首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Vessel-lumen diameter, vessel frequency, and spacing of concentric, tangential bands of parenchyma cells follow well defined trends across annual growth rings of Carya tomentosa Nutt., mockernut hickory. These cross-ring cellular changes were correlated with each other to a considerable degree but not tightly linked. Vessel-lumen diameter decreased in a strongly linear fashion, as a function of distance from the inner ring boundary. Distance between tangential, concentric bands of axial wood parenchyma cells also decreased across rings, but followed a less strongly linear trend. Vessel frequency decreased abruptly after the large-pore zone and then increased to the outer ring boundary. Radial growth rate, as indicated by ring width, strongly influenced these trends. For all three cellular characteristics, the cross-ring trend was abrupt in narrow rings and more gradual in wide rings. An anomalous ring of Carya tomentosa, and three similar rings of Carya glabra (Mill.) Sweet, showed a decrease in interband distance and then an abrupt increase followed by another decrease to the outer ring boundary, whereas vessel diameter remained small and uniform after an initial decrease. The three cellular characteristics were concluded to be under separate physiological controls, although growth rate seems to exert a considerable, parallel influence on them.  相似文献   

2.
《Dendrochronologia》2014,32(2):113-119
Most subtropical forests in South America are located in regions with a marked seasonality in precipitation, which may induce the formation of annual bands in woody species. Due to the lack of precise information on tree-ring visibility, we evaluated the wood characteristics of 37 tree species in the subtropical Yungas and Chaco forests from northwestern (NW) Argentina. Anatomical features associated with the delimitation of growth bands were examined to establish the presence of tree rings. Different forest types reflect the precipitation gradients and wood anatomical features vary accordingly. Characteristics of wood structure are closely related to the dominant climatic patterns of each forest, revealing a common pattern of anatomical arrangements in terms of water transport and safety. In the Chaco and transitional forests, ring boundaries are related to marginal parenchyma whereas in montane forests growth ring boundary is mostly associated with the presence of thicker fibers at the end of the ring. The largest proportion of species with clearly marked growth rings occurs in the montane forest type of NW Argentina. Clear growth rings is a requisite for dendrochronological applications, hence the present work represents the first regional attempt to address the potential of subtropical species in South America to be used in dendrochronological studies.  相似文献   

3.
1 Tree-ring analyses and dendrometer measurements were carried out on 37 tree species in a semi-deciduous forest of the Reserva Forestal de Caparo, Venezuela, where the mean annual rainfall is about 1700 mm and there is a dry season from December to March. The main purposes of the investigation were to show the seasonality of cambial growth, and the connection between precipitation patterns and tree-ring curves. Long-term rates of wood increment were also estimated.
2 Cambial markings in consecutive years showed that annual rings were formed by many species.
3 The distinctiveness of growth zones was usually greater in deciduous species than in evergreen species, although not all deciduous species had distinct rings.
4 Dendrometer measurements showed that the annual growth rhythm was related to precipitation patterns. Evergreen species tended to show only a short interruption of wood growth (during the later part of the dry season), whereas deciduous species stopped growth completely at the end of the rainy season.
5 For deciduous species, regression analyses showed close relations between tree-ring width and the sum of precipitation outside the rainy seasons (i.e. November to April). Evergreen species reacted to the total annual amount of precipitation.
6 Variation in longest available ring chronology (for Terminalia guianensis ) showed little correlation with the El Niño–Southern Oscillation effect.
7 On average trees from natural forests showed relatively constant growth over the entire life span. Plantation trees grew fast up to an age of 15–20 years, but annual increments then decreased to values seen in natural forest trees.  相似文献   

4.
Dezzeo  Nelda  Worbes  Martin  Ishii  Iria  Herrera  Rafael 《Plant Ecology》2003,168(1):165-175
The occurrence of seasonal growth rings in the wood of Campsiandra laurifolia, Acosmiun nitens, Pouteria orinocoensis and Psidium ovatifolium, common species growing in the flooding forest of the Mapire river, was analyzed using wood anatomy and ring- width analysis. The test of the annual ring formation was performed using radiocarbon analysis based on the nuclear weapon effect. All species showed growth rings visible to the naked eye. The ring boundaries in all cases were marked by bands of marginal parenchyma. The index ring-width curves of the four studied species showed a strong relationship with the fluctuation of the water river level during the non flooded months, suggesting that an increase in the water level during these months positively influenced the growth indicating that the rings were formed on an annual basis. The content of radiocarbon in the wood of anatomically predated rings of Campsiandra laurifolia and Pouteria orinocoensis confirm these results. All studied trees are slow growing with less than 2.5 mm annual increment.  相似文献   

5.
BACKGROUND AND AIMS: The mangrove Rhizophora mucronata has previously been reported to lack annual growth rings, thus barring it from dendrochronological studies. In this study the reported absence of the growth rings was reconsidered and the periodic nature of light and dark brown layers visible on polished stem discs investigated. In addition, the formation of these layers in relation to prevailing environmental conditions, as well as their potential for age determination of the trees, was studied. METHODS: Trees of known age were collected and a 2.5-year cambial marking experiment was conducted to determine the periodic nature of the visible growth layers. KEY RESULTS: Annual indistinct growth rings were detected in R. mucronata and are defined by a low vessel density earlywood and a high vessel density latewood. The formation of these growth rings and their periodic nature was independent from site-specific environmental conditions in two forests along the Kenyan coast. However, the periodic nature of the rings was seriously affected by slow growth rates, allowing accurate age determination only in trees with radial growth rates above 0.5 mm year(-1). The onset of the formation of the low vessel density wood coincided with the onset of the long rainy season (April-May) and continues until the end of the short rainy season (November). The high vessel density wood is formed during the dry season (December-March). Age determination of the largest trees collected in the two studied forests revealed the relatively young age of these trees (+/-100 years). CONCLUSIONS: This study reports, for the first time, the presence of annual growth rings in the mangrove R. mucronata, which offers further potential for dendrochronological and silvicultural applications.  相似文献   

6.
Long-term analysis of tree growth using annual tree rings is increasingly in demand for tropical tree species. The basis of these studies has traditionally been the anatomical identification of the annual ring boundary. However, the structure of these annual rings has been sparsely explored for complementary physical and chemical wood traits. Here, we explore the relationships among wood density features and chemical elements (S, K, Ca, Mn) involved in the annual tree ring formation of 12 tropical tree species from non-flooded forest in the southern Amazon basin. Transverse wood sections were used for each species to determine: 1) macroscopic distinction (radial growth and wood density), 2) microscopic analyse of vessels, axial and ray parenchyma (anatomy) and 3) X-ray densitometry (physical) and X-ray fluorescence (chemical). For some species, the profiles of wood density, and Ca and Mn content showed intra- and inter-annual patterns that allowed to define and characterize the growth boundary of tree rings. Ca, K and S were mainly distributed in axial parenchyma cells, and around vessels, whereas, Mn was mainly distributed in fibres. Our results showed significant species-specific correlations between tree-ring width, density and concentrations of Ca, K and Mn. The anatomical characterization and the complementary information provided by the density and chemical profiles in some Amazonian species can represent a valuable proxy to improve the definition of annual ring-boundaries and improve the understanding of long-term growth and physiological patterns.  相似文献   

7.
8.
用树木年代学方法研究了近50年来气候变化对长白山自然保护区两种广泛分布的重要乔木树种红松(Pinus koraiensis)和鱼鳞云杉(Picea jezoensis var. komarovii)分布上限树木径向生长的影响, 发现红松年轮宽度具有与温度升高相一致的趋势, 而鱼鳞云杉年轮宽度则出现随温度升高而下降的“分离现象”。对水热条件的正响应是分布上限红松年表与温度保持一致的关键: 生长季的温度和降水的增加对上限红松的生长有促进作用, 且二者对树木生长的有利效应有相互促进的现象; 生长季的延长也有利于红松的生长。升温导致的水分胁迫是造成上限分布的鱼鳞云杉年轮宽度与温度变化趋势相反的重要因素: 分布上限的鱼鳞云杉年表与大多数温度指标均呈负相关关系; 随着温度升高, 年表与年降水量尤其是春季降水量的相关性逐渐由负转正; 各月的高温以及生长季中后期的少雨是形成上限鱼鳞云杉窄轮的主要气候因素, 而较低的各月温度以及生长季后期充足的降水则有利于上限鱼鳞云杉的生长; 此外, 生长季长度没有变化也可能是造成鱼鳞云杉年表序列对温度变化敏感性下降的重要因素。  相似文献   

9.
Tree ring width (TRW), maximum (MXD), mean (MED) and minimum (MID) wood density were investigated in samples from the vicinity of the Tuchola Forest Biosphere Reserve (Northern Poland) in an attempt to distinguish the relative importance of climate and insect attack on the growth of Norway spruce. Selected climate parameters were used for a multiple regression to predict tree-ring width during insect outbreaks. This also used AICc for model selection. Additionally, k-means clustering was then used to group the yearly data of TRW, MXD, MID and the data of insect outbreaks. The respective climate data and data on insect outbreaks during the years 1962–1996 revealed a strong influence of May precipitation on TRW and insect outbreaks on MID. Missing tree rings or narrow rings and lower MXD together with higher MID might indicate increased insect activity.  相似文献   

10.
Tree-ring width, wood density, anatomical structure and 13C/12C ratios expressed as δ13C-values of whole wood of Picea abies were investigated for trees growing in closed canopy forest stands. Samples were collected from the alpine Renon site in North Italy, the lowland Hainich site in Central Germany and the boreal Flakaliden site in North Sweden. In addition, Pinus cembra was studied at the alpine site and Pinus sylvestris at the boreal site. The density profiles of tree rings were measured using the DENDRO-2003 densitometer, δ13C was measured using high-resolution laser-ablation-combustion-gas chromatography-infra-red mass spectrometry and anatomical characteristics of tree rings (tracheid diameter, cell-wall thickness, cell-wall area and cell-lumen area) were measured using an image analyzer. Based on long-term statistics, climatic variables, such as temperature, precipitation, solar radiation and vapor pressure deficit, explained <20% of the variation in tree-ring width and wood density over consecutive years, while 29–58% of the variation in tree-ring width were explained by autocorrelation between tree rings. An intensive study of tree rings between 1999 and 2003 revealed that tree ring width and δ13C-values of whole wood were significantly correlated with length of the growing season, net radiation and vapor pressure deficit. The δ13C-values were not correlated with precipitation or temperature. A highly significant correlation was also found between δ13C of the early wood of one year and the late wood of the previous year, indicating a carry-over effect of the growing conditions of the previous season on current wood production. This latter effect may explain the high autocorrelation of long-term tree-ring statistics. The pattern, however, was complex, showing stepwise decreases as well as stepwise increases in the δ13C between late wood and early wood. The results are interpreted in the context of the biochemistry of wood formation and its linkage to storage products. It is clear that the relations between δ13C and tree-ring width and climate are multi-factorial in seasonal climates.  相似文献   

11.
Tree-ring studies may help better understand climate variability and extreme climate event frequency and are especially useful in regions where detailed meteorological records lack. We studied the effect of droughts and unusually cold periods on Pinus sylvestris tree-ring width and wood anatomy. Study sites were selected along an altitudinal gradient on Vitosha Mountain, Bulgaria. Drought conditions caused the formation of narrow tree rings or light rings if the drought occurred in July–August at the lower altitude sites. In years with droughts in June and the first half of July, followed by precipitation in the middle of July, intra-annual density fluctuations (IADFs) were formed. Trees in the zone with optimal growth conditions produced fewer light rings and narrow rings in years with either strongest droughts or unusually cold summers. At the timberline zone, low summer temperature triggered narrow tree rings and light rings. Frost rings were formed when there was a drop in temperatures below the freezing point in the second half of May or at the beginning of June. Our findings show that studies of tree-ring anatomy may contribute to obtain further knowledge about extreme climatic events in the Balkan Peninsula and in other regions where meteorological data lack.  相似文献   

12.
We investigated the variability of tree-ring width, wood density and 13C/12C in beech tree rings (Fagus sylvatica L.), and analyzed the influence of climatic variables and carbohydrate storage on these parameters. Wood cores were taken from dominant beech trees in three stands in Germany and Italy. We used densitometry to obtain density profiles of tree rings and laser-ablation-combustion-GC-IRMS to estimate carbon isotope composition (δ 13C) of wood. The sensitivity of ring width, wood density and δ 13C to climatic variables differed; with tree-ring width responding to environmental conditions (temperature or precipitation) during the first half of a growing season and maximum density correlated with temperatures in the second part of a growing season (July–September). δ 13C variations indicate re-allocation and storage processes and effects of drought during the main growing season. About 20% of inter-annual variation of tree-ring width was explained by the tree-ring width of the previous year. This was confirmed by δ 13C of wood which showed a contribution of stored carbohydrates to growth in spring and a storage effect that competes with growth in autumn. Only mid-season δ 13C of wood was related to concurrent assimilation and climate. The comparison of seasonal changes in tree-ring maximum wood density and isotope composition revealed that an increasing seasonal water deficit changes the relationship between density and 13C composition from a negative relation in years with optimal moisture to a positive relationship in years with strong water deficit. The climate signal, however, is over-ridden by effects of stand density and crown structure (e.g., by forest management). There was an unexpected high variability in mid season δ 13C values of wood between individual trees (−31 to −24‰) which was attributed to competition between dominant trees as indicated by crown area, and microclimatological variations within the canopy. Maximum wood density showed less variation (930–990 g cm−3). The relationship between seasonal changes in tree-ring structure and 13C composition can be used to study carbon storage and re-allocation, which is important for improving models of tree-ring growth and carbon isotope fractionation. About 20–30% of the tree-ring is affected by storage processes. The effects of storage on tree-ring width and the effects of forest structure put an additional uncertainty on using tree rings of broad leaved trees for climate reconstruction.  相似文献   

13.
We developed chronologies based on the width of tree rings, total area of vessels, and the number of vessels per tree ring of the Prosopis flexuosa wood samples from the xerophytic woodlands of central Argentina. We evaluated the influence of climate on these tree-ring characteristics considering the period from 1940 to 2004 (65 years). The width of the rings, the number of vessels, and the total area of vessels were positively influenced by regional precipitation corresponding to the seasonalized November to December period, which reflects the importance of the water availability in the initial stage of the formation of the wood. The width of the rings and the total area of vessels were negatively influenced by temperature during the same period, while the number of vessels was not significantly correlated with temperature. The high temperatures in spring increase evapotranspiration, which reduces water availability to plants and results in an inverse growth response. This study was the first to develop chronologies based on anatomical characters of wood from the arid and semiarid regions of South America and with significant applications in ecological and climatic studies.  相似文献   

14.
帽儿山地区兴安落叶松人工林树木年轮气候学研究   总被引:4,自引:0,他引:4  
通过帽儿山兴安落叶松(Larix gmelinii)人工林树木年轮样本和气象资料,对该地区兴安落叶松进行了树木年轮气候学研究,结果表明:过去50年年均温度上升达到了显著水平(p<0.05),平均温度每10年约上升0.4℃,年平均最高气温每10年约上升0.3℃,年平均最低气温每10年约上升0.5℃,但是年降水量随着年份变化不显著(p>0.05)。从月均温度来看,所有月份均出现明显上升趋势,其中冬季2月份温度上升最为明显,达到0.9~1℃/10年,而夏季(6~8月)上升的较小,达到0.2~0.7℃/10年;多数月份降雨量随年龄变化不显著(p>0.05)。在这一气候变暖过程中,早材及总年轮宽度生长随着夏季(6~7月)温度上升而下降,春季(5月)温度的升高而升高,晚材随着秋季(9月)温度上升而增加,导致在年水平上,年轮生长随着年均温的变化不显著(p>0.05)。降雨量在未来气候变化过程中,没有稳定的变化趋势,但是对年轮影响明显,在年水平上,早材与年轮的生长均受降水量的影响较大(p<0.05)。如果未来东北地区气候变暖趋势明显,而降水量变化不明显,春季和秋季温度升高导致的年轮生长增加会被夏季过高温度抑制年轮生长所抵消,因此,落叶松林径向生长受到的影响可能不大。  相似文献   

15.
Aim Our main aim is to determine if ring‐width variations in Empetrum hermaphroditum reflect regional or local topoclimate signals in an alpine environment. In the case that topoclimate provides the dominant signal, a secondary aim is to link these to spatial distribution patterns of different vegetation types. Location The study area is situated in the middle alpine belt in the Vågåmo region, Central Norwegian Scandes. Sampling sites cover different topoclimates: ridges, north‐facing slopes and south‐facing slopes. Methods We constructed ring‐width chronologies of E. hermaphroditum for each type of microsite for the common period 1951–2004. Climate data were prepared on an hourly, daily and growing‐season time scale. Climate–growth relationships were evaluated using bivariate correlations and regression tree methods for continuous time‐series analyses. In addition, extreme growth anomalies (pointer years) were compared with the climate conditions in those years. The impact of water supply on wood anatomy was determined by correlating the conductive area (percentage of vessel per growth ring) with a running mean (sum) of 10‐day intervals for temperature and precipitation. Results This study indicates that mean summer (June–August) temperatures determine the width of the growth rings of E. hermaphroditum irrespective of topoclimate. The length of the growing season, which is the most differentiating climatic factor between microsites, does not substantially alter the anatomical ring structure. Microsite differences in mean growth rates are attributed to the higher frequency of warm days. Extremely warm days limit ring‐width development at south‐facing slopes, while plants at ridges and north‐facing slopes still benefit from higher temperatures. As a consequence, pointer years are not developed synchronously at all microsites. Vessel formation is affected by available moisture, especially in the later part of the growing season. Main conclusions Topoclimate induces slight modifications of annual growth‐ring increments of E. hermaphroditum at different microsites. In contrast to the distribution patterns of vegetation types that are determined by snow cover, growth‐ring variations are related to summer temperature conditions, and the prominent regional climate signal is still reflected at all microsites. This offers the opportunity to reconstruct climatic change in alpine regions from dwarf shrub ring‐width chronologies.  相似文献   

16.
Climatic signals in beech tree-ring width series from Central Italy have been studied over different periods of time. Prewhitened tree-ring chronologies respond mainly to summer precipitation and they do not correlate in a significant manner with the winter North Atlantic oscillation (NAO) index. In this high-frequency pattern the NAO signs are only found on a small number of rings characterized by being very narrow or wide. By contrast, tree-ring width chronologies in which all the frequency components are conserved were significantly related to the NAO. The significant inverse correlation between actual measurements of ring width and NAO is a consequence of the availability of water in the soil at the beginning of the growing season. In fact, in the Mediterranean area the recharging of soil moisture depends on the amount of winter precipitation, which is inversely correlated with the NAO. Strong signals of winter precipitation and NAO are found in the low-frequency components of tree-ring growth. Received: 18 March 1999 / Revised: 29 February 2000 / Accepted: 1 March 2000  相似文献   

17.
We present five Brachystegia spiciformis Benth. (BrSp) tree-ring chronologies from the seasonally dry miombo woodland in south central Africa. Between 9 and 34 stem discs were collected from three dry and two wet miombo sites. All samples showed distinct growth rings, which were marked by terminal parenchyma bands. Site chronologies varied in length between 43 and 149 years. An increase in the number of growth ring anomalies in older trees, however, resulted in an increase in dating error and a decrease in between-tree correlations with increase in the chronology length. Annual precipitation variability accounted for some 28% of the common variance in the BrSp chronologies and we found no difference in climate sensitivity between wet and dry miombo sites. The influence of climate, and of precipitation in particular, on tree growth was strongest at the core of the rainy season (December–February). This is also the time of the year when ENSO peaks in amplitude and ENSO effects on precipitation variability in southern Africa are the strongest. We found a negative response of tree growth to ENSO throughout most of the growth year, suggesting that the development of longer chronologies from the miombo region would allow for the investigation of temporal ENSO variability. A spatial extension of the miombo tree-ring network should therefore focus on regions where ENSO effects are the strongest (e.g., southeastern Africa).  相似文献   

18.
长白山树木径向生长对气候因子的响应   总被引:2,自引:0,他引:2  
长白山是我国东北地区树木年轮学研究的热点区域之一,迄今已在学术期刊上发表了大量相关的研究论文.为了弄清当前长白山树木年轮研究的进展,阐明树木径向生长对气候因子的响应规律,本文总结了发表在学术期刊上的有关文献,依据研究的树种、采样点海拔和去趋势方法等,对比分析了不同研究结果的差异及其形成原因.总的来看,长白山树木径向生长受温度和降水的共同作用,且温度的影响更大;树木径向生长-气候关系具有明显的树种和海拔差异.大多数研究支持: 针叶树主要受当年生长季前(4—5月)温度和生长季(6—8月)降水的显著影响;阔叶树则主要受当年、上年生长季温度和休眠期(上年11月至次年3月)、当年生长季降水的显著影响;上年9月降水对针、阔叶树种径向生长均有显著作用.同时,许多研究也出现了不同甚至截然相反的研究结果.研究结果差异最大的多出现在低、中海拔,表明在低、中海拔,采样点的选择可能对研究结果有较大影响.另外,年表去趋势方法也是造成研究结果不同的主要原因之一.相比较而言,采用线性或负指数去趋势方法在研究结果中显著增加了降水的作用,尤其是显著增加了休眠期降水对树木生长的影响,同时也显著增强了当前生长季末期(9—10月)温度的作用.本研究表明,采样点的小生境和年表构建时采用的去趋势方法是造成研究结果差异的主要原因,因此,在长白山开展树木年轮学研究,应增加采样点的数量,慎重选择去趋势方法.  相似文献   

19.
The Azores Archipelago, located in the North Atlantic Ridge, experiences heavy rainfall and mild temperatures with weak seasonal differences due to oceanic influence. To our knowledge, there have been no dendrochronological studies in the Azores. The aim of this study is to explore the dendrochronological potential of Pinus pinaster Ait. growing in this archipelago and to determine what limiting factor is regulating tree growth. To do so, we have sampled adult maritime pine trees growing in a plantation, in the Pico island of the Azores.Tree ring boundaries were not always easily distinguished, suggesting that in some years cambial activity did not stop during winter. Despite this, it was possible to successfully crossdate the tree-ring series and to establish a tree-ring width chronology with a strong common signal. Climatic correlations revealed a positive response to spring precipitation but no temperature signal in the tree-ring width chronology. Tree-ring width was also negatively correlated with the North Atlantic Oscillation (NAO) and the sea level pressure (SLP) in May − June.Intra-annual density fluctuations (IADFs), which are anatomical features formed in response to variations in environmental conditions during the growing season, were present in 85% of the tree rings. IADFs were identified based on its position within the ring: type E+, characterized as a transition wood from early- to latewood; type L, the most frequent, characterized as earlywood-like cells within latewood; and type L+, characterized as earlywood-like cells between latewood and earlywood of the next tree ring. Each IADF type presented a unique climatic signal: type E+ was positively correlated with early summer precipitation and early spring temperature; type L was positively correlated with early autumn precipitation and temperature; and type L+ was positively correlated with late autumn precipitation.In conclusion, the tree-ring width chronology established for maritime pine growing in the Pico Island of Azores contains a clear climatic signal for spring precipitation, whereas IADFs frequency correlated better with precipitation later in the growing season. For this reason, we suggest that IADFs should be included in future dendrochronological studies in the Macaronesia Biogeographical region since they can improve the climatic signal present in tree-ring width chronologies.  相似文献   

20.
Given the scarcity of instrumental climatic data in the South American tropics, it is valuable to explore the dendrochronological potential of the numerous tree species growing in the region. In this paper, we assessed for the first time the dendrochronological characteristics of Schinopsis brasiliensis, an arboreal species from the dry-tropical Cerrado and Chaco forests in Bolivia and adjacent countries. Similar to most woody species in the Cerrado and Chaco regions, growth rings of S. brasiliensis are delimited by the presence of thin but continuous lines of marginal parenchyma. Based on 22 samples from 15 trees, we present the first ring-width chronology for this species covering the period 1812–2011 (200 years). Additionally, a 106-year floating chronology from S. brasiliensis was developed using cores from four columns from the church of San Miguel, Santa Cruz, built in the period 1720–1740. Standard dendrochronological statistics indicate an important common signal in the radial growth of S. brasiliensis. The comparison of variations in regional climate and ring widths shows that tree growth is directly related to spring-summer rainfall and inversely related to temperature. Following the winter dry season, rainfall in late spring and early summer increases soil water supply, which activates tree growth. In contrast, above-average temperatures during the same period increase evapotranspiration, intensify the water deficit and reduce radial growth. The dependence of S. brasiliensis growth on water supply is evidence of its dendrochronological potential for reconstructing past precipitation variations in the extensive tropical Cerrado and Chaco forest formations in South America. Using wood from historical buildings opens the possibility of extending the chronologies of S. brasiliensis over the past 400–500 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号