首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Osmorhiza longistylis is an herbaceous perennial that grows in woodlands of eastern and central North America. In northcentral Kentucky seeds ripen in early to mid July, and dispersal begins in September and October. Although most of the seeds are shed during late autumn and winter, some remain on the dead shoots for up to 18 months. Seeds are dormant at maturity due to an underdeveloped embryo. Embryos grew at low (5 C) temperatures, but only after seeds were given a period of warm (30/15 C) stratification. With an increase in the length of the warm treatment, there was an increase in the number of embryos that grew to full length during a 12-wk period at 5 C and an increase in the percentage of seeds that germinated. Seeds given 12 wk of warm stratification required more than 8 wk at 5 C to overcome dormancy. Embryos in freshly-matured seeds averaged 0.60 mm long, but those in seeds given 12 wk warm plus 12 wk cold stratification averaged 8.86 mm. Lengths of embryos of seeds kept moist at 30/15 and 5 C for 24 wk averaged 0.63 and 0.89 mm, respectively. Regardless of age and dispersal time, imbibed seeds must be exposed to high (i.e., summer or autumn) and then to low (i.e., winter) temperatures before they will germinate. Consequently, germination occurs only in spring.  相似文献   

2.
In freshly matured seeds of the long-lived monocarpic perennial, Frasera caroliniensis Walt., the embryos are underdeveloped and physiologically dormant. Dormancy was broken by a long period of stratification (chilling) at 5 C. Seventy six percent of the seeds germinated at 20 C (day)/10 C (night) after 98 days of chilling at 5 C, while seeds kept at 5 C germinated to 87% after 205 days. A warm, moist pretreatment was not required for subsequent breaking of dormancy at 5 C. Embryos in fresh seeds averaged 1.3 mm long, but after 12 weeks of chilling they averaged 4.1 mm. Thus, the embryos require a period of chilling to become fully developed, after which seeds can germinate at the afterripening temperatures (5 C) or at some higher temperature. Seeds of F. caroliniensis fit Nikolaeva's (1977) morpho-physiological complex dormancy type.  相似文献   

3.
Freshly-matured seeds of the mesic deciduous woodland herb Jeffersonia diphylla (L.) Pers. (Berberidaceae) have underdeveloped (ca. 0.6 mm in length) embryos and exhibit deep, simple morphophysiological dormancy (MPD). For rapid growth of the embryos at October (20/10) and November (15/6 C) temperatures in October and November, seeds must first be exposed to high (30/15 C) summer temperatures. If embryo growth is not completed in autumn, it continues during winter. However, even after 10–12 weeks at summer temperatures, embryos grew very little at 5 C, unless growth already had begun at autumn temperatures. After embryo growth has been completed, or after it has been initiated, seeds require cold stratification (5 C) to overcome dormancy. Embryos must attain a minimum length of about 1 mm before seed dormancy can be broken by cold stratification. Gibberellic acid increased the rate of embryo growth in seeds kept at 20 C, but only 1–9% of them germinated. Thus, GA substitutes for warm but not cold stratification. High summer temperatures, as well as the traditionally-used autumn and winter temperatures, should be used in germinating seeds with deep, simple MPD.  相似文献   

4.
Stratification of common ragweed (Ambrosia artemisiifolia) seeds at 4 C was most successful for breaking dormancy, whereas -5 C was least effective and 10 C was intermediate. Germination in the light exceeded that in the dark at all stratification and germination temperatures. The optimum temperatures for germination in the light were 10/20, 15/25, and 20/30. Maximum germination in the dark occurred at 20/30 C for seeds stratified at 4 and 10 C but the optimum temperatures for seeds stratified at -5 C were 10/20, 15/25, and 20/30. Seeds stratified at -5 and 10 C germinated best after 15 weeks of stratification, whereas 12 weeks of stratification at 4 C resulted in maximum germination. Secondary dormancy was induced in seeds which did not germinate in the dark. This was affected by stratification temperature and duration and germination temperature. The ecological significance of these germination characteristics is discussed.  相似文献   

5.
Seeds of the winter annual Viola rafinesquii Greene exhibit true dormancy at the time of maturity and dispersal in mid to late spring. During the summer rest period the seeds pass from a state of true dormancy to one of relative dormancy and finally to what may be called a state of complete nondormancy. As the seeds enter relative dormancy they will germinate mostly at relatively low temperatures (10, 15, 15/6, and 20/10 C), but as after-ripening continues they gain the ability also to germinate at higher temperatures (20, 25, and 30/15 C). During June, July, and August seeds will not germinate at field temperatures even if kept continuously moist. But by September and October seeds may germinate to high percentages over a wide range of temperatures, including September and October field temperatures. This pattern of germination responses, involving breaking of true dormancy and widening of the temperature range for germination during relative dormancy, appears to be an adaptation of the species to a hot, dry season. Seeds of V. rafinesquii stored on continuously wet soil (field capacity) or on soil that was alternately wet and dried during the summer did not after-ripen at low temperatures (10, 15, 15/6, and 20/10 C) but did after-ripen fully at high temperatures (20, 25, 30/15, and 35/20 C). Thus, the high temperatures that V. rafinesquii “avoids” by passing the summer in the dormant seed stage actually are required to break seed dormancy and, therefore, are essential for completion of its life cycle.  相似文献   

6.
We used a double germination phenology or “move-along” experiment (sensu Baskin and Baskin, 2003) to characterize seed dormancy in two medicinal woodland herbs, Collinsonia canadensis L. (Lamiaceae) and Dioscorea villosa L. (Dioscoreaceae). Imbibed seeds of both species were moved through the following two sequences of simulated thermoperiods: (a) 30/15 °C→20/10 °C→15/6 °C→5 °C→15/6 °C→20/10 °C→30/15 °C, and (b) 5 °C→15/6 °C→20/10 °C→30/15 °C→20/10 °C→15/6 °C→5 °C. In each sequence, seeds of both species germinated to high rates (>85%) at cool temperatures (15/6 and 20/10 °C) only if seeds were previously exposed to cold temperatures (5 °C). Seeds kept at four control thermoperiods (5, 15/6, 20/10, 30/15 °C) for 30 d showed little or no germination. Seeds of both species, therefore, have physiological dormancy that is broken by 12 weeks of cold (5 °C) stratification. Morphological studies indicated that embryos of C. canadensis have “investing” embryos at maturity (morphological dormancy absent), whereas embryos of D. villosa are undeveloped at maturity (morphological dormancy present). Because warm temperatures are required for embryo growth and cold stratification breaks physiological dormancy, D. villosa seeds have non-deep simple morphophysiological dormancy (MPD). Neither species afterripened in a 6-month dry storage treatment. Cold stratification treatments of 4 and 8 weeks alleviated dormancy in both species but C. canadensis seeds germinated at slower speeds and lower rates compared to seeds given 12 weeks of cold stratification. In their natural habitat, both species disperse seeds in mid- to late autumn and germinate in the spring after cold winter temperatures alleviate endogenous dormancy.  相似文献   

7.
《Acta Oecologica》2001,22(1):1-8
Seeds of Drosera anglica collected in Sweden were dormant at maturity in late summer, and dormancy break occurred during cold stratification. Stratified seeds required light for germination, but light had to be given after temperatures were high enough to be favorable for germination. Seeds stratified in darkness at 5/1 °C and incubated in light at 12/12 h daily temperature regimes of 15/6, 20/10 and 25/15 °C germinated slower and to a significantly lower percentage at each temperature regime than those stratified in light and incubated in light. Length of the stratification period required before seeds would germinate to high percentages depended on (1) whether seeds were in light or in darkness during stratification and during the subsequent incubation period, and (2) the temperature regime during incubation. Seeds collected in 1999 germinated to 4, 24 and 92 % in light at 15/6, 20/10 and 25/15 °C, respectively, after 2 weeks of stratification in light. Seeds stratified in light for 18 weeks and incubated in light at 15/6, 20/10 and 25/15 °C germinated to 87, 95 and 100 %, respectively, while those stratified in darkness for 18 weeks and incubated in light germinated to 6, 82 and 91 %, respectively. Seeds collected from the same site in 1998 and 1999, stratified in light at 5/1 °C and incubated in light at 15/6 °C germinated to 22 and 87 %, respectively, indicating year-to-year variation in degree of dormancy. As dormancy break occurred, the minimum temperature for germination decreased. Thus, seed dormancy is broken in nature by cold stratification during winter, and by spring, seeds are capable of germinating at low habitat temperatures, if they are exposed to light.  相似文献   

8.
Fruits (drupes) of Symphoricarpos orbiculatus ripen in autumn and are dispersed from autumn to spring. Seeds (true seed plus fibrous endocarp) are dormant at maturity, and they have a small, linear embryo that is underdeveloped. In contrast to previous reports, the endocarp and seed coat of S. orbiculatus are permeable to water; thus, seeds do not have physical dormancy. No fresh seeds germinated during 2 wk of incubation over a 15°/6°-35°/20°C range of thermoperiods in light (14-h photoperiod); gibberellic acid and warm or cold stratification alone did not overcome dormancy. One hundred percent of the seeds incubated in a simulated summer → autumn → winter → spring sequence of temperature regimes germinated, whereas none of those subjected to a winter → spring sequence did so. That is, cold stratification is effective in breaking dormancy only after seeds first are exposed to a period of warm temperatures. Likewise, embryos grew at cold temperatures only after seeds were exposed to warm temperatures. Thus, the seeds of S. orbiculatus have nondeep complex morphophysiological dormancy. As a result of dispersal phenology and dormancy-breaking requirements, in nature most seeds that germinate do so the second spring following maturity; a low to moderate percentage of the seeds may germinate the third spring. Seeds can germinate to high percentages under Quercus leaf litter and while buried in soil; they have little or no potential to form a long-lived soil seed bank.  相似文献   

9.
Freshly matured seeds of Osmorhiza claytonii exhibit a type of morphophysiological dormancy (MPD). Under natural conditions, embryo growth begins in late September and early October and continues until mid***- to late February, with the peak in October and November. Most seeds germinate between mid-February and late March. Embryos did not grow in seeds incubated for 24 weeks at 30/15 (warm stratification) or 5 C (cold stratification). However, in seeds given 12 weeks at 30/15 and then 12 weeks at 5 C, embryo length increased 1,246% while seeds were at 5 C. Zero to 7 days of warm followed by 24 weeks of cold stratification resulted in 2%–27% germination of fresh seeds, whereas 2 to 12 weeks of warm followed by 24 weeks of cold stratification resulted in 80%–98% germination. Warm plus cold stratification was required for embryo growth and germination of seeds that remained undispersed for a year in the field. GA3 was partially effective in substituting for warm stratification. The name “nondeep complex MPD” is proposed for the type of MPD found in O. claytonii and a few other species, making a total of eight types of MPD presently known.  相似文献   

10.
The effect of temperature on the level of dormancy of primary and secondary dormant Carex pendula and Carex remota seeds was investigated. Primary dormant and secondary dormant seeds were stratified for 4 weeks at 5, 11, 13, and 15 °C, respectively, and tested for germination at 15/5 °C in light. To obtain secondary dormant seeds, primary dormant seeds were stratified at 5 °C and afterwards at 25 °C for 4 weeks. Germination tests were carried out in water and in 25 μmol KNO3-solution to examine differences in sensitivity to nitrate between seeds relieved from primary and secondary dormancy. In both species, seeds with primary and with induced secondary dormancy showed no significant differences in germination. The two sedges showed significant differences in the effect of stratification temperatures between primary and secondary dormant seeds. Primary dormant seeds of C. pendula showed high germination (>80%) in nitrate-solution after stratification at all temperatures, while only temperatures of 5, 11, and 13 °C led to higher germination in nitrate-solution in secondary dormant seeds. Germination percentages of primary and of secondary dormant C. pendula seeds in water increased to a higher extent only after stratification at 5 and 11 °C; stratification of 11 °C was more effective in secondary than in primary dormant seeds. The only temperature that relieved primary dormancy in C. remota seeds was 5 °C where germination in water and nitrate-solution was >90%. Germination of secondary dormant seeds was increased by stratification at 11 °C independent of the test solution but higher germination after stratification at 13 °C occurred only in nitrate-solution. The results support the existence of physiological differences in the regulation of primary and secondary dormancy by temperature, and in the reaction of nitrate, at least in C. remota.  相似文献   

11.
The seed germination niche partly determines adaptation, ecological breadth and geographic range in plant species. In temperate wetlands, environmental temperature is the chief regulator of germination timing, but the ecological significance of high and low temperatures during dormancy break and germination is still poorly understood. Our aim was to characterize the temperature dimension of the germination niche in mountain base-rich fens, determining (1) the effect of different temperatures on dormancy break and germination, and (2) whether different germination strategies may be identified at the species level. We conducted laboratory germination experiments with seeds of 15 species from these habitats, collected in 18 fen sites in the Cantabrian Mountains (Spain) for two consecutive years. In all the species, the seeds were totally or conditionally dormant at dispersal and stratification produced a significant increase of germination. In most cases, there was not an obligatory requirement for cold temperatures during dormancy break, since warm stratification promoted germination as well. Although the optimal germination thermoperiod was generally high (30/20 °C), most species could also germinate at lower temperatures after cold-stratification. We also identified a group of species associated to cold-water springs that germinated only at low temperatures. Our results demonstrate that dormancy break in mountain base-rich fens does not obligatorily depend on cold temperatures during overwintering. Furthermore, germination at cool temperatures may be more widespread in wetland habitats than previously thought. The existence of two distinctive germination strategies, ‘warm’ and ‘cool’, can potentially give rise to divergent species responses to climate change.  相似文献   

12.
Abstract Lesquerella stonensis (Brassicaceae) is an obligate winter annual endemic to a small portion of Rutherford County in the Central Basin of Tennessee, where it grows in disturbed habitats. This species forms a persistent seed bank, and seeds remain viable in the soil for at least 6 years. Seeds are dormant at maturity in May and are dispersed as soon as they ripen. Some of the seeds produced in the current year, as well as some of those in the persistent seed bank, afterripen during late spring and summer; others do not afterripen and thus remain dormant. Seeds require actual or simulated spring/summer temperatures to come out of dormancy. Germination occurs in September and October. Fully afterripened seeds germinate over a wide range of thermoperiods (15/6–35/20°C) and to a much higher percentage in light (14 h photoperiod) than in darkness. The optimum daily thermoperiod for germination was 30/15°C. Nondormant seeds that do not germinate in autumn are induced back into dormancy (secondary dormancy) by low temperatures (e.g., 5°C) during winter, and those that are dormant do not afterripen; thus seeds cannot germinate in spring. These seed dormancy/ germination characteristics of L. stonensis do not differ from those reported for some geographically widespread, weedy species of winter annuals and thus do not help account for the narrow endemism of this species.  相似文献   

13.
Seeds (caryopses) of North American wild rice (Zizania palustrisvar. interior), a temperate aquatic grass, have been thoughtto require storage at low temperatures and high moisture contentsto preserve viability. The seeds are also deeply dormant atmaturity and require up to 6 months of stratification to breakdormancy. We report here that wild rice seeds can retain viabilityat moisture contents 30% (f. wt. basis) for up to 6 monthsat temperatures as high as 30 °C, and for at least 1 yearat temperatures below 20 °C. Dormancy is not broken at temperaturesabove 10 °C, but subsequent stratification requirementsare unaffected by prior warm storage. Cold storage is thereforenot required to maintain viability of wild rice seeds, but isnecessary to break dormancy. Hydrated wild rice seeds can befrozen to –10 °C without damage, but dormancy is notlost at subfreezing temperatures. These results provide newoptions for long-term storage of wild rice seeds. Zizania palustris var. interior (Fassett) Dore, wild rice, seed, germination, dormancy, storage, moisture content  相似文献   

14.
Seeds of the monocarpic perennial Frasera caroliniensis ripen in late summer, and most of them are dispersed in late autumn and winter. However, some viable seeds may remain undispersed for more than a year. Embryos are underdeveloped (ca. 1.1–1.3 mm long) at seed maturity and do not grow while seeds remain on plants in the field. Dormancy in freshlymatured seeds was broken by 12 to 14 weeks of cold stratification at 5 C, during which the embryos elongated. On the other hand, seeds collected in January and March required a period of warm stratification followed by a period of cold stratification to germinate. Seeds collected in September and sown in a nonheated greenhouse germinated to 83% the first spring after maturation, whereas those collected and sown in January and March did not germinate until the second spring. Thus, seeds that remained on plants in the field until winter entered a deepened state of dormancy, and a warm (summer) followed by a cold (winter) stratification period was required to overcome it.  相似文献   

15.
The main goal of the study was to assess germination requirements in a threatened daffodil to elaborate a detailed protocol for plant production from seeds, a key tool for conservation. Experiments were carried out both in the laboratory and outdoor conditions. In Pseudonarcissi section, endemic Iberian species of Narcissus studied heretofore have different levels of morphophysiological dormancy (MPD). Embryo length, radicle emergence, and shoot emergence were analyzed to determine the level of MPD. Both interpopulational variability and seed storage duration were also studied. Mean embryo length in fresh seeds was 1.32 mm and the embryo had to grow until it reached at least 2.00 mm to germinate. Embryo growth occurs during warm stratification, after which the radicle emerges when temperatures go down. Seed dormancy was broken in the laboratory at 28/14°C in darkness followed by 15/4°C, but the germination percentage varies depending on the population. In outdoor conditions, seed dispersal occurs in June, the embryo grows during the summer and then the radicle emerges in autumn. The radicle system continues to grow during the winter months, but the shoot does not emerge until the beginning of the spring because it is physiologically dormant and requires a cold period to break dormancy. Early cold temperatures interrupt embryo growth and induce dormancy in seeds with an advanced embryo development. Seeds of N. eugeniae have deep simple epicotyl MPD. In addition, we found that embryo growth and germination were improved by seed storage duration.  相似文献   

16.
17.
Dormant Amaranthus retroflexus seeds do not germinate in the dark at temperatures below 35°C. Fully dormant seeds germinate only at 35–40°C whereas non-dormant ones germinate within a wider range of temperatures (15 to 40°C). Germination of non-dormant seeds requires at least 10% oxygen, but the sensitivity of seeds to oxygen deprivation increases with increasing depth of dormancy. 10–6 to 10–4 M ethephon, 10–3 M 1-aminocyclopropane 1-carboxylic acid (ACC) and 10–3 M gibberellic acid (GA3) break this dormancy. In the presence of 10–3 M GA3 dormant seeds are able to germinate in the same range of temperatures as non-dormant seeds. The stimulatory effect of GA3 is less dependent on temperature than that of ethephon, while ACC stimulates germination only at relatively high temperatures (25–30°C). The results obtained are discussed in relation to the possible involvement of endogenous ethylene in the regulation of germination of A. retroflexus seeds.Abbreviations ACC 1-aminocyclopropane 1-carboxylic acid - GA3 gibberellic acid - SD standard deviation  相似文献   

18.
In an investigation of seed germination in Cardiocrinum cordatum var. glehnii, embryos in fresh seeds in October were underdeveloped and did not grow until September of the following year. Then, they grew rapidly and had fully elongated by early November. In the second spring after dispersal, radicles emerged under snow in late March and after snowmelt in April. Cotyledons emerged soon after radicles. In several laboratory experiments, embryos grew at 15°/5°C (light 12 h/ dark 12 h) following 25°/15°C. Radicles emerged from seeds with fully elongated embryos at 5°-15°C after cold stratification at 0°-5°C. Cotyledons emerged in 2 wk from seeds with a radicle at 15°/5°C to 30°/20°C. Although seeds require c. 18-19 mo after dispersal to germinate in nature, under controlled conditions, they required only 9 mo with a sequence of 25°/15°C → 15°/5°C → 0°-5°C → 15°/5°C. This is practical knowledge for propagation of plants from seeds. GA(3) treatment partially substituted for the high temperature requirement. Based on dormancy-breaking requirements, the seeds have deep simple morphophysiological dormancy (MPD). A literature review of seed dormancy in taxa of Liliaceae s. str. showed that phylogenetic position in this case is not a good predictor of level of MPD.  相似文献   

19.

Background and Aims

Only very few studies have been carried out on seed dormancy/germination in the large monocot genus Narcissus. A primary aim of this study was to determine the kind of seed dormancy in Narcissus hispanicus and relate the dormancy breaking and germination requirements to the field situation.

Methods

Embryo growth, radicle emergence and shoot growth were studied by subjecting seeds with and without an emerged radicle to different periods of warm, cold or warm plus cold in natural temperatures outdoors and under controlled laboratory conditions.

Key Results

Mean embryo length in fresh seeds was approx. 1·31 mm, and embryos had to grow to 2·21 mm before radicle emergence. Embryos grew to full size and seeds germinated (radicles emerged) when they were warm stratified for 90 d and then incubated at cool temperatures for 30 d. However, the embryos grew only a little and no seeds germinated when they were incubated at 9/5, 10 or 15/4 °C for 30 d following a moist cold pre-treatment at 5, 9/5 or 10 °C. In the natural habitat of N. hispanicus, seeds are dispersed in late May, the embryo elongates in autumn and radicles emerge (seeds germinate) in early November; however, if the seeds are exposed to low temperatures before embryo growth is completed, they re-enter dormancy (secondary dormancy). The shoot does not emerge until March, after germinated seeds are cold stratified in winter.

Conclusion

Seeds of N. hispanicus have deep simple epicotyl morphophysiological dormancy (MPD), with the dormancy formula C1bB(root) – C3(epicotyl). This is the first study on seeds with simple MPD to show that embryos in advanced stages of growth can re-enter dormancy (secondary dormancy).  相似文献   

20.
Freshly harvested, dormant seeds of Amaranthus retroflexus were unable to germinate at 25 and 35 °C. To release their dormancy at the above temperatures, the seeds were stratified at a constant temperature (4 °C) under laboratory conditions or at fluctuating temperatures in soil or by outdoor burial in soil. Fully dormant, or seeds stratified or buried (2006/2007 and 2007/2008) for various periods were treated with exogenous gibberellic acid (GA3), ethephon and abscisic acid (ABA). Likewise, the effects of these regulators, applied during stratification, on seed germination were determined. The results indicate that A. retroflexus seed dormancy can be released either by stratification or by autumn–winter burial. The effect of GA3 and ethylene, liberated from ethephon, applied after various periods of stratification or during stratification, depends on dormancy level. GA3 did not affect or only slightly stimulated the germination of non-stratified, fully dormant seeds at 25 and 35 °C respectively. Ethylene increased germination at both temperatures. Seed response to GA3 and ethylene at 25 °C was increased when dormancy was partially removed by stratification at constant or fluctuating temperatures or autumn–winter burial. The response to GA3 and ethylene increased with increasing time of stratification. The presence of GA3 and ethephon during stratification may stimulate germination at 35 °C. Thus, both GA3 and ethylene can partially substitute the requirement for stratification or autumn–winter burial. Both hormones may also stimulate germination of secondary dormant seeds, exhumed in September. The response to ABA decreased in parallel with an increasing time of stratification and burial up to May 2007 or March 2008. Endogenous GAn, ethylene and ABA may be involved in the control of dormancy state and germination of A. retroflexus. It is possible that releasing dormancy by stratification or partial burial is associated with changes in ABA/GA and ethylene balance and/or sensitivity to these hormones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号