首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigated the pattern of variation in nuclear DNA content at different ploidy levels in Fragaria (Strawberry, Rosaceae) using flow cytometry based on mean fluorescent intensity (MFI) reflected by propidium-iodide-stained nuclei. On average, MFI values were 237 for diploids F. vesca, F. viridis, and F. nubicola, 416.5 for tetraploid F. orientalis, 621.5 for hexaploid F. moschata, and 798 for octoploids F. × ananassa, F. virginiana, and F. chiloensis. Within diploids MFI ranged from 225.9 in F. vesca ssp. vesca to 255.4 in F. nubicola, and within octoploids varied from 766 in F. × ananassa to 808 in F. virginiana. The nuclear DNA variation was significant among diploid species (N = 21, P < 0.008), but not across octoploid species (N = 17, P>0.386). MFI values were also variable among different genotypes of a given species though not significant. The values of mean basic genome DNA (MFI divided by ploidy level) were 118.5, 104, 103.5, and 99.8, respectively, for diploids, tetraploid, hexaploid, and octoploid species. This indicates that relative genomic size decreases by increasing ploidy level, and that there is no direct proportional relationship between DNA content and ploidy levels in Fragaria, supporting the idea of genome downsizing during polyploidization in plants.  相似文献   

2.
? Premise of the study: Polyploids are often hypothesized to have distinct and broader niches than their diploid progenitors. Differences in geographic distributions between diploid and polyploids are frequently used to infer niche differentiation and increased breadth, but they are seldom used to test these hypotheses explicitly. ? Methods: Niche overlap and breadth were compared for diploids, tetraploids, and hexaploids of three taxa in the Claytonia perfoliata complex (C. parviflora, C. perfoliata, and C. rubra) with the use of species distribution models. Resampling and randomization approaches were used to test hypotheses of niche differentiation, breadth, and conservatism. ? Key results: Niche differentiation was detected between polyploid and diploid cytotypes assigned to the same taxon (e.g., C. parviflora 2× vs. 4×) but not between hexaploids and tetraploids within a taxon (e.g., C. parviflora 4× vs. 6×). Individual hexaploid cytotypes had broader ecological niches than individual diploid cytotypes. However, as a group the three hexaploid taxa did not exceed the combined niche breadth of the three diploids, suggesting that polyploidy does not result in transgressive niche breadth for this group. Niche overlap was lowest among diploids and was highest among the three hexaploid cytotypes, consistent with introgression associated with polyploidy resulting in greater ecological similarity. Although cytotypes possessed nonidentical niches, after accounting for environmental differences among ranges, cytotypes were more similar than expected, suggesting niche conservatism and similar responses to environmental characteristics. ? Conclusions: These results suggest that polyploids occupy distinct and broader niches relative to diploids but that cytotypes also share fundamentally similar responses to environmental variation across ploidy levels.  相似文献   

3.
Offspring from natural hybrids between octoploid Fragaria chiloensis (2n = 56) and diploid F. vesca (2n = 14) backcrossed under natural conditions to F. chiloensis were studied. The natural F1 hybrids themselves were of three kinds: (1) The expected pentaploids which resulted from the union of normally reduced gametes of diploid F. vesca and octoploid F. chiloensis; (2) A hexaploid F1 hybrid which resulted from the union of an unreduced gamete from diploid F. vesca with a normally reduced gamete from octoploid F. chiloensis; and (3) A 9-ploid F1 hybrid which probably arose from the union of an unreduced gamete of the octoploid F. chiloensis with a normally reduced gamete of diploid F. vesca. The progenies that resulted from the natural backcrossing of each of the three sorts of F1 hybrids to F. chiloensis were as follows: The pentaploid F1 hybrids (2n = 35) yielded mostly 9-ploid offspring from unreduced 5X gametes; a relatively high percentage of 14-ploid plants arising from doubled-unreduced 10 X gametes and a few 2N = ±46 aneuploids from reduced gametes. The hexaploid F1 hybrid (2n = 42) on backcrossing yielded over 50% 10-ploid offspring with the rest 2n = ±50 aneuploids from reduced gametes. The 9-ploid F1 hybrid (2n = 63) on backcrossing yielded mostly aneuploids normally distributed about a modal 2n = 59 chromosome class resulting from a 31 chromosome gamete, with a few 2n = 56 and 2n = 63 euploids. The 9-ploids may facilitate diploid Å octoploid introgression. Screening of the open-pollinated offspring from F. chiloensis revealed almost 2% 12-ploid (2n = 84) offspring from the union of the reduced and unreduced F. chiloensis gametes. The probable genomic constitution of the observed novel ploidy levels and those that theoretically may be generated from the known hybrids are presented. The origin of the existing polyploids from diploids through simple unreduction is postulated.  相似文献   

4.
Detailed ecological, morphological and molecular analyses were performed in mixed populations of diploid and autotetraploid Dactylorhiza maculata s.l. in Scandinavia. Comparisons were made with pure populations of either diploid ssp. fuchsii or tetraploid ssp. maculata. It was shown that mixed populations are the result of secondary contact between ssp. fuchsii and ssp. maculata. No patterns of recent and local autopolyploidization were found. Morphology and nuclear DNA markers (internal transcribed spacers of nuclear ribosomal DNA) showed that diploids and tetraploids from mixed populations have similar levels of differentiation to diploids and tetraploids from pure populations. Vegetation analyses, as well as analyses of environmental variables, revealed that diploid and tetraploid individuals in mixed populations are ecologically well differentiated on a microhabitat level. Diploids and tetraploids in pure populations have wider ecological amplitudes than they do in mixed populations. Triploid hybrids grew in intermediate microhabitats between diploids and tetraploids in the mixed populations. Plastid DNA markers indicated that both diploids and tetraploids may act as the maternal parent. Based on morphology and nuclear markers triploids are more similar to tetraploids than to diploids. There were indications of introgressive gene flow between ploidy levels. Plastid markers indicated that gene flow from diploid to tetraploid level is most common, but nuclear markers suggested that gene flow in opposite direction also may occur. Similar patterns of differentiation and gene flow appeared in localities that represented contrasting biogeographic regions. Disturbance and topography may explain why hybridization was slightly more common and the differentiation patterns somewhat less clear in the Scandinavian mountains than in the coastal lowland. An erratum to this article can be found at  相似文献   

5.
不同小麦进化材料生育后期光合特性和产量   总被引:12,自引:0,他引:12       下载免费PDF全文
以二倍体野生一粒小麦(Triticum boeoticum)、栽培一粒小麦(T. monococcum)、节节麦(Aegilops tauschii)和黑麦(Secale cereale)、四倍体野生二粒小麦(T. dicoccoides)、栽培二粒小麦(T. dicoccum)、硬粒小麦(T. durum)、六倍体普通小麦(T. aestivum)‘扬麦9号’和‘扬麦158’及八倍体小黑麦(Triticale)为材料,采用盆栽试验研究了不同小麦进化材料生育后期旗叶光合特性的演变及产量的差异。结果表明,与六倍体普通小麦和八倍体小黑麦相比,二倍体和四倍体材料在开花前具有较高的光合速率(Pn)、气孔导度(Gs)、最大光能转换效率(Fv/Fm)和实际光化学效率(ΦPSⅡ)。开花以后,二倍体和四倍体材料受非气孔因素的影响,光合能力下降较快;除黑麦外,旗叶光合速率在开花10 d后都低于普通小麦和小黑麦,胞间CO2浓度(Ci)迅速增加,Fv/FmΦPSⅡ和叶绿素含量快速下降。二倍体和四倍体材料开花前单株总叶面积和旗叶叶面积较大,花后下降迅速,功能期短;单株穗数也较多,但穗粒数、千粒重、产量和收获指数却显著低于普通小麦。因此,小麦长期进化过程中,普通小麦花后较高的光合能力及较长的光合持续期是提高千粒重,进而提高产量的重要生理基础。  相似文献   

6.
Isogenic diploid and tetraploid alfalfa (Medicago sativa L.) was studied with molecular markers to help understand why diploid performance and breeding behavior does not always predict that of tetraploids. In a previous study of partially heterozygous alfalfa genotypes, we detected a low correlation between yields of isogenic diploid (2x) and tetraploid (4x) single-cross progenies, and genetic distances were more highly correlated with yields of tetraploids than diploids. These differences may be related to the level of RFLP heterozygosity expected among progenies derived from heterozygous parents at the two ploidy levels. The objectives of this study were to determine the relationships among genetic distance, forage yield and heterozygosity in isogenic 2 x and 4 x alfalfa populations. Four diploid genotypes were chromosome doubled to produce corresponding isogenic autotetraploids, and these genotypes were mated in 4 × 4 diallels to produce 6 single-cross families at each ploidy level for field evaluation. Allele compositions of parents were determined at 33 RFLP loci by monitoring segregation of homologous restriction fragments among individuals within progenies, and these were used to estimate RFLP heterozygosity levels for all single-cross progenies at both ploidy levels. RFLP heterozygosity rankings were identical between progenies of isogenic diploid and tetraploid parents; but significant associations (P < 0.05) between estimated heterozygosity levels and forage yield were detected only at the tetraploid level. Since tetraploid families were nearly 25% more heterozygous than the corresponding diploid families, inconsistencies in the association between molecular marker diversity and forage yields of isogenic 2 x and 4 x single crosses may be due to recessive alleles that are expressed in diploids but masked in tetraploids. The gene action involved in heterosis may be the same at both ploidy levels; however, tetraploids benefit from greater complementary gene interactions than are possible for equivalent diploids. Present address: AgResearch Grasslands, New Zealand Pastoral Agriculture Research Institute, Palmerston North, New Zealand  相似文献   

7.
Heterozygosity has been positively associated with fitness and population survival. However, the relationship between heterozygosity and adaptive phenotypic plasticity (i.e., plasticity which results in fitness homeostasis or improvement in changing environments) is unclear and has been poorly explored in seaweeds. In this study, we explored this relationship in the clonal red seaweed, Gracilaria chilensis by conducting three growth rate plasticity experiments under contrasting salinity conditions and by measuring heterozygosity with five microsatellite DNA markers. Firstly, we compared growth rate plasticity between the haploid and diploid phases. Secondly, we compared growth rate plasticity between diploids with different numbers of heterozygous loci. Finally, we compared growth rate plasticity between diploid plants from two populations that are expected to exhibit significant differences in heterozygosity. We found that, (i) diploids displayed a higher growth rate and lower growth rate plasticity than haploids, (ii) diploids with a higher number of heterozygous loci displayed lower growth rate plasticity than those exhibiting less heterozygosity, and (iii) diploid sporophytes from the population with higher heterozygosity displayed lower growth rate plasticity than those with lower heterozygosity. Accordingly, this study suggests that heterozygosity is inversely related to growth rate plasticity in G. chilensis. However, better genetic tools in seaweeds are required for a more definitive conclusion on the relationship between heterozygosity and phenotypic plasticity.  相似文献   

8.
Variation in isozyme patterns was used to assess species boundaries in North American arctic and alpine representatives of the Festuca ovina L. complex. Isozyme profiles, in combination with chromosome number, delimit four discrete entities within the complex: F. brevissima Jurtzev (diploid); F. aggr. auriculata Drobov (diploid); F. brachyphylla Schultes (hexaploid); and tetraploid populations corresponding in morphology to F. baffinensis Polunin (arctic Canada) and F. minutiflora Rydberg (alpine United States). Although no fixed difference was detected between isozyme profiles of the latter two taxa, they are morphologically distinct. Thus variation in isozymes, morphology, and chromosome number delimits five taxa within the F. ovina complex in North America. Some alleles observed in the polyploid taxa were not detected among the diploids, and some observed in F. brachyphylla, the hexaploid taxon, were not detected in either the diploid or the tetraploid species. One possible explanation for these occurrences is that the North American polyploids originated in Eurasia, where many other potential diploid and tetraploid progenitors occur.  相似文献   

9.
Dactylis glomerata L. is one of the best known examples of a polyploid complex that includes diploid (2n = 14), tetraploid (2n = 28) and hexaploid (2n = 42) types. The diploids, descending from the ancestors of the genus, are numerous, distinct forms adapted to specific environments and include all the morphological variation and ecological adaptation found in Dactylis. The objective of the present study was to shed more light on the differentiation of diploids and to obtain information for better exploiting the genetic resources of this species. To this end we carried out a discriminant analysis in the most widespread diploid subspecies based on a large number of morpho-physiological traits. We found that some characteristics, such as time to heading, time to flowering, vegetative regrowth, plant height and seed shattering are the most discriminant and enabled us to realize a more exact differentiation of the diploids with respect to the morphological criterion generally adopted. The results demonstrated that diploid taxa offer an interesting combination of relevant agronomical and ecological characteristics which could be useful in breeding programs to promote the use of this species in sustainable agriculture systems. We also performed cytological investigations and defined a general karyotype representative of the diploid Dactylis considered in this study.  相似文献   

10.
Analysis of 368 plants derived from 239 natural populations showed that this taxonomically perplexing and wide-ranging species-complex consists of diploids (n = 8), tetraploids, hexaploids and octoploids. Microsporocytes were the source of most of the chromosome counts. Meiosis was basically regular. Multivalent formation was uncommon, but 11 % of all the plants examined had one or more full-sized extra chromosomes. The frequency of plants with extra chromosomes varied significantly among the taxa, from 0 (five varieties) to over 20 % (two varieties). Except in one instance, where one population yielded a diploid and a triploid, different ploidy levels were not found in the same population. The frequency of diploid, tetraploid, hexaploid and octoploid populations was, respectively, 71, 22, 4 and 2%. Variety obovatum appears to be exclusively diploid, and var. aphanactis exclusively tetraploid. Diploids and one or more polyploid levels occurred in the other taxa. No correlation was found between polyploidy and geological history, soils, topography or climate, nor were the polyploids more widely distributed than the diploids. Some of the polyploid populations seem to have been derived from inter-varietal hybridizations, but others do not. The complex has a “pillar” structure in which 10 diploid taxa support a three-level polyploid superstructure. The available evidence suggests that the major role of polyploidy here has been to stabilize the products of intra- and inter-varietal hybridizations.  相似文献   

11.
Abstract.— The extent and spatial patterns of genetic variation at allozyme markers were investigated within and between diploid and autotetraploid knapweeds (Centaurea jacea L. sensu lato, Asteraceae) at contrasted geographic scales: (1) among populations sampled from a diploid‐tetraploid contact zone in the northeastern part of the Belgian Ardennes, and (2) within mixed populations from that zone where diploids and tetraploids coexist. Our data were also compared with a published dataset by Sommer (1990) describing allozyme variation in separate diploid and tetraploid knapweeds populations collected throughout Europe. Genetic diversity was higher in tetraploids. In the Belgian Ardennes and within the mixed populations, both cytotypes had similar levels of spatial genetic structure, they were genetically differentiated, and their distributions of allele frequencies were not spatially correlated. In contrast, at the European scale, diploids and tetraploids did not show differentiated gene pools and presented a strong correlation between their patterns of spatial genetic variation. Numerical simulations showed that the striking difference in patterns observed at small and large geographic scales could be accounted for by a combination of (1) isolation by distance within cytotypes; and (2) partial reproductive barriers between cytotypes and/or recurrent formation of tetraploids. We suggest that this may explain the difficulty of the taxonomic treatment of knapweeds and of polyploid complexes in general.  相似文献   

12.
Summary Common-AB diploids with several heterozygous biochemical markers were mated with appropriately marked haploid strains of S. commune in an effort to obtain compatible, common-A, and common-B diploid progeny with biochemical markers identical to those of the common-AB parent. The spores from these crosses were germinated on minimal medium. Five compatible diploids, but no common-A or common-B diploids, marked as desired, were isolated by this method. Two possessed some dikaryotic cells and two had many dikaryotic cells. One of the latter was shown to have peculiar behaviour associated with one of its B mating-type factors.  相似文献   

13.
The systematics of Botrychium subgenus Botrychium has been controversial, primarily because reduction in frond size and complexity has limited the number of characters available for discrimination of species. The recognition of many polyploid species has magnified the difficulty of classification because allopolyploids are often morphologically intermediate between their progenitor diploids. In order to evaluate species limits and sectional boundaries, we surveyed and compared 16 of the 24 currently recognized species for isozymic variation. Little or no intrapopulational variation was detected, but the variation present was consistent with the hypothesis that Botrychium species are primarily inbreeding. Interspecific comparisons distinguished six diploid species and provided evidence of molecular differentiation between the cryptic sister species B. lunaria and B. crenulatum. Evidence of possible progenitor/descendant relationships was found for certain diploid/polyploid relationships. Using enzyme bands shared between species, realignment of the sectional assignment of several species is proposed. Anomalous banding patterns in certain individuals suggested that gene silencing or homoeologous chromosome pairing might be operating in B. minganense, B. hesperium, and B. matricariifolium. Isozyme data also showed that some populations of species presumed to be uniformly diploid possessed isozyme patterns typical of polyploids. All available molecular data indicate that members of Botrychium subgenus Botrychium are actively evolving at diploid and polyploid levels.  相似文献   

14.
In hymenopterans with single locus complementary sex determination, sex depends on the genotype at one polymorphic locus. Haploids are always male, while diploids are female when heterozygous and male when homozygous at the sex‐determining locus. Brothers and sisters have a 50% chance of sharing a sex allele (i.e. of being ‘matched’), and hence half of all sibling matings are expected to produce diploid males at the expense of females. Nevertheless, observed frequencies of diploid males are often lower than predicted, as diploid males may succumb to pre‐imaginal mortality, or because unmatched mates or sperm enjoy a competitive advantage. We counted diploid males in broods of the parasitoid wasp Cotesia glomerata sampled in the field, and in broods produced through controlled laboratory crosses. Consistently, the frequency of diploid males fell below expectations based upon the estimated occurrence of sibling mating. In the staged broods with diploid males, females made up a disproportionately large share of the diploids. Broods with and without diploid males were of similar size. Hence, the shortage of diploid males cannot be accounted for by differential pre‐imaginal mortality alone. Instead, we postulate the existence of a mechanism that leads to preferential fertilization of eggs by sperm bearing unmatched alleles. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ●● , ●●–●●.  相似文献   

15.
《Experimental mycology》1983,7(2):141-147
Armillaria mellea is a bifactorially heterothallic fungus with a fertile, diploid, vegetative phase. While diploids of this fungus are readily recovered by nutritional selection from compatible and incompatible pairings of haploids, genetic analyses have been limited both because this organism does not produce fruiting bodies reliably in the laboratory and because somatic segregation occurs infrequently in diploid cultures. In this study, diploids ofA. mellea heterozygous at nutritional and mating-type marker loci were treated with formaldehyde, para-fluorophenylalanine, benomyl, and ultraviolet light in order to recover somatic segregants. Of these agents, only benomyl dramatically increased the frequency of somatic segregation under the conditions used. Auxotrophic segregants were recovered from macerates of prototrophic, diploid mycelia that had been grown in the presence of benomyl. Many of these segregants differed from their diploid progenitors in mating behavior as well as in nutritional phenotype. The development of a reliable method for the recovery of somatic segregants from diploids ofA. mellea permits parasexual analysis and reduces the need forin vitro production of fruiting bodies in future genetic studies.  相似文献   

16.
The morphology and leaf anatomy, water relations, gas exchange, and growth characteristics of Betula papyrifera seedlings grown in a greenhouse representing three ploidy levels (diploids, pentaploids, and hexaploids) have been compared in an effort to understand the role of polyploidy in habitat differentiation and adaptation to water deficit. The polyploids are more tolerant of water deficit than their diploid relatives. The polyploids have fewer stomata per unit area and smaller stomatal indices than the diploids. They also have thicker upper and lower epidermis and more pubescence, which tend to reduce water loss. The polyploids have lower osmotic potential at saturation (p.sat) than corresponding diploids, suggesting they are more able to maintain turgor in the case of low tissue water potential than the diploids. The photosynthesis of the diploids is more sensitive to water deficit. A 2-hr artificial water stress treatment caused complete cessation of photosynthesis in the diploids. They are more drought-avoiding than the polyploids as evidenced by closing their stomata to limit water loss at a relatively higher tissue water potential (-1.425 MPa). The pentaploids and hexaploids maintained, although to a small extent, photosynthesis when their tissue water potentials dropped to -1.86 MPa and -2.07 MPa, respectively.  相似文献   

17.
104 populations of 15 Nordic species (2x–16x) of the taxonomically complex genusDraba were investigated using enzyme electrophoresis. The polyploids were genetic alloploids showing high levels of fixed heterozygosity and electrophoretic variation; the diploids were homozygous and genetically depauperate. Thus, the data suggest that alloploidy in arctic-alpineDraba serves as an escape from genetic depauperation caused by inbreeding at the diploid level. Although some populations probably have local alloploid origins, electrophoretic data indicate that several polyploids have migrated repeatedly into the Nordic area.Draba crassifolia (2n = 40) is probably octoploid based on x = 5. A hypothesis on the evolutionary history of the polyploids based on x = 8 is presented. Diploids contributing to numerous polyploid genomes and multiple origins of polyploids have seriously blurred taxonomic relationships. Relationships inferred from genetic data do not always correspond to those based on morphology; two morphologically very similar polyploids,D. alpina andD. oxycarpa, were, for example, genetically distant and probably represent independent lineages.  相似文献   

18.
In many polyploid species, polyploids often have different suites of floral traits and different flowering times than their diploid progenitor species. We hypothesized that such differences in floral traits in polyploids may subsequently affect their interactions with pollinating and other insect visitors. We measured floral morphology and flowering phenology in 14 populations of diploid and autotetraploid Heuchera grossulariifolia Rydb. (Saxifragaceae), determined if repeated evolution of independent polyploid lineages resulted in differentiation in floral morphology among those lineages, and ascertained if there was a consistent pattern of differentiation among genetically similar diploid and autotetraploid populations. In addition, we evaluated the differences in suites of floral visitors within a natural community where diploids and autotetraploids occur sympatrically. Overall, flowers of autotetraploid plants were larger and shaped differently than those of diploids, had a different flowering phenology than that of diploids, and attracted different suites of floral visitors. In comparison with flowers of diploids, tetraploid floral morphology varied widely from pronounced differences between cytotypes in some populations to similar flower shapes and sizes between ploidal levels in other populations. Observations of floral visitors to diploids and autotetraploids in a natural sympatric population demonstrated that the cytotypes had different suites of floral visitors and six of the 15 common visitors preferentially visited one ploidy more frequently. Moreover, we also found that floral morphology differed among independent autotetraploid origins, but there was no consistent pattern of differentiation between genetically similar diploid and autotetraploid populations. Hence, the results suggest that the process of polyploidization creates the potential for attraction of different suites of floral visitors. Multiple origins of polyploidy also presents the opportunity for new or different plant-insect interactions among independent polyploid lineages. These differences in turn may affect patterns of gene flow between diploids and polyploids and also among plants of independent polyploid origin. Polyploidy, therefore, may result in a geographic mosaic of interspecific interactions across a species' range, contributing to diversification in both plant and insect groups.  相似文献   

19.
The development of salt‐tolerant genotypes is pivotal for the effective utilization of salinized land and to increase global crop productivity. Several cotton species comprise the most important source of textile fibers globally, and these are increasingly grown on marginal or increasingly saline agroecosystems. The allopolyploid cotton species also provide a model system for polyploid research, of relevance here because polyploidy was suggested to be associated with increased adaptation to stress. To evaluate the genetic variation of salt tolerance among cotton species, 17 diverse accessions of allopolyploid (AD‐genome) and diploid (A‐ and D‐genome) Gossypium were evaluated for a total of 29 morphological and physiological traits associated with salt tolerance. For most morphological and physiological traits, cotton accessions showed highly variable responses to 2 weeks of exposure to moderate (50 mm NaCl) and high (100 mm NaCl) hydroponic salinity treatments. Our results showed that the most salt‐tolerant species were the allopolyploid Gossypium mustelinum from north‐east Brazil, the D‐genome diploid Gossypium klotzschianum from the Galapagos Islands, followed by the A‐genome diploids of Africa and Asia. Generally, A‐genome accessions outperformed D‐genome cottons under salinity conditions. Allopolyploid accessions from either diploid genomic group did not show significant differences in salt tolerance, but they were more similar to one of the two progenitor lineages. Our findings demonstrate that allopolyploidy in itself need not be associated with increased salinity stress tolerance and provide information for using the secondary Gossypium gene pool to breed for improved salt tolerance.  相似文献   

20.
In this paper we demonstrate that, by investigating polyploid complexes in Asplenium, it is possible to locate the areas in Europe that are southern glacial rcfugia, and arc likely to have been so since the beginning of the Pleistocene during the consecutive cold and warm periods in Europe. Identification and conservation of these specific areas that serve as safe havens for plants, and perhaps animals, is of paramount importance for the maintenance of European biodiversity because Man's activities arc resulting in an ever-increasing loss of natural habitats and putting diversity at risk. The genus Asplenium in Europe comprises some 50 taxa: half of these are diploid while the other half arc polyploids derived from the diploids. All aspleniums in Europe are (small) rock ferns with high substrate specificity. Today, most of mainland Europe, Scandinavia and the British Isles has been colonized by polyploid Asplenium species, while the diploids that gave rise to these polyploids are distributed around (and more or less confined to) the Mediterranean Basin. In the tetraploids genetic variation is partitioned mostly between sites, whereas diploids show a high degree of genetic variation both within and between sites. The tctraploid taxa seem capable of single spore colonization via intragametophytic selfing, but the diploid taxa appear to be predominantly outbreeding. For most diploids at least two gametophytes, produced by different spores, have to be present to achieve fertilization and subsequent sporophyte formation for the successful colonization of a new site. This results in a slower rate of colonization. The formation of auto- and allopolyploid taxa from diploid communities appears to have been a recurrent and common feature in Europe. Minority cytotypc exclusion is likely to prevent the establishment of tetraploids within the diploid communities, but spores from tetraploids can establish populations outside the diploid communities. The differences between colonization abilities of tctraploid and ancestral diploid taxa, resulting from their different breeding systems, has prevented the merging and mingling of their ranges and led to the establishment of contact/ hybrid zones. This has resulted in the restriction of diploid populations to ancient glacial rcfugia and the colonization of the rest of Europe by polyploids. Mapping the current distribution of these diploid communities and comparing the genetic diversity within and between outbreeding diploid Asplenium taxa allows us to define the area, age and historical biogcography of these rcfugia and to assess their importance for present day genetic and species diversity in Europe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号