首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Floral nectary development and nectar secretion in three species of Passiflora were investigated with light and electron microscopy. The nectary ring results from the activity of an intercalary meristem. Increased starch deposition in the amyloplasts of the secretory cells parallels maturation of the nectary phloem. Large membrane-bound protein bodies are observed consistently in phloem parenchyma cells, but their function is presently unknown. The stored starch serves as the main source of nectar sugars at anthesis. Plastid envelope integrity is maintained during starch degradation, and there is no evidence of participation of endoplasmic reticulum or Golgi in the secretion of pre-nectar. It is concluded that in these starchy nectaries granulocrine secretion, commonly reported for floral nectaries, does not occur.  相似文献   

2.
Summary The stigmas of species inAneilema andCommelina are trifid and comprise elongate papillae. Progressive degeneration of papular cells is observed in stigmas from open flowers and at anthesis papillae may be moribund and collapsed. Fluid emanating from the hollow style flows onto the surface through ruptures in the cuticle at the interpapillar junctions into the interstices at maturity. This secretion stains positively for protein. Stigmas are of the wet type.The cuticle overlying the papillar cells is ridged and at the final stages prior to flowering this cuticle becomes detached from the underlying cellulosic wall. The sub-cuticular space so formed is filled with secretion. InAneilema species detachment of cuticle is at the papillar tip and along the lateral walls. InCommelina species the anticlinal walls of adjacent papillae are strongly attached for much of their length and thus detachment of cuticle is restricted to the papillar tip. The cell wall at the tip in both genera may proliferate forming a rudimentary transfer-cell type wall. The secretion is considered to be produced by the papillar cells. It is PAS positive but fails to stain for protein and in both the light and electron microscopes appears heterogenous.Pollen attachment, hydration, germination and early tube growth are very rapid following self-pollination, the pollen tubes entering the neck of the style within ten minutes of attachment.A unique character combination involving pollen and stigmas in these genera indicates a monophyletic origin.  相似文献   

3.
Bai SL  Peng YB  Cui JX  Gu HT  Xu LY  Li YQ  Xu ZH  Bai SN 《Planta》2004,220(2):230-240
To understand the regulatory mechanisms governing unisexual flower development in cucumber, we conducted a systematic morphogenetic analysis of male and female flower development, examined the dynamic changes in expression of the C-class floral organ identity gene CUM1, and assessed the extent of DNA damage in inappropriate carpels of male flowers. Accordingly, based on the occurrence of distinct morphological events, we divided the floral development into 12 stages ranging from floral meristem initiation to anthesis. As a result of our investigation we found that the arrest of stamen development in female flowers, which occurs just after the differentiation between the anther and filament, is mainly restricted to the primordial anther, and that it is coincident with down-regulation of CUM1 gene expression. In contrast, the arrest of carpel development in the male flowers occurs prior to the differentiation between the stigma and ovary, given that no indication of ovary differentiation was observed even though CUM1 gene expression remained detectable throughout the development of the stigma-like structures. Although the male and female reproductive organs have distinctive characteristics in terms of organ differentiation, there are two common features regarding organ arrest. The first is that the arrest of the inappropriate organ does not affect the entirety of the organ uniformly but occurs only in portions of the organs. The second feature is that all the arrested portions in both reproductive organs are spore-bearing parts.Abbreviations SEM Scanning electron microscopy - TEM Transmission electron microscopy - TUNEL TdT-mediated dUTP nick-end labeling  相似文献   

4.
The initiation and development of the floral organs of Brassica napus L. (cv. Westar) were examined using the scanning electron microscope. After transition of the vegetative apex into an inflorescence apex, flower primordia were initiated in a helical phyllotactic pattern. The sequence of initiation of the floral organs in a flower bud was that of sepals, stamens, petals and gynoecium. Of the four sepal primordia, the abaxial was initiated first, followed by the two lateral and finally the adaxial primordium. The four long stamens were initiated simultaneously in positions alternating with the sepals. The two short stamens were initiated basipetal to and outside the long stamens, and opposite the lateral sepals. The petals arose on either side of the two short stamens and the gynoecium was produced from the remainder of the apex. During development, the sepal primordia curved sharply at the tips and tightly enclosed the other organs. Stamen primordia developed tetralobed anthers at an early stage while filament elongation occurred just prior to anthesis. A unique pattern of bulbous cells was present on the abaxial surface of the anther. Growth of petal primordia lagged relative to the other floral organs but expansion was rapid prior to anthesis. The gynoecium primordium was characterized by an invagination early in development. At maturity, there was differentiation of a papillate stigma, an elongated style and a long ovary marked externally by sutures and divided internally by a septum. Distinct patterns of cuticular thickenings were observed on the abaxial and adaxial surfaces of the petals and stamens and on the surface of the style. The patterns were less obvious on the sepals and ovary. Stomata were present on both surfaces of the mature sepals, on the style and restricted areas on the abaxial surface of the anthers and nectaries but were absent from the petals, the adaxial surface of the stamens and the ovary. No hairs were present on any of the floral organs.  相似文献   

5.
The development and cytochemical features of the stigma andstyle have been investigated in Sugar apple, Annona squamosaL., using light and electron microscopy. The pistil is a syncarpwith an open stylar canal. Papillae of epidermal origin lineboth the surface of the stigma and the inner face of the stylarcanal. The papillae contain organelles characteristic of secretorycells with a highly thickened cellulosic wall. The wall is multi-layered,the zones differing in their microfibrillar stacking and orientation.The stigma is of the ‘wet’ type and the surfaceexudate is heterogeneous in microscopic appearance and reactscytochemically for proteins, carbohydrates and lipids. The surfacecuticle undergoes dissolution prior to anthesis. A secretionalso appears in the thickened middle lamella of the sub-epidermalcell layer which reacts cytochemically for pectinaceous acidicpolysaccharides. Esterase activity of papillae is indicative of the receptiveareas, and it is also related to the onset of receptivity. Acidphosphatase activity is intense in the sub-epidermal cell layerswhich probably reflects their secretory activity. Pollinationtriggers a copious flow of secretion onto the stigma surfacewhich engulfs the pollen grains. It appears that most of theacidic polysaccharides of this secretion come from the middlelamella of the sub-epidermal cell layer. Compatible pollen tubes have no apparent barriers to overcomeon their route to the embryo sac and the inherent protogynousdichogamy seems to control the acceptance or rejection of compatiblepollen. Annona squamosa L., sugar apple, stigma, style, secretions  相似文献   

6.
Foliar nectaries on the midveins of 7-cm leaves from cotton (Gossypium hirsutum L., cv. Stoneville 213) were examined by light and electron microscopy. The nectaries consist of external multicellular papillae and internal subglandular tissue that extends from the bases of the papillae to the vascular tissue of the midveins. The subglandular tissue is composed of small parenchyma cells; it does not contain sieve elements or xylem vessels. The parenchyma cells are rich in mitochondria, and their walls contain numerous pit fields having a high concentration of plasmodesmata. The absence of vascular tissue and the significance of the pit fields in the subglandular tissue are discussed in relation to symplastic transport of nectar secretions.  相似文献   

7.
Species of the Neotropical orchid genus Stanhopea produce a fragrance comprising terpenoids and aromatics which attracts euglossine bee pollinators. The secretory tissue, called an osmophore, is located in the adaxial region of a sac formed near the proximal portion of the floral lip. This region is easily recognized in Stanhopea oculata and S. wardii because it is papillate. The osmophore in these two species includes all the cells of the papillae and those directly below, that grade into fundamental tissue. Osmophore cells are more densely cytoplasmic than cells in the adjacent tissue. Numerous amyloplasts and mitochondria are seen in these cells from the earliest bud stages we examined through anthesis. Smooth and rough endoplasmic reticulum are abundant, but dictyosomes are uncommon. Mitochondria of osmophore cells appear to be distributed with no apparent pattern during bud stages, although they tend to be aligned near the plasmalemma at anthesis. Osmophore cells are highly vacuolate after anthesis.  相似文献   

8.
The stigma of Solarium tuberosum L. cv Shepody has a bilobed papillate surface covered with a viscous secretion at anthesis. The secretion originates as osmiophilic droplets in the cytoplasm, accumulates in the intercellular space, and fills the base of the papillae, after lifting and rupturing the cuticular layer covering the stigma surface. Cytochemical evidence shows that the stigmatic secretion is lipidic in nature; it did not stain with the periodic acid-Schiffs reaction for carbohydrate or Coomassie Brilliant Blue R-250 for proteins, but did stain with Sudan black or Nile red, a fluorescence probe for lipids. Sodium dodecylsulfate-polyacrylamide gel electrophoresis has revealed that the secretion contained three polypeptides that appeared to be 'indigenous' to the stigmatic secretion, and not contaminants. Comparative analyses of this and other proteins found in stigma secretions may provide clues to their possible roles in pollen grain adhesion and germination.  相似文献   

9.
Ultrastructural changes during omniaperturate pollen development in Trillium kamtschaticum Pall, was examined using transmission electron microscopy. The pollen mother cells are not enveloped within a thick callosic wall. The microspores resulting from successive meiosis are divided by scanty deposition of callosic wall in the tetrad. A primexine/exine template is not recognizable within the tetrad during formation of exinous components. Preexinous globules, originating from vesicles in the callosic wall, accumulate electron-dense materials and develop into exinous globules. The preexinous globules have ca 10 nm wide contacts with tilted and invaginated plasma membrane of the microspore within the callosic wall. After dissolution of the callosic wall, the microspores separate and mitosis subsequently leads to the formation of a generative cell and vegetative cell encased in a loose aggregation of developing exinous globules. When the generative cell is at the pollen grain surface, the channeled zone is initiated at the opposite side of the microspore on the surface of the vegetative cell. Just before pollen maturity, a new layer develops under the channeled zone. Thus, development of the omniaperturate pollen grains of T. kamtschaticum involves some processes that are distinct from those of Canna and Heliconia and some that are similar.  相似文献   

10.
The morphological changes in the apex of strawberry (Fragaria x ananassa) cv. Elsanta during flower initiation and early development were studied by means of apical dissections and cryo-scanning electron microscopy. Characteristic stages of development were recorded from the earliest discernible evidence of floral initiation until anthesis. The results are discussed in relation to previous studies of floral development in strawberry.  相似文献   

11.
为了解传粉过程中柱头对花粉的捕获策略,对6种铁线莲属植物(甘青铁线莲、灌木铁线莲、粉绿铁线莲、薄叶铁线莲、粗齿铁线莲和短尾铁线莲)的柱头显微结构进行扫描电镜观察,发现6种铁线莲属植物的柱头均位于花柱的腹缝面,由花柱腹缝两侧细胞发育成柱头乳突,乳突形状随花期逐步从球状到指状甚至长指状过度,并伴随着柱头受粉面从花柱顶端朝花柱基部渐次发育成熟的特殊发育式样。观察分析6种铁线莲的花部综合征及花粉胚珠比(P/O)发现,柱头的此类发育式样与其他花部构成存在功能上的协同一致。为理解铁线莲属植物花部的进化提供了新的思路和视野,对观赏用铁线莲属植物的育种栽培具参考价值。  相似文献   

12.
Clusia fluminensis and C. lanceolata are dioecious shrubs having resiniferous flowers with strongly distinct androecia. The aim of this study was to investigate the development and anatomy of their androecia and the ultrastructure, histochemistry and secretory process of their androecium resin glands, examining whether the cellular aspects of resin secretion differed between these two morphologically distinct androecia. Stamens differ, being free in C. fluminensis and clustered in a synandrium in C. lanceolata. Staminode sterility is due to the undifferentiated nature of the anthers in C. lanceolata and degeneration of meiocytes and anther indehiscence in C. fluminensis. Resin is produced in subepidermal cavities and canals with wide lumens. In the secretory stage, epithelial cells present sinuous walls, voluminous nuclei, polymorphic plastids associated with periplastidial reticulum, mitochondria, oil bodies, multivesicular bodies, endoplasmic reticulum and dictyosomes. The resin is released through rupture points on the distal surface of stamens and staminodes, associated with disrupted cavities and canals. Our results show morphological diversity associated with functional similarity. Also, a secretion pattern shared by the two species includes initiation of the secretory process in young floral buds, compartmentalisation of the secretion in pre‐anthesis buds and release of secretions at anthesis. Cellular aspects of resin secretion in these species are quite similar, as are the chemical identities of the main components of the floral resins of the genus.  相似文献   

13.
Gametophytic organization, fertilization and reproductive success are described for the fertile diploid Brachiaria brizantha accession BRA-002747 which is being raised for use in Brachiaria breeding programs, as well as to understand and control of apomixis in this genus. The current paper reports on reproductive biology and analysis of seed set in field experiments during three consecutive years. Unsuccessful seed production in this plant is believed to correlate with early inbreeding depression, based on the reproductive features analyzed. Caryopsis development was observed using differential interference contrast microscopy with seed set determined by the number of self- and open-pollinated pistils that fully developed into viable seeds. Developing and mature female and male gametophytes were observed in the context of flower phenology, morphology and anthesis patterns. Pollen viability was determined by acetocarmine staining and by observation of germination in vivo, which was also used to observe pollen tube/pistil interaction. Although normal development was observed in floral structures, anthesis and gametophytes, seed set was low, with 2 and 6% in self- and open-pollination, respectively, producing seed. Variations observed in the female organs, such as the presence of a hermaphrodite flower in 50% of the inferior floscules and the presence of multiple embryo sacs of the Polygonum type within the same ovule in 15% of the pistils, are not related to low fertility. The majority of pollen grains are viable, in spite of the reduced number of pollen tubes within the style and ovary carpel, and a developing caryopsis was observed in 70% of self-pollinated pistils, indicating successful double fertilization from 2 days after anthesis (DAA). Nevertheless, abortion gradually increased from 2 until 7 DAA and remains elevated until 12 DAA, when caryopsis maturity is achieved. These data confirm low seed set in this accession and indicate that low fertility is not a consequence of abnormalities, either in the floral or gamete structures, or pollen tube rejection, but most likely a consequence of inbreeding depression.  相似文献   

14.

Floral secretory structures have been reported for Gentianaceae; however, morphoanatomical studies of these glands are rare. We described the development and secretory activity of the colleters and nectaries throughout the floral development of Chelonanthus viridiflorus. We collected flower buds, flowers at anthesis, and fruits to be investigated using light and scanning electron microscopy. We performed histochemical tests on the secretion of colleters and used glycophyte to confirm the presence of glucose in nectar. Colleters are located on the ventral surface of sepals and nectaries occur in four regions: (i) the dorsal and (ii) ventral surfaces of sepals; (iii) apex of petals; and (iv) base of ovary. The colleters have a short peduncle and a secretory portion with homogeneous cells. They are active in flower buds and secrete polysaccharides and proteins. In flowers at anthesis, they begin to senescence presenting protoplast retraction, cell collapse, and lignification; these characteristics are intensified in fruit. The nectaries of sepals and petals have two to five cells surrounding a central cell through which the secretion is released. Nectaries are numerous, forming a nectariferous area on the dorsal surface of sepals, like that observed on petals, and can form isolated units on the ventral surface of sepals. They are active from flower buds to fruits. A region with secretory activity was identified at the base of the ovary. The secretion of colleters acts in the protection of developing organs, while nectaries are related to defenses against herbivores and the supply of nectar to potential robbers or pollinators.

  相似文献   

15.
The goal of this study was to analyse possible structural and ultrastructural differences between the secretory disk of male and functionally female flowers of Tapirira guianensis (Anacardiaceae) at different developmental stages. Studies were carried out using light, scanning and transmission electron microscopy. Biochemical tests were employed to determine the proportion of sugars in the nectar of the floral morphotypes: they were found to be similar, both predominantly composed of sucrose. In addition to sugars, lipids and phenolic substances were identified in anthetic flowers; thus, the secretory disk is a mixed secretion gland, also called a sensu lato nectary. During anthesis, granulocrine and eccrine secretory mechanisms occur in both floral morphotypes. After anthesis and fertilization of the functionally female flower, only the lipophilic and phenolic secretion continues until the early stages of fruit development. An intrastaminal secretory disk that produces both nectar and lipids is reported for the first time in Anacardiaceae. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 533–544.  相似文献   

16.
This report assembles and pictorially presents observations on the timing of relatively uniform and well-defined developmental events in the cotton flower and its component parts. The first floral bud occurs on the 7–9th node approximately 35–40 days postemergence; 20–25 additional days elapse until anthesis. Floral parts are morphologically well defined by two weeks preanthesis. In about 85 % of the flowers the basal, abaxial surface of two of the three bracts contains an outer involucral nectary; occasionally, none, one, or three nectaries are found. The maximum rate of increase in floral bud length occurs during the 24 hrs preceding anthesis. Flower opening occurs at about daylight, although light is not required. Multipored pollen grains germinate in about ½ hr after deposition on the stigmatic hairs. Fertilization is accomplished, for most ovules, by the end of the first day postanthesis. Stomata are abundant, particularly at the chalazal ends of ovules. Fiber initials (epidermal cells of the ovule) begin their elongation phase on the morning of anthesis and are bounded by a thin primary wall. Areas of contrast (spots) observed through the scanning electron microscope are speculated to be organelles “seen through” the relatively amorphous fiber wall, which lacks extensive fibrillar orientation of cellulose. Fiber elongation ceases by about 24–28 days postanthesis, and by 50–70 days postanthesis fibers are mature and exhibit a thickened secondary wall and spiral twisting. Concomitant with the time of fiber maturity, the ovary wall splits and opens along locular suture lines.  相似文献   

17.
Nectaries occur widely in Convolvulaceae. These structures remain little studied despite their possible importance in plant–animal interactions. In this paper, we sought to describe the structure and ultrastructure of the receptacular nectaries (RNs) of Ipomoea cairica, together with the dynamics of nectar secretion. Samples of floral buds, flowers at anthesis and immature fruits were collected, fixed and processed using routine methods for light, scanning and transmission electron microscopy. Circadian starch dynamics were determined through starch measurements on nectary sections. The secretion samples were subjected to thin layer chromatography. RNs of I. cairica were cryptic, having patches of nectar‐secreting trichomes, subglandular parenchyma cells and thick‐walled cells delimiting the nectary aperture. The glandular trichomes were peltate type and had typical ultrastructural features related to nectar secretion. The nectar is composed of sucrose, fructose and glucose. Nectar secretion was observed in young floral buds and continued as the flower developed, lasting until the fruit matured. The starch content of the subglandular tissue showed circadian variation, increasing during the day and decreasing at night. The plastids were distinct in different portions of the nectary. The continuous day–night secretory pattern of the RNs of I. cairica is associated with pre‐nectar source circadian changes in which the starch acts as a buffer, ensuring uninterrupted nectar secretion. This circadian variation may be present in other extrafloral nectaries and be responsible for full daytime secretion. We conclude that sampling time is relevant in ultrastructural studies of dynamic extranuptial nectaries that undergo various changes throughout the day.  相似文献   

18.
 We investigated the degree of organogenesis completed at the end of the growing season in pistillate flowers of heterodichogamous Juglans regia, English or Persian walnut. Terminal buds from paired cultivars, one each protandrous and protogynous, chosen to represent early, midseason and late leafing walnuts, were examined by scanning electron microscopy. Results indicate that pistillate floral primordia in protandrous individuals had not progressed beyond involucre initiation during the season prior to bloom. In protogynous individuals, floral differentiation had progressed to the initiation of perianth primordia. These observations are compared with an earlier report on staminate flower differentiation in the same cultivars where a comparable, but opposite, relationship exists. We conclude that the degree of differentiation in both staminate and pistillate flowers that must be completed between the time growth resumes in the spring and anthesis is a developmental determinant of the mode of heterodichogamy in walnut. Received: 15 June 1996 / Revision accepted: 25 October 1996  相似文献   

19.
20.
荆条花蜜腺发育解剖学研究   总被引:2,自引:0,他引:2  
荆条(Vitex chinensis Mill.)花蜜腺属于淀粉型子房蜜腺,呈圆筒状环绕于子房的基部。蜜腺外观上无特殊结构,表面有。由分泌表皮和泌蜜组织组成,包括分泌表皮、气孔器、泌蜜薄壁组织和维管束。密腺和子房壁起源相同。花蕾膨大期,泌蜜组织细胞中产生大液泡;露冠期,泌蜜组织中形成维管束;花蕾初放期,分泌表皮细胞分化形成气孔器,无气孔下室,淀粉粒的积累在此期达到高峰;盛花期,蜜腺中已无淀粉粒,密  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号