首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aoyagi H 《Biotechnology letters》2006,28(20):1687-1694
An index [kv: average isolation rate of viable protoplast (number/ml min)] was established to evaluate the optimal conditions for protoplast isolation from cultured plant cells. The optimal conditions for protoplasts isolation from Nicotiana tabacum BY2 cultured cells could be determined on the basis of the kv [31.7 × 103 (number/ml min)]. The colony-forming efficiency of the protoplasts was about 46%. The optimal conditions for protoplasts isolation from Catharanthus roseus [kv = 38.1 × 103 (number/ml min)] and Wasabia japonica [kv = 14.2 × 103 (number/ml min)] cultured cells could also be determined. Furthermore, a method for rapid regenerating cell wall of protoplast in liquid culture using alginate gel containing locust bean gum was developed.  相似文献   

2.
以不同发育时期的凤仙花花药为实验材料,采用组织化学方法,对花药发育中的结构变化及多糖和脂滴物质分布进行观察。结果表明:(1)凤仙花的花药壁由6层细胞组成,包括1层表皮细胞,2层药室内壁细胞,2层中层细胞和1层绒毡层细胞。其中绒毡层细胞的形态不明显,很难与造孢细胞区分,且在小孢子母细胞时期退化。(2)在小孢子母细胞中出现了一些淀粉粒,但减数分裂后,早期小孢子中的淀粉粒消失,又出现了一些小的脂滴;随着花粉的发育,小孢子形成大液泡,晚期小孢子中的脂滴也消失;小孢子分裂形成二胞花粉后,营养细胞中的大液泡降解、消失,二胞花粉中又开始积累淀粉;接近开花时,成熟花粉中充满细胞质,其中包含了较多的淀粉粒和脂滴。(3)在凤仙花的花药发育中,绒毡层细胞很早退化,为小孢子母细胞和四分体小孢子提供了营养物质;其后的中层细胞退化则为后期花粉发育提供了营养物质。  相似文献   

3.
The aim of this study was to isolate protoplasts from carob (Ceratonia siliqua L.) embryonic tissues with the ability to regenerate cell walls, divide and synthesize galactomannan, a valuable polysaccharide for industry. Protoplasts isolated from carob hypocotyl hooks regenerated cell walls within 24 h. The first divisions of the regenerated cells were observed after 2 days of culture. The highest percentage that successfully divided was achieved when the seedlings were grown under diffuse light, the hypocotyl hooks were plasmolysed for 1 h before incubation in the protoplast isolation solution and the protoplasts were cultured under diffuse light. After 9 days of culture, cell clusters, consisting of eight cells, had been produced, which underwent further mitotic divisions and which were expected to lead to callus formation. Polysaccharide and oligosaccharide synthesis during protoplast regeneration was studied by radiolabelling with exogenous d ‐[U‐14C]glucose, d ‐[U‐14C]mannose or d ‐[2‐3H]mannose, which gave rise to uniform, moderately specific and highly specific labelling, respectively. As revealed by the radioactivity distribution in cell wall monosaccharides, the regenerants deposited new wall polymers that differed markedly from those being synthesized by the hypocotyls from which the protoplasts had been isolated. The regenerants deposited large amounts of callose and smaller amounts of galactose‐, arabinose‐ and mannose‐containing polymers. The latter included glucuronomannan, as demonstrated by a new method involving partial acid hydrolysis followed by β‐glucuronidase (EC 3.2.1.31) digestion. The regenerating protoplasts also released soluble extracellular carbohydrates: polysaccharides which appeared to be mainly acidic arabinogalactans, and oligosaccharides which were mainly neutral and contained glucose, galactose and mannose. We conclude that regenerating carob protoplasts are a useful system for studying carbohydrate secretion, including mannose‐rich poly‐ and oligosaccharides.  相似文献   

4.
The structure and development of Myrtus communis L. secretory cavities has been studied in young and expanded leaves, using light and scanning electron microscope. Secretory cavities are continuously formed during leaf development, but in mature leaves the rhythm of their appearance shows steep decrease. Each secretory cavity is developed from a single epidermal cell, which undergoes a periclinal division followed by anticlinal and several oblique cell divisions. The lumen of the secretory cavity is initiated by cell wall separation, i.e., schizogenously. The secretory cells line the cavity, where the secreted material is collected. Secretory cavities are covered by modified epidermal cells, which do not seem to form any special aperture. Essential oils seem to be discharged after mechanical treatment of the leaf.  相似文献   

5.
采用焦锑酸钾沉淀钙离子技术,对洋葱(Alliumcepa)花药发育中Ca^2+分布进行了研究。在小孢子母细胞时期,小孢子母细胞中的钙沉淀颗粒很少,但绒毡层细胞的内切向壁已出现明显的钙沉淀颗粒。在四分体时期,四分体小孢子的胼胝质壁中出现较多的钙沉淀颗粒;绒毡层细胞内切向壁的钙沉淀颗粒消失,而在外切向壁和径向壁部位的钙沉淀颗粒增加。在小孢子早期,小孢子中也出现了钙沉淀颗粒,而绒毡层细胞内切向壁表面出现了很多絮状物,其上附有细小钙沉淀颗粒。到小孢子晚期,小孢子中出现一些小液泡,细胞质中的钙沉淀颗粒有所下降。此时绒毡层细胞已明显退化,但在绒毡层膜上仍有一些乌氏体和钙沉淀颗粒。在二胞花粉早期,营养细胞中的液泡收缩、消失,细胞质中又出现了较多的钙沉淀颗粒,在质体和其内部的淀粉粒表面上附有较多的钙沉淀颗粒。到二胞花粉晚期,花粉中的钙沉淀颗粒已明显下降,仅在花粉外壁中还有一地钙沉淀颗粒.  相似文献   

6.
The differentiation of sieve elements from inner cortical cells of the stipe of Laminaria saccharina (L.) Lamour. involves the development of a well-structured protoplast and an end wall possessing evenly spaced pores which are visualized by electron microscopy. The protoplast consists of organelles which are commonly found in brown algal cells, including nuclei, cup- or horseshoe-shaped chloroplasts, dictyosomes, mitochondria, and ER. Mitochondria and clusters of small vacuoles, presumably redistributed by the surging effect which occurs in sieve elements, were routinely observed in the vicinity of the end wall. Chloroplasts were seen in progressively degenerated states in older sieve elements, yet nuclei were determined to be non-necrotic. Numerous pores along the end walls interconnect adjacent sieve elements. Each pore is traversed by a strand of cytoplasm and surrounded by plasmalemma. The pores are open and possess no callose. In this paper the sieve element ultrastructures of L. saccharina are compared to those in L. groenlandica, Alaria marginata, Nereocystis lutkeana and Macrocystis pyrifera, and a possible phylogenetic specialization of sieve elements is presented in table form and discussed.  相似文献   

7.
. LP28, a pollen-specific LEA-like protein identified in Lilium longiflorum purportedly related to the desiccation tolerance of pollen, was localized during male gametogenesis using immuno-electron microscopy. At premeiotic interphase, LP28 label is absent from the microsporocyte. LP28 label was first detected in the cell wall of the microsporocyte at meiotic prophase I. LP28 gradually increased as the cell wall thickened. In the dyad, after the first meiotic division, LP28 label also appeared in the septum. In the tetrad, after the second meiotic division, LP28 was detected throughout the cell wall, including the septa. Immunolabeling of callose during meiosis indicated that the appearance and localization of LP28 was very similar to that of callose. After the microspores were released from the tetrad by digesting the callosic cell wall, LP28 was not found in the microspores. In bicellular pollen, just after microspore mitosis, LP28 appeared in the generative cell wall, which also consisted of callose. After pollen germination, LP28 also accumulated in the callosic layer of the elongated pollen tube wall and the callose plug. Thus, LP28 colocalized with the callosic cell wall during male gametogenesis. The possible role of LP28 with respect to wall formation during meiosis and pollen development is discussed.  相似文献   

8.
The quartet (qrt) mutants of Arabidopsis thaliana produce tetrad pollen in which microspores fail to separate during pollen development. Because the amount of callose deposition between microspores is correlated with tetrad pollen formation in other species, and because pectin is implicated as playing a role in cell adhesion, these cell-wall components in wild-type and mutant anthers were visualized by immunofluorescence microscopy at different stages of microsporogenesis. In wild-type, callose was detected around the pollen mother cell at the onset of meiosis and around the microspores during the tetrad stage. Microspores were released into the anther locule at the stage where callose was no longer detected. Deposition and degradation of callose during tetrad pollen formation in qrt1 and qrt2 mutants were indistinguishable from those in wild-type. Enzymatic removal of callose from wild-type microspores at the tetrad stage did not release the microspores, suggesting that callose removal is not sufficient to disperse the microspores in wild-type. Pectic components were detected in the primary wall of the pollen mother cell. This wall surrounded the callosic wall around the pollen mother cell and the microspores during the tetrad stage. In wild-type, pectic components of this wall were no longer detectable at the time of microspore release. However, in qrt1 and qrt2 mutants, pectic components of this wall persisted after callose degradation. This result suggests that failure of pectin degradation in the pollen mother cell wall is associated with tetrad pollen formation in qrt mutants, and indicates that QRT1 and QRT2 may be required for cell type-specific pectin degradation to separate microspores.  相似文献   

9.
Plants have developed a range of strategies for resisting environmental stresses. One of the most common is the synthesis and deposition of callose, which functions as a barrier against stress factor penetration. The aim of our study was to examine whether callose forms an efficient barrier against Pb penetration in the roots of Lemna minor L. exposed to this metal. The obtained results showed that Pb induced callose synthesis in L. minor roots, but it was not deposited regularly in all tissues and cells. Callose occurred mainly in the protoderm and in the centre of the root tip (procambial central cylinder). Moreover, continuous callose bands, which could form an efficient barrier for Pb penetration, were formed only in the newly formed and anticlinal cell walls (CWs); while in other CWs, callose formed only small clusters or incomplete bands. Such an arrangement of callose within root CWs inefficiently protected the protoplast from Pb penetration. As a result, Pb was commonly present inside the root cells. In the light of the results, the barrier role of callose against metal ion penetration appears to be less obvious than previously believed. It was indicated that induction of callose synthesis is not enough for a successful blockade of the stress factor penetration. Furthermore, it would appear that the pattern of callose distribution has an important role in this defence strategy.  相似文献   

10.
Summary Novel elongated fiber-structures were repeatedly found both in leaf protoplast culture of two clones of Betula platyphylla and in protoplast culture of embryogenic cells of Larix leptolepis. Suboptimum culture conditions for cell division appeared to lead to fiber formation when using multi-well plate culture with varying medium compositions The suboptimum conditions for cell divisions were brought about by (1) plant growth regulators: auxins and cytokinins; (2) pH: 3.5, 4.5, 5.8; (3) divalent cations: CaCl2 and MgCl2; and (4) sugars: sucrose and mannitol. Divalent cations had the most profound effect on fiber formation. Calcium ions were preferred by Betula and magnesium ions were preferred by Larix. Single fiberpurification and micro-staining methods using a micromanipulator were developed. The fibers fluoresced when stained with Calcofluor White and Aniline Blue, which suggested that they were composed of cell wall component(s), including callose (β-1,3-glucan). Electron microscopy showed that fiber bundles of Larix fibers had helical substructures.  相似文献   

11.
Summary During the course of a fluorescence microscopic investigation on the extra-ovular micropylar portion of the embryo sacs ofTorenia fournieri Lind. (Scrophulariaceae) a callosic wall was found which surrounded it almost completely until the time of anthesis. In addition, the walls of young synergids and the filiform apparatus also showed callosic fluorescence. Treatments with PAS reaction revealed a PAS-positive substance filling up the locular cavity. Our attempts to induce fluorochromasia by employing fluorescein diacetate failed, indicating the low permeability of the callosic wall around the embryo sac. It is assumed that the callose wall around the embryo sac isolates the latter from the contents of the locular cavity whereas the callose in the synergid walls may represent an intermediate stage in the maturation of these walls; the filiform apparatus is mainly composed of callose.  相似文献   

12.
Lead poisoning constitutes one of most detrimental environmental hazards to all living organisms. Plants developed a variety of avoidance and tolerance mechanisms that are activated in response to lead exposure. Plant cell walls were suggested to play important role in these reactions by creating an efficient barrier to lead entry to the protoplasts, but the molecular mechanisms involved in such shielding reaction have not been elucidated. Tip growing protomemata of Funaria hygrometrica (Hedw.) were used as model for studying effects of lead exposure on plant cell walls (CWs). Forty-eight hour-treatment 4 μM PbCl2 resulted in the appearance of cell wall thickenings (CWTs) at the tip of the apical cell, which is the lead entry site to the cell protoplast [Krzes?owska, M., Wo?ny, A., 1996. Lead uptake localization and changes in cell ultrastructure of Funaria hygrometrica protonemata. Biol. Plant. 38, 253–259]. The nature of these thickenings differed from the one of cell wall in unexposed plants as revealed by immunolabelling with monoclonal antibodies and histochemical analyses. The most striking difference was the appearance high amount of low-esterified (JIM5 epitope) and unesterified (PAM1 epitope) homogalacturonan, which were absent from the tip cell wall of control protonemata and are known as the compounds able to bind and immobilise Pb2+. Furthermore, the cell wall thickenings commonly contained callose and at least two kinds of lipid compounds known as the substances preventing metal ions entry to the protoplast.Observations in transmission electron microscope (TEM) showed that CWTs contained a few distinct, varied structurally regions. The dominant one was the region of a granular structure—never found in the control CW. This region contained both the highest amount of JIM5 pectins—and the most numerous lead deposits. In many cases gold particles, identifying JIM5 pectins, appeared to be bound to lead deposits. It indicated that JIM5 pectins which accumulated in CWTs were involved in immobilisation of high amounts of Pb2+. Because the region of lead accumulation occupied the largest volume of the CWTs, we concluded that CWTs appear to be a very important repository for Pb2+ in protonemata cells. Thus, we postulate that, CWTs localized at the tip of the apical cell—the main region of lead uptake [Krzes?owska, M., Wo?ny, A., 1996. Lead uptake localization and changes in cell ultrastructure of Funaria hygrometrica protonemata. Biol. Plant. 38, 253–259] rich in JIM5 pectins, callose and lipids function as the effective barrier against lead ions penetration into the protonema protoplast.The findings substantiate previous hypotheses that lead ions can be sequestered in cell walls and point to the possibility that capacity for lead binding might increase in cell response to lead.  相似文献   

13.
Kartusch R 《Protoplasma》2003,220(3-4):219-225
Summary.  Metal ions induce the synthesis of callose in Allium cepa epidermal cells. Callose is deposited as single knoblike local accumulations, aggregates of knobs, or furrowed clusters tightly attached to the cell wall. The most effective metal is copper, it induces callose formation at micromolar concentrations. Agents acting on inositolphosphate metabolism, phospholipase inhibitors, calcium channel inhibitors, modulators of cytoplasmic calcium, or receptor antagonists influence callose synthesis. It is concluded that metal ions, especially Cu2+, initiate a signal transduction chain by activation of phospholipases and generation of inositol 1,4,5-trisphosphate, and that callose synthesis is a cellular defence reaction caused by the disturbance of intracellular calcium homeostasis. Received October 10, 2001; accepted September 16, 2002; published online March 11, 2003  相似文献   

14.
Structural analysis of the cell walls regenerated by carrot protoplasts   总被引:1,自引:0,他引:1  
A procedure was developed to isolate protoplasts rapidly from carrot (Daucus carota L. cv. Danvers) cells in liquid culture. High purity of cell-wall-degrading enzymes and ease of isolation each contributed to maintenance of viability and initiation of regeneration of the cell wall by a great majority of the protoplasts. We used this system to re-evaluate the chemical structure and physical properties of the incipient cell wall. Contrary to other reports, callose, a (1 3)-d-glucan whose synthesis is associated with wounding, was not a component of the incipient wall of carrot protoplasts. Intentional wounding by rapid shaking or treatment with dimethyl sulfoxide initiated synthesis of callose, detected both by Aniline blue and Cellufluor fluorescence of dying cells and by an increase in (1 3)-linked glucan quantified in methylation analyses. Linkage analyses by gas-liquid chromatography of partially methylated alditol-acetate derivatives of polysaccharides of the incipient wall of protoplasts and various fractions of the cell walls of parent cells showed that protoplasts quickly initiated synthesis of the same pectic and hemicellulosic polymers as normal cells, but acid-resistant cellulose was formed slowly. Complete formation of the wall required 3 d in culture, and at least 5 d were required before the wall could withstand turgor. Pectic substances synthesized by protoplasts were less anionic than those of parent cells, and became more highly charged during wall regeneration. We propose that de-esterification of the carboxyl groups of pectin uronic-acid units permits formation of a gel that envelops the protoplast, and the rigid cellulose-hemicellulose frame-work forms along with this gel matrix.Abbreviations DEAE Diethylaminoethyl - DMSO dimethyl sulfoxide - ECP extracellular polymers - EDTA ethylenediaminetetraacetic acid - HGA nomogalacturonan - RG rhamnogalacturonan - Tes N-tris(hydroxymethyl)methyl-2-amino-ethanesufonic acid - TFA trifluoroacetic acid Journal paper No. 11,776 of the Purdue University Agriculture Experiment Station  相似文献   

15.
对含笑花药发育中的超微结构变化进行观察,结果显示:(1)花粉发育中有三次液泡变化过程——第一次是小孢子母细胞在形成时内部出现了液泡,这可能与胼胝质壁的形成有关;第二次是在小孢子母细胞减数分裂之前,细胞内壁纤维素降解区域形成液泡,它的功能可能是消化原有的纤维素细胞壁;第三次是在小孢子液泡化时期,形成的大液泡将细胞核挤到边缘,产生极性。(2)含笑花粉在小孢子早期形成花粉外壁外层,花粉外壁内层在小孢子晚期形成,而花粉内壁是在二胞花粉早期形成;花粉成熟时,表面上沉积了绒毡层细胞的降解物而形成了花粉覆盖物。研究认为,含笑花粉原外壁的形成可能与母细胞胼胝质壁有关,而由绒毡层细胞提供的孢粉素物质按一定结构建成了花粉覆盖物。  相似文献   

16.
应用荧光显微技术、激光共聚焦扫描显微技术、单克隆抗体免疫荧光标记技术以及傅里叶变换显微红外光谱分析(FTIR)等手段,研究了内钙拮抗剂TMB-8对白皮松花粉管胞内Ca2+分布、花粉管生长以及细胞肇构建等的影响.结果表明,白皮松花粉管经TMB-8处理后,胞内的Ca2+浓度下降,花粉管内典型的Ca2+浓度梯度消失,花粉萌发...  相似文献   

17.
Summary The binding of the14C-labelledSalmonella typhimurium DNA or3H-labelled soybean SB-1 DNA to cultured soybean cells (Glycine max L. Merr.) (SB-1) could be increased at least 100-fold by choosing the proper incubation conditions. The uptake of DNA by cells could completely be inhibited by the addition of an excess of unlabelled thymidine, indicating that the observed uptake of DNA by cells most probably is simply uptake of DNA degradation products. Autoradiograms, prepared from SB-1 protoplasts that were previously incubated with DNA, showed that the DNA was not associated with the protoplasts, but only with aggregates of cell wall material contaminating the protoplast preparation. When protoplasts and DNA were incubated in the presence of DEAE-dextran, the amount of DNAse resistant radioactivity increased 40 times. Again, the autoradiograms showed that most if not all DNAse-resistant material was associated with cell wall materials. Our observation that it is cell wall contaminants in protoplast preparations which account for most of the DNA binding demonstrates the need for caution in interpreting experiments on the binding and uptake of DNA by plant protoplasts.NRCC No. 16353.  相似文献   

18.
Spores ofBacillus cereus (strain NCIB 8122) were germinated in a synthetic germination limited medium (GL-medium), which permitted germination but did not make the termination of post-germinative development possible. Incorporation of14C-diaminopimelic acid into the newly formed cell wall was followed in this culture. Morphological changes were studied by optical and electron microscopy. Germination was associated with the usual germination changes,i.e. depolymerization of the “bulky” cortex, differentiation of nuclear structure and mesosomes and ribosomes in the cytoplasm. At this stage the spore protoplast is surrounded by several layers: exosporium, laminated coat with four layers, residual spore wall and the protoplast membrane. During incubation in this limited medium the residual wall layer thickens and the nuclear structure, mesosomes and ribosomes were not more detectable. After enrichment of the GL medium (shift up) the thick-walled cells can form additional cell wall material, elongate and an atypical septum formation can occur. The cell wall material forms local thickenings. On long-term cultivation in the GL medium some of the cells in the GL medium lyze. If, in the course of 3–6 h the cells are transferred from the GL-medium to a solid complex medium (Difco Nutrient Agar) the thickwalled cells are transformed into dividing cells. When the cells are transferred later, their colony-forming ability rapidly decreases. The decrease of viability of the thick-walled cells derived directly from spores after their germination in the limited medium indicates that these cellular forms probably do not represent more stable cellular types that would be of considerable importance for survival of the populat ion of bacilli.  相似文献   

19.

Callose (β-1,3-glucan) is one of the cell wall polymers that plays an important role in many biological processes in plants, including reproductive development. In angiosperms, timely deposition and degradation of callose during sporogenesis accompanies the transition of cells from somatic to generative identity. However, knowledge on the regulation of callose biosynthesis at specific sites of the megasporocyte wall remains limited and the data on its distribution are not conclusive. Establishing the callose deposition pattern in a large number of species can contribute to full understanding of its function in reproductive development. Previous studies focused on callose events in sexual species and only a few concerned apomicts. The main goal of our research was to establish and compare the pattern of callose deposition during early sexual and diplosporous processes in the ovules of some Hieracium, Pilosella and Taraxacum (Asteraceae) species; aniline blue staining technique was used for this purpose. Our findings indicate that callose deposition accompanies both meiotic and diplosporous development of the megaspore mother cell. This suggests that it has similar regulatory functions in intercellular communication regardless of the mode of reproduction. Interestingly, callose deposition followed a different pattern in the studied sexual and diplosporous species compared to most angiosperms as it usually began at the micropylar pole of the megasporocyte. Here, it was only in sexually reproducing H. transylvanicum that callose first appeared at the chalazal pole of the megasporocyte. The present paper additionally discusses the occurrence of aposporous initial cells with callose-rich walls in the ovules of diploid species.

  相似文献   

20.
A biologically active glycoprotein (protoplast-release-inducing protein; PR-IP), which induces the release of gametic protoplasts from mating type minus (mt-) cells of the Closterium peracerosum-strigosum-littorale complex, was prepared from a medium in which mt- and mt+ cells had been previously incubated together. The process of PR-IP-inducing protoplast release was analyzed. Induction of protoplast release was dependent upon the duration of both PR-IP treatment and preincubation in nitrogen-deficient mating medium before PR-IP treatment. Low cell density in the preculture stage had a significant stimulative effect upon the induction of protoplast release. Light was necessary for protoplast release, especially just before PR-IP treatment. Chloramphenicol and 3-(4-chlorophenyl)-1,1-dimethylurea (CMU) exerted inhibitory effects on protoplast release, especially when they were applied to the preculture stage but not when they were applied to the protoplast-releasing stage after the PR-IP treatment. We suggest that preculture at a low cell density under continuous light conditions that may cause metabolic changes in the chloroplast is a very important stage for gametic protoplast release in this Closterium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号