首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sexual reproduction is induced in the dinoflagelate Peridinium cinctum f. ovoplanum Lindemann when exponentially growing cells are inoculated into nitrogen deficient medium. Small, naked vegetative cells, produced by division of the thecate cells, then act as gametes. The zygote remains motile for 12–13 days during which time it enlarges and the theca which it forms becomes warty. Thirteen to 14 day s following plasmogamy the zygote is nonmotile, the protoplast contracts, a large red oil droplet appears, the wall thickens and becomes chitinized. This hypnozygote germinates within 7–8 weeks at 20 c producing 1 post-zygotic cell retaining the large red oil droplet. The presence of 4 nuclei in these post-zygotic cells may be demonstrated by staining them with acetocarmine. Two of these nuclei are smaller than the other two and probably abort. One may infer that meiosis occurs immediately prior to or at the germinartion of the hypnozygote. This post-zygotic cell divides within 24 h into 2 daughter cells each with a promment red oil droplet. These daughter cells divide after 2–3 days into ordinary vegetative cells. Attempts to induce sexual reproduction by changes in temperature or light and by inoculation of cells into media deficient in a number of basic elements were unsuccessful.  相似文献   

2.
A new species, Ostreopsis labens Faust et Morton sp. nov., is described from three marine habitats: lagoonal water and lagoonal sand from the barrier reef of Belize, and associated with macroalgae from coral reef habitats of Oshigaki and Iriomote Islands, Japan. Dimensions of Ostreopsis labens cells are 60–86 μm long, 70–80 μm wide, and 81–110 μm in dorsoventral depth. Cells are broadly ovoid, anterioposteriorly compressed bearing a spherical nucleus and many chloroplasts. The epitheca is convex and composed of three apical plates, seven precingular plates, and an apical pore plate. The cingulum is composed of six plates. The hypotheca is constructed of five postcingular plates, one posterior intercalary, and two antapical plates. The sulcus is small, recessed, and hidden and exhibits a ventral pore and a ridged, curved plate. The thecal arrangement of O. labens is Po, 3′, 7″ 6C, 6S(?), Vp, Rp, 5″, 1p, 2″. Only one sulcal list is present. The thecal plates have a smooth surface with distinct round pores. The intercalary band between the thecal plates is smooth. A row of marginal pores line the lipped cingulum. Ostreopsis species are anteroposteriorly flattened, photosynthetic, benthic dinoflagellates that are more diverse in ecology than previously known. Ostreopsis labens is capable of living in three marine habitats: in the water column, in sand, and on macroalgal surfaces. It was most numerous in sand and less in lagoonal waters, and only a few cells were associated with macroalgae. Light and scanning electron microscopy studies revealed engulfed cells within O. labens, which indicates mixotrophic/phagotrophic behavior. A ventral opening situated in the cingulum of O. labens exhibits size variability; it may serve as an opening for engulfiing food particles because it varies in size. We propose that ingestion of prey by O. labens occurs through the ventral opening, the proposed feeding apparatus of this species, which is similar to the function of the peduncle-like structure of mixotrophic dinoflagellates. The behavior of O. labens appears similar to that previously described for Dinophysis species.  相似文献   

3.
Sexual reproduction was induced in the dinoflagellate Peridinium gatunense Nygaard when exponentially growing cells were inoculated into nitrogen deficient medium. Small thecate cells produced by division of vegetative cells then acted as gametes. Thecae of fusing gametes broke in the girdle region and were lost. Zygotes thus formed remained motile 3–5 days during which time they enlarged slightly with the newly formed theca becoming warty. Three to 5 days following plasmogamy the zygote became nonmotile, the protoplast contracted, and the cell wall thickened. Hypnozygotes with 4 nuclei were observed ca. 10–12 h following formation. Meiosis was inferred. Hypnozygotes germinated within 12 h of formation producing 2 vegetative cells which divided within a 24 h period. Attempts to induce sexual reproduction by inoculation of cells into media deficient in a number of basic elements other than N were unsuccessful.  相似文献   

4.
Sexual reproduction was induced in the dinoflagellate Peridinium willei Huitfeld-Kass when exponentially growing cells were inoculated into nitrogen deficient medium. Small, naked vegetative cells produced by division of thecate cells acted as gametes. The zygote remained motile 13–14 days, during which time it enlarged and the theca formed became warty. Fourteen to 15 days following plasmogamy the zygote was nonmotile with the protoplast contracted. A large red oil droplet appeared and the wall thickened, becoming chitinized. Hypnozygotes with 4 nuclei were observed 7–8 wk following formation. Meiosis was inferred. The hypnozygote germinated, within 8 wk producing one post-zygotic cell retaining the red oil droplet. This cell divided within 24 h into 2 daughter cells each with a prominent red oil droplet. These daughter cells divided after 2 to 3 days into ordinary vegetative cells. Attempts to induce sexual reproduction by inoculation of cells into media deficient in a number of basic elements were unsuccessful.  相似文献   

5.
The organization and development of cell coverings in two alternate phases of the life cycle in a marine dinoflagellate, Scrippsiella hexapraecingula Horiguchi et Chihara, were investigated by thin sectioning and freeze‐fracture electron microscopy. In one of these phases, the motile phase, cells have an outermost plasma membrane that is lined with flattened amphiesmal vesicles. Groups of microtubules lie beneath these vesicles. In mature motile cells, thecal plates are completely enclosed in individual amphiesmal vesicles. After settling, the cells enter the second, non‐motile phase. Here, ecdysis occurs, resulting in several steps including formation of the first pellicle layer (PI), fusion of the inner amphiesmal vesicle membranes to form the new plasma membrane, deposition of the second pellicle layer (PM) under PI, and the appearance and fusion of juvenile amphiesmal vesicles to form new territories, which eventually give rise to new thecal plates in the next motile phase. Thus, the pattern in which thecal plates are arranged in motile cells is determined at the time when the amphiesmal vesicles develop into non‐motile cells.  相似文献   

6.
The marine dinoflagellate Gonyaulax tamarensis Lebour is best known for its propensity to form blooms known as red tides in coastal waters worldwide. This paper examines the sexual cycle of this organism using light and electron microscopy. Sexual reproduction begins with contact between thecate gametes which subsequently shed their thecae to fuse along their pellicular layers. Nuclear fusion occurs well after cytoplasmic fusion and is characterized by several distinctive features: a highly vesiculate nucleoplasm without microtubules; nucleoli and V-shaped chromosomes abut the nuclear envelope distal to the region of nuclear contact; and each chromosome possesses a longitudinal line, the central chromosomal axis. Fusion results in a planozygote with numerous cytoplasmic storage products and a slightly thickened layer beneath the pellicle. Subsequent loss of thecal plates and a thickening of the sub-pellicular layer results in a non-motile hypnozygote. A newly-formed hypnozygote possesses numerous minute papillae along its outer surface, formed by the up-folding of the accumulating wall layer. Maturation of the hypnozygote wall results in a smooth three-layered wall, the outermost layer of which is the pellicular layer. Hypnozygote germination produces a large quadriflagellate plan-omeiocyte with a single nucleus and thecal plates identical to vegetative cells. Two subsequent divisions, presumably meiotic, result in Jour cells morphologically identical to vegetative cells.  相似文献   

7.
Peridinium limbatum (Stokes) Lemmerman reproduces sexually in nitrogen deficient medium. Sexual reproduction is homothallic and similar to that reported for other Peridinium species. Thecate planozygotes of P. limbatum and P. cinctum enlarge greatly. Suture bands connecting thecal plates enlarge unequally in P. cinctum producing a “warty” zygote and equally in P. limbatum maintaining the regular but enlarged appearance of the cell. Zygotes can be recognized by greatly enlarged striated suture bands.  相似文献   

8.
A new thecate, photosynthetic, sand‐dwelling marine dinoflagellate, Laciniporus arabicus gen. et sp. nov., is described from the subtidal sediments of the Omani coast in the Arabian Sea, northern Indian Ocean, based on detailed morphological and molecular data. Cells of L. arabicus are small (16.2–30.1 μm long and 13.1–23.2 μm wide), dorsoventrally compressed, with a small apical flap‐shaped projection pointing to the left. The thecal plate pattern is distinguished by minute first precingular plate and sulcus, which extends into the epitheca, with large anterior and right sulcal plates. The Kofoidian thecal tabulation is Po, X, 4′, 2a, 7′′, 6c, 6s, 5′′′, 2′′′′. Morphologically, the revealed plate pattern has an affinity to the Peridiniales, and LSU rDNA based phylogenetic analyses placed L. arabicus within the Thoracosphaeraceae, close to calcareous‐cyst producing scrippsielloids, predatory pfiesteriaceans, and photosynthetic freshwater peridinioids Chimonodinium lomnickii and Apocalathium spp. However, the thecal plate arrangement of L. arabicus differs noticeably from any currently described dinoflagellates, and the species stands out from closely related taxa by extensive differences in physiology and ecology.  相似文献   

9.
A new marine benthic, sand‐dwelling Prorocentrum species from the temperate region of the Pacific coast of British Columbia, Canada, is described using LM and EM and molecular phylogenetic analyses. The cells have a broad oval shape, 40.0–55.0 μm long and 30.0–47.5 μm wide, and a wide U‐shaped periflagellar area on the right thecal plate. The left thecal plate consists of a straighter apical outline in the form of a raised ridge. Five to six delicate apical spines in the center of the periflagellar area are present. The nucleus is located in the posterior region of the cell, and a conspicuous pusule is located in the anterior region of the cell. The cells have golden‐brown chloroplasts with a compound, intrachloroplast pyrenoid that lacks a starch sheath. The thecal plates are smooth with round pores of two different sizes. The larger pores are arranged in a specific pattern of radial rows that are evenly spaced around the plate periphery and of irregular rows (or double rows) that form an incomplete “V” at the apical end of the plates. Large pores are absent in the center of the left and right thecal plates. The intercalary band is striated transversely and also has faint horizontal striations. Trichocysts and two types of mucocysts are present. The molecular phylogenetic position of Prorocentrum tsawwassenense sp. nov. was inferred using SSU rDNA sequences. This new species branched with high support in a Prorocentrum clade containing both benthic and planktonic species.  相似文献   

10.
The gonyaulacoid dinofiagellate Alexandrium satoanum Yuki et Fukuyo sp. nov. is described from Matoya Bay, Pacific coast of central Japan. The species is distinctive in its conical epitheca with almost straight sides and dorsal concavity of the hypotheca. The plate formula is Po, pc, 4′, 6″, 6c, 10s, 5″″, and 2″″, including two accessory plates inside the sulcus. The apical pore plate is triangular and possesses an anterior attachment pore at the right margin. The first apical plate does not make contact with the apical pore plate and lacks a ventral pore. A posterior attachment pore lies at the center of the posterior sulcal plate. In Matoya Bay, vegetative cells occur as solitary cells or sometimes in pairs during late spring and early summer in low concentrations. In connection with this study, the following new combination is proposed: Alexandrium pseudogonyaulax (Biecheler) Horiguchi ex Yuki et Fukuyo comb. nov.  相似文献   

11.
Ascospore formation was studied in liquid cultures of the yeast Hansenula polymorpha, previously grown under conditions in which the synthesis of alcohol oxidase was repressed (glucose as growth substrate) or derepressed (methanol, glycerol and dihydroxyacetone as growth substrates and after growth on malt agar plates). In ascospores obtained from repressed cells, generally one small peroxisome was present. The organelle probably originated from the small peroxisome, originally present in the vegetative cells. They had no crystalline inclusions and cytochemical experiments indicated the presence of catalase, urate oxidase and amino acid oxidase activities in these organelles. In ascospores obtained from derepressed cells, generally 1–3 crystalline peroxisomes were observed. These organelles also originated from the peroxisomes originally present in the vegetative cells by means of fragmentation or division. They contained, in addition to the enzymes characteristic for peroxisomes in spores from repressed cells, also alcohol oxidase. The latter enzyme is probably responsible for the crystalline substructure of these peroxisomes.Peroxisomes had no apparent physiological function in the process of ascosporogenesis. A glyoxysomal function of the organelles during germination of the ascospores was also not observed. Germination of mature ascospores in media containing different sources of carbon and nitrogen showed that the function of the peroxisomes present in ascospores of Hansenula polymorpha is probably identical to that in vegetative haploid cells. They are involved in the oxidative metabolism of different carbon and nitrogen sources. Their enzyme profile is a reflection of that of peroxisomes of vegetative cells and their presence may enable the formation of cells which are optimally adapted to environmental conditions extant during spore germination.  相似文献   

12.
A planktonic‐benthic relationship has been described for many dinoflagellate species as part of their ecological strategy to overcome highly variable aquatic environments. Here, the phylogenetically and morphologically related marine dinoflagellates Protoceratium reticulatum and Ceratocorys mariaovidiorum were studied in relation to an unknown benthic life form. In vivo and fixed samples from cultures were analyzed in detail by light and scanning electron microscopy. In both species, a cell type with a morphology different from that of vegetative cells was observed in cultures grown until stationary phase. This cell type was always benthic, swimming sporadically only when it was disturbed. Its main feature included a strong dorsoventral compression. These cells originated from vegetative cells whose protoplasm underwent a progressive flattening, resulting in a gradual detachment of the reticulate and thick thecal plates and the formation of very thin non‐reticulated new plates with pores. When returned to fresh full‐strength medium, the cells recovered their spherical vegetative‐like morphology, including new reticulated thick plates and subsequent cell divisions. The kinetics of flattened cell formation showed that in both species, this cell type increased exponentially until the onset of the culture stationary phase and then decreased. The results of this study are discussed in the context of the planktonic–benthic coupling in dinoflagellate life cycles, including those newly appreciated to be well adapted to the benthic environment.  相似文献   

13.
The ultrastructure of the amphiesma during pellicle formation was investigated in two species of Dinophyceae, Amphidinium rhynchocephalum Anissimowa and Heterocapsa niei (Loeblich) Morrill & Loeblich using thin sections. In both species the amphiesma consists of an outermost membrane (i.e. the plasma membrane) underlain by amphiesmal vesicles. In A. rhynchocephalum the latter appear empty whereas each amphiesmal vesicle in H. niei contains a thecal plate and a thin, amorphous layer (dark-staining layer) located between, the thecal plate and the inner amphiesmal vesicle membrane. When cells of both taxa are carefully fixed, amphiesmal vesicles are always separate entities (i.e. the sutures are undisrupted). During ecdysis the following amphiesmal components are shed: the plasma membrane, the outer amphiesmal vesicle membrane, and in H. niei the thecal plates. The inner membranes of the amphiesmal vesicles then fuse with each other and form a continuous membrane (termed pellicle membrane) that remains tightly oppressed to an underlying amorphous layer (pellicular layer). In A. rhynchocephalum the pellicular layer is already present in vegetative non-ecdysed cells, whereas in H. niei it forms during ecdysis beneath the pellicle membrane. During ecdysis in H. niei, material from the dark-staining layer precipitates on the outer surface of the pellicle membrane, where it forms a characteristic honeycomb pattern. The new observations are incorporated into a revised model of pellicle formation in dinoflagellates and contrasted with earlier proposals.  相似文献   

14.
15.
In the sexual reproduction of the green alga Closterium ehrenbergii, two sexually competent cells that are morphologically indistinguishable from the vegetative cells first come close to each other to form a sexually interacting pair. Each then divides into two gametangial cells. Isogamous conjugation occurs between nonsister gametangial cells of the two resulting pairs. With unusual selfing clones derived from a certain cross of heterothallic strains, we dissected apart a pair of gametangial cells that had already been united together by a delicate transparent tube, into which each gametangial cell was going to develop its conjugation papilla. In spite of such a degree of differentiation, when each was cultured in fresh medium, individual gametangial cells could dedifferentiate into vegetative cells and form subclones. By crossing such subclones with standard stable heterothallic mating-type strains, we show that each selfing clone of this alga actually produces both stable mt + and stable mt - cells, in addition to unstable mt - cells with selfing potency, during its mitotic vegetative growth. Although the selfing in C. ehrenbergii studied here differs in certain points from true homothallism, the results of the present study provide insight into how homothallism might have evolved from heterothallism.  相似文献   

16.
ABSTRACT. The dinoflagellate Tintinnophagus acutus n. g., n. sp., an ectoparasite of the ciliate Tintinnopsis cylindrica Daday, superficially resembles Duboscquodinium collini Grassé, a parasite of Eutintinnus fraknoii Daday. Dinospores of T. acutus are small transparent cells having a sharply pointed episome, conspicuous eyespot, posteriorly positioned nucleus with condensed chromosomes, and rigid form that may be supported by delicate thecal plates. Dinospores attach to the host via a feeding tube, losing their flagella, sulcus, and girdle to become spherical or ovoid cells. The trophont of T. acutus feeds on the host for several days, increasing dramatically in size before undergoing sporogenesis. Successive generations of daughter sporocytes are encompassed in an outer membrane or cyst wall, a feature not evident in trophonts. Tintinnophagus acutus differs from D. collini in host species, absence of a second membrane surrounding pre‐sporogenic stages, and failure to differentiate into a gonocyte and a trophocyte at the first sporogenic division. Phylogenetic analyses based on small subunit (SSU) ribosomal DNA (rDNA) sequences placed T. acutus and D. collini in the class Dinophyceae, with T. acutus aligned loosely with Pfiesteria piscicida and related species, including Amyloodinium ocellatum, a parasite of fish, and Paulsenella vonstoschii, a parasite of diatoms. Dubosquodinium collini nested in a clade composed of several Scrippsiella species and Peridinium polonicum. Tree construction using longer rDNA sequences (i.e. SSU through partial large subunit) strengthened the placement of T. acutus and D. collini within the Dinophyceae.  相似文献   

17.
Summary The ultrastructure and development of the amphiesma of the dinoflagellateGlenodinium foliaceum was studied using conventional electron microscopy and immunocytochemistry. Ecdysis (shedding of the flagella, the outer two membranes of the cell, and the thecal plates) was induced by centrifugation. The cells were resuspended and the thickening of the pellicle and the development of the new thecal vesicles and plates was studied over a 9 h period. After ecdysis, the thin pellicle which underlay the thecal plates in the motile cells thickens to form a complex structure of four distinct layers: an outer layer of randomly oriented fibrils, a 50 nm layer of fibrils oriented perpendicular to the dense layer, the dense layer which has a trilaminate structure, and a wide inner homogeneous layer. The new thecal vesicles form in these pelliculate cells by the migration of electron translucent amphisomal vesicles over the layer of peripheral microtubules to a position directly under the plasmalemma. The thecal vesicles then flatten and elongate. A discontinuous pellicular layer appears within them. Subsequently, the thecal vesicles widen and are filled with a fibrillogranular substance overlying the pelliculate layer. The thecal plates form on top of this fibrillogranular material. By this time, most cells have escaped from the pellicle and are motile. At first, the outer thecal vesicle membrane is continuous with the inner thecal vesicle membrane at the sutures, but when this connection is broken, the dense pelliculate layers become continuous across the suture as does the inner thecal vesicle membrane. At ecdysis, this membrane becomes the new plasmalemma of the cell. Cells at each stage of pellicle thickening and thecal development were labelled with a polydonal antiserum raised against the 70 kDa epiplasmic protein ofEuglena acus. This antiserum labelled both the thecal plates of the motile cells and the inner homogeneous layer of the pellicle of ecdysed non-motile cells. No other amphiesmal structure was labelled, nor was any intracellular compartment.Abbreviations PBS phosphate-buffered saline - PIPES piperazine-N,N-bis[2-ethane sulfonic acid]  相似文献   

18.
Summary The structure of the generative cell and its association with the vegetative nucleus in the pollen tube ofCyphomandra betacea Sendt. were observed with the electron microscope. The generative cell, bounded by its own plasma membrane and the inner plasma membrane of the vegetative cell, possesses the cytoplasmic extension which lies within the embayments of a vegetative nucleus. The generative cell contains the normal complement of organelles and, especially, microtubules which cluster into several groups adjacent to the plasma membrane, oriented along the longitudinal axis of the cell. In the pollen tube reaching the lower end of the style aftersemivivo pollination, both of the sperm cells are elongated and polyribosomes and microtubules are the outstanding feature in the cytoplasm. The two sperm cells are connected by a common transverse cell wall, while cytoplasmic channels exist in both the periplasm of the two sperm cells and the transverse wall. The leading sperm cell (Svn) is closely associated with the vegetative nucleus. Thus the present study demonstrates the existence of the male germ unit in the pollen tube ofC. betacea. The possible cytoplasmic continuity between the sperm cells and between the gametes and vegetative cell is considered.Abbreviations Svn sperm cell physically associated with the vegetative nucleus - Sua sperm cell unassociated with the vegetative nucleus - RER rough endoplasmic reticulum - SER smooth endoplasmic reticulum  相似文献   

19.
This study indicates that bilaterally flattened, armored, benthic dinoflagellates are more diverse in morphology than previously known. A new species, Plagiodinium belizeanum Faust et Balech gen. et. sp. nov., is described in floating detritus from Twin Cays, Belize, mangrove habitats. Plagiodinium belizeanum cells are small, with dimensions of 26.5–30.5 μm in length, 20–24.5 μm in width, and 6.5–8.5 μm in depth. Cells are oblong and bilaterally compressed with a posteriorly located, spherical nucleus, many chloroplasts, and spherical starch granules. The epitheca descends ventrally, is cap-shaped, and is composed of five plates and a very small platelet provisionally named P0 situated in the center. The epitheca is narrowly oval in apical view with a pointed truncated ventral side and a rounded dorsal side. The cingulum is composed of five plates. The hypotheca is constructed of five posteriorly elongated postcingular plates and one antapical plate. The sulcus is very short and narrow, comprised of five very small plates. The thecal plate arrangement of P. belizeanum is P0, 5′, O″, 5C, 5″′, 1″″, 5S. No lists are present. Thecal plates have a smooth surface with small and irregularly scattered pores. The intercalary band is smooth on outer cell surface and broadly striated on its inner surface. We conclude that P. belizeanum represents a new, benthic, peridinioid, armored genus, Plagiodinium gen. nov. The taxonomic position of P. belizeanum sp. nov. is compared to related sand-dwelling and bilaterally flattened benthic dinoflagellates.  相似文献   

20.
ABSTRACT. A suite of morphological, histological, and molecular techniques was used to reveal for the first time division, sexuality, mandatory dormancy period of hypnozygotes, and identity of life-history stages of any Protoperidinium spp. In both Protoperidinium steidingerae and Protoperidinium depressum , asexual division occurred by eleutheroschisis within a temporary cyst, yielding two daughter cells. Daughter cells were initially round and one-half to two-thirds the size of parent cells then rapidly increased in size, forming horns before separating. Gamete production and fusion was constitutive in clonal and non-clonal cultures, indicating that both species may be homothallic. Gametes were isogamous, approximately half the size and lacking the pink pigmentation of the vegetative cells, and were never observed to feed. Gamete fusion resulted in a planozygote with two longitudinal flagella. Planozygotes of P. steidingerae formed hypnozygotes. The fate of planozygotes of P. depressum is unknown. Hypnozygotes of P. steidingerae had a mandatory dormancy period of ca. 70 days. Germination resulted in planomeiocytes with two longitudinal flagella. Nuclear cyclosis occurred in the planozygotes of P. depressum , but in the planomeiocytes of P. steidingerae . The plate tabulation and gross morphology of gametes of P. steidingerae and P. depressum differed markedly from those of vegetative cells. Thus, misidentification of morphologically distinct life-history stages and incomplete examination of thecal plate morphology in field specimens has likely led to taxonomic confusion of Protoperidinium spp. in previous studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号