker) closely related to L. corniculatus L. A total of 139 interspecific hybrids were produced in 16 combinations of the 7 species. Nine of these crosses were produced for the first time and four were obtained by means of embryo-culture. The growth habit, number of florets per umbel, flower color expression, HCN reaction and 15 metrical traits were compared between parents and hybrids. The relative case with which some hybrids were produced suggested that during the early evolutionary history of the genus species diversification could have originated through interspecific hybridization and subsequent gene differentiation. In some crosses, the hybrids resembled one parent more closely than the other. This close morphological affinity between the hybrids and one of their parents would make it extremely difficult to detect such hybrids in natural populations and probably aceounts for the prevailing belief that there is little or no hybridization in nature.  相似文献   

20.
Two sympatric and divergent adaptive ecotypes of Littorina saxatilis (RB and SU) are known to hybridize showing partial premating isolation in the wild. Previous studies have revealed that morphological intermediate forms (presumably hybrids) present fitness (viability, sexual selection and fecundity) similar to that from pure ecotypes at the mid-shore. However, the absence of postzygotic isolation due to genetic incompatibility cannot be ruled out unless it is measured directly on true F 1 hybrids. In this study, we overcome this problem and present data on 56 individual crosses including the four possible mating combinations (RB/RB, RB/SU, SU/RB and SU/SU) to compare fertilization and fecundity rates (including young progeny viability) between the four type crosses. Pooled RB female crosses showed apparently larger fertility and fecundity than pooled SU female crosses, probably because of differences in fecundity and laboratory survivorship between ecotypes. However, similar fertilization and fecundity rates were found for both RB and SU females when mated with different male types, supporting the idea that genetic-incompatibility-based postzygotic isolation can be ignored as a major determinant of this polymorphism in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号