首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Fire is a common but poorly understood disturbance in the forested ecosystems of the Sierra Madre Occidental of Mexico. In this study, fire history, forest structure (density, species composition, regeneration, forest floor fuels, herbaceous cover, and age of pines), and the dendrochronological tree-ring record were measured at two unharvested 70-ha pine-oak sites near Ojito de Camellones, Durango, Mexico. Study sites were matched in slope, aspect, elevation, slope position, and plant composition, but they differed in fire history since 1945 and in forest structure. The long-term mean fire intervals (MFI) for all fires at both sites up to 1945 were similar—4.0 years at Site 1 (1744–1945) and 4.1 years at Site 2 (1815–1945)—but Site 1 burned only three times at the site margins since 1945 while Site 2 had 9 fires that scarred two or more sample trees and 15 total fires since 1945. Density measurements and age and diameter distributions showed that Site 1 was dominated by numerous, younger, smaller trees (mean total basal area of 23.4 m2/ha and 2730 trees/ha), while Site 2 had fewer, older, larger trees (basal area of 37.2 m2/ha, 647 trees/ha). Large, rotten fuel loading and duff depth were also greater at Site 1. Because regeneration averaged 6200 stems/ha at Site 1 and 8730 stems/ha at Site 2 (no significant difference), forest density at Site 2 was not limited by regeneration capability. The distributions of overstory diameter and pine age at both sites indicate that tree establishment occurred in pulses, with the largest cohort of trees establishing at Site 1 following the 1945 fire. The dense regeneration and heavy fuel accumulation at Site 1 are likely to support a switch from the former low-intensity fire regime to a high-intensity, stand-replacing fire across the site when the next suitable combination of ignition and weather occurs. Baseline quantitative information on fire frequency and ecological effects is essential to guide conservation or restoration of Madrean forests and may prove valuable for restoration of related fire-dependent ecosystems that have experienced extended fire exclusion elsewhere in North America.  相似文献   

3.
Question: What is the influence of remnant trees on secondary forest structure and composition in tropical pastures many years after abandonment? Location: Neotropical lowland wet forest, La Selva Biological Station, Costa Rica. Methods: Tree and sapling density, basal area, and species richness were quantified at three distances from remnant trees, 0–10 m (inner), 20–30 m (intermediate), and ca. 50 m (distal) zones. A total of 15 remnant trees were sampled in pastures ~23 years after abandonment. Results: Tree density decreased along a gradient from inner (1117 ± 377 individuals/ha) to distal (592 ± 282 individuals/ha) zones, and the number of large‐seeded individuals (seeds > 1 cm diameter) was significantly greater in the inner zone. Basal area of tree individuals was greater in the inner (25.6 ± 12 m2/ha) and intermediate (28.3 ± 15.6 m2/ha) zones than the distal zone (14.7 ± 7.2 m2/ha), but there were no differences between inner and intermediate zones. Similar patterns are reported for species richness. Additionally, saplings (1 ‐ 5 cm DBH) had higher density directly beneath and adjacent to remnants, suggesting that remnant trees can affect recruitment even many years after pasture abandonment and the formation of a surrounding secondary forest. Conclusions: Results indicate that remnant trees facilitate forest recovery over a broad temporal range, and appear to ‘nucleate’ forest regeneration by expanding their sphere of influence outward over time.  相似文献   

4.
Abstract. 44 forest stands, including 42 stands with Pinus gerardiana Wall, ex Lamb dominant and two stands with broad-leaved trees, were sampled in the Suleiman Range in Balouchistan. Density oi Pinus gerardiana trees ranged from 24 to 930 trees / ha with a mean of 266 individuals / ha; the average basal area was 25.5 m2 ha-1. Adequate recruitment of Pinus seedlings was observed; higher seedling density is recorded from east-facing slopes, while tree density was higher on west-facing slopes. The average growth rate was estimated as 0.08 cm / yr radial growth. However, trees on high elevations and cooler slopes grow faster. Soil variables showed no correlation with density, basal area or importance values. It is suggested that the present degraded stage of the forests in the study area is of anthropogenic origin.  相似文献   

5.
Abstract. The forest structure in a large, relatively homogeneous area of pristine Picea abies taiga in the southern boreal region west of the Ural mountains was studied along four 500-m long transects. P. abies dominated the forest in association with Abies sibirica and Betula spp. The mean volume of living trees was 216 m3/ha. This value varied among the four transects, from 138 - 252 m3/ha. Mean density of trees (DBH > 1 cm) (and variation over the transects) was 2 064/ha (1670 - 2710). Living trees classified as dying or seriously damaged made up 2.9 (2.5 - 3.5) % of the living tree volume. Betula was an important canopy component and made up 16% of the living tree volume. The number of dead standing trees varied from 195 - 325/ha, corresponding to a volume of 10.8 - 70.7 m3/ha. The density of trees with a broken stem was 90 - 170/ha and their estimated volume 7.6 - 41.3 m3/ha. Standing dead trees and trees with broken stems represented 10.4 and 8.9% of the total standing tree volume (living + dead), respectively. The mean volume of decaying logs on the forest floor was 117 (84.4–156.2) m3/ha, corresponding to 54 (35 - 113) % of the living tree volume. The canopy-forming trees were present in the understory as abundant saplings and suppressed individuals. The size distribution of the dominant tree species resembled the inverse J-shape. Generally, the forest was characterized by a high small-scale structural variation and a larger-scale relative homogeneity. This pattern is consistent with forest dynamics where the forest consists of a small-scale mosaic of patches in different stages of recovery following disturbance. Our results suggest that the ecology and dynamics of extensive areas of natural boreal forests can be driven by small-scale disturbance.  相似文献   

6.
Questions: Did fire regimes in old‐growth Pinus ponderosa forest change with Euro‐American settlement compared to the pre‐settlement period? Do tree age structures exhibit a pattern of continuous regeneration or is regeneration episodic and related to fire disturbance or fire‐free periods? Are the forests compositionally stable? Do trees have a clumped spatial pattern and are clumps even‐ or mixed‐age? How might information from this old‐growth forest inform current restoration and management practices? Location: A 235‐ha old‐growth forest in the Ishi Wilderness, southern Cascade Mountains, California. Methods: Age, size, and spatial pattern of trees were quantified in seven stands. Fire history was reconstructed using fire scar dendrochronology. The influence of fire on stand structure was assessed by comparing fire history with age, size, and spatial structure of trees and identifying and measuring trees killed by two recent fires. Results: Species composition in plots was similar but density and basal area of tree populations varied. Age structure for P. ponderosa and Quercus kelloggii showed periods of episodic recruitment that varied among plots. Fire disturbance was frequent before 1905, with a median period between fires of 12 years. Fire frequency declined after 1905 but two recent fires (1990, 1994) killed 36% and 41% of mostly smaller diameter P. ponderosa and Q. kelloggii. Clusters of similar age trees occurred at scales of 28‐1018 m2 but patches were not even‐aged. Interactions between tree regeneration and fire promoted development of uneven age groups of trees. Conclusions: Fire disturbance strongly influenced density, basal area, and spatial structure of tree populations. Fire exclusion over the last 100 years has caused compositional and structural changes. Two recent fires, however, thinned stands and created gaps favorable for Q. kelloggii and P. ponderosa regeneration. The effects of infrequent 20th century fire indicate that a low fire frequency can restore and sustain structural characteristics resembling those of the pre‐fire suppression period forest.  相似文献   

7.
Knowledge on the structure and composition of the plant communities has enormous significance in conservation and management of forests. The present study aimed to assess the community attributes, viz., structure, composition and diversity in the moist and dry sal (Shorea robusta) forests in the West Bengal province of India and compare them with the other sal forests of India. The phytosociological data from these forests were quantitatively analysed to work out the species richness, diversity, evenness, dominance, importance value, stand density and the basal area. The analysis showed that plant richness and diversity in moist sal forests of northern West Bengal are higher than the dry sal forests of south-west Bengal; a total of 134 tree (cbh ≥30 cm), 113 shrub and 230 herb species were recorded in the moist sal forest compared to 35 tree, 41 shrub and 96 herb species in dry sal forest. Papilionaceae was observed to be the dominant family. Dry sal forests had higher tree dominance (0.81) and stand density (1,006 stems ha−1) but lower basal area (19.62 m2ha−1) while moist sal forest had lower tree dominance (0.18) and stand density (438 stems ha−1) but higher basal area (56.52 m2ha−1). Tree species richness and stem density across girth classes in both the types decreased from the smallest to largest trees, while the occurrence rate of species increased with increase in girth class. A t-test showed significant differences in species richness, basal area and the stand density at 95% confidence level (p = <0.05) in the two forest types. The CCA indicated very low overall match (canonical correlation value = 0.40) between the two sets of variables from moist and dry sal types. The differences in these forests could be attributed to the distinct variations in climatic conditions- mainly the rainfall, disturbance regimes and the management practices.  相似文献   

8.
The dark taiga of Siberia is a boreal vegetation dominated by Picea obovata, Abies sibirica, and Pinus sibirica during the late succession. This paper investigates the population and age structure of 18 stands representing different stages after fire, wind throw, and insect damage. To our knowledge, this is the first time that the forest dynamics of the Siberian dark taiga is described quantitatively in terms of succession, and age after disturbance, stand density, and basal area. The basis for the curve–linear age/diameter relation of trees is being analyzed. (1) After a stand-replacing fire Betula dominates (4,000 trees) for about 70 years. Although tree density of Betula decreases rapidly, basal area (BA) reached >30 m2/ha after 40 years. (2) After fire, Abies, Picea, and Pinus establish at the same time as Betula, but grow slower, continue to gain height and eventually replace Betula. Abies has the highest seedling number (about 1,000 trees/ha) and the highest mortality. Picea establishes with 100–400 trees/ha, it has less mortality, but reached the highest age (>350 years, DBH 51 cm). Picea is the most important indicator for successional age after disturbance. Pinus sibirica is an accompanying species. The widely distributed “mixed boreal forest” is a stage about 120 years after fire reaching a BA of >40 m2/ha. (3) Wind throw and insect damage occur in old conifer stands. Betula does not establish. Abies initially dominates (2,000–6,000 trees/ha), but Picea becomes dominant after 150–200 years since Abies is shorter lived. (4) Without disturbance the forest develops into a pure coniferous canopy (BA 40–50 m2/ha) with a self-regenerating density of 1,000 coniferous canopy trees/ha. There is no collapse of old-growth stands. The dark taiga may serve as an example in which a limited set to tree species may gain dominance under certain disturbance conditions without ever getting monotypic.  相似文献   

9.
Plant uses by the Pokomo and their influence on riverine forest structure and composition are examined in the Tana River National Primate Reserve, Kenya. Of a total 98 plant species identified with one or more uses, 15 are used as food, 34 for construction material, 43 for technology, 23 for remedy, 2 for commerce, and 20 for other uses. The mean basal area of cut wood is 3.21 m2/ha, mostly from palms (1.96 m2/ha) and understory trees (1.20 m2/ha). Measured impacts on forest structure include the loss of large trees for canoes or beehives, lowered palm heights, and tree coppicing. Accessibility explains much of the spatial pattern of use. Extraction activities do not reduce forest area, and causal effects on productivity are complicated by the heterogeneous environment and past disturbances. In view of regional pressures on forests and cultural traditions, limited resource extraction offers incentives for local stewardship of a unique ecosystem.  相似文献   

10.
Abandoned pastures and secondary forests are increasingly prominent features of tropical landscapes. Forest regrowth on abandoned pastures is generally slow and virtually limited to regeneration from seeds from external sources, since agricultural activities alter site conditions. We hypothesize that seed availability is a major limiting factor in forest recovery on abandoned pastures. This hypothesis was tested by studying the seed bank, seed rain, and seed predation in a small pasture (1 ha) situated in a forest‐pasture mosaic in northwestern Costa Rica. The tree seed density in the pasture seed bank was much lower (21/m2) than the density in the seed bank of a neighboring secondary forest (402/m2). Within a period of five weeks, 23 tree seeds entered the pasture by seed rain. This number is low compared to densities found in closed forests but higher than densities reported in other studies where virtually no seeds were found beyond 20 m from the forest edge. Possibly the small size of the pasture with seed sources nearby and the small‐scale landscape mosaic enhance seed dispersal. Predation limits the seed density in pastures, with 42% of the woody species consumed by predators. The low seed density in the seed bank, and hampered recruitment combined with significant losses, pose severe restrictions to forest recovery on abandoned pastures. Moderate land use, and small sized clearings with seed sources nearby may increase the pace of recovery. Nevertheless, forest establishment may still take a considerable time. Thus, enlarging the available pool of species may be a worthwhile management strategy.  相似文献   

11.
We studied the tree communities in primary forest and three different land use systems (forest gardens, ca. 5-year-old secondary forests, cacao plantations) at 900–1200 m elevation in the environs of Lore Lindu National Park, Central Sulawesi. The primary forests had ca. 150 tree species 10 cm diameter at breast height (dbh) per hectare, which is unusually high for forests at this elevation in southeast Asia. Basal area in the primary forest was 140 m2 ha–1, one of the highest values ever recorded in tropical forests worldwide. Tree species richness declined gradually from primary forest to forest gardens, secondary forests, and cacao plantations. This decline was paralleled by shifts in tree family composition, with Lauraceae, Meliaceae, and Euphorbiaceae being predominant in primary forests, Euphorbiaceae, Rubiaceae and Myristicaeae dominating in the forest gardens and Euphorbiaceae, Urticaceae, and Ulmaceae in the secondary forests. Cacao plantations were composed almost exclusively of cacao trees and two species of legume shade trees. Forest gardens further differed from primary forests by a much lower density of understorey trees, while secondary forests had fewer species of commercial interest. Comparative studies of birds and butterflies demonstrated parallel declines of species richness, showing the importance of trees in structuring tropical forest habitats and in providing resources.  相似文献   

12.
This study examined differences in stand structure, tree species richness, and tree species diversity in relation to population density in Kampong Thom Province, Cambodia. Tree data were obtained from a 1997 forest inventory involving 60 clusters (540 plots) systematically distributed over 30% of the provincial forest area. Spatially referenced population data were obtained from the 1998 national population census. The average number of trees per cluster was 356/ha, the average basal area, 23 m2/ha, the average stand volume, 217 m3/ha, and the average aboveground biomass, 273 Mg/ha for all trees of DBH 10 cm and larger. The average species richness per cluster was 37 species, while average species diversity was measured as 0.916 using Simpson’s index and 2.98 by Shannon’s index. Significant negative correlations were generally found between population density surrounding clusters and tree density, basal area, stand volume, aboveground biomass, and species richness and diversity for three examined diameter classes (DBH of 10–30, ≥30, and ≥10 cm). As the distance from clusters for calculating population density increased, the correlation levels increased up to 5 or 7 km, depending on the variables and diameter class, and then stayed relatively constant for stand structure variables and decreased for species richness and diversity. The results indicate that evidence of disturbance was more pronounced at higher population density up to around 5 to 7 km. We suggest that introduction of greater controls on human disturbance should be a high priority for resource management and conservation in Kampong Thom Province and, presumably, Cambodia as a whole.  相似文献   

13.
High concentrations of orangutans remain in the multiple-use forests of the Lower Kinabatangan, Sabah, Malaysia. Compared to primary forest, the habitat is highly fragmented, characterized by a low tree density (332 stems/ha), small tree size (83.6% of trees are <20 m high), low basal area (18 m2/ha), abundance of canopy gaps and high level of soil disturbance. The forest structure and composition influence orangutan nesting patterns, and thus directly influence the results of nest surveys used to determine orangutan population size. In logged forests, tall and large trees are the preferred nesting sites of orangutans. The scarcity of suitable nesting sites in the logged-over forests of Kinabatangan, could partly explain the lower daily rate of nest construction (r = 1.00) versus those of other orangutan populations. The nest decay rate t recorded at the study site (average ± SD = 202 ± 151 days) strongly depends on the species of tree in which a nest is built. Our results illustrate that the nest-related parameters used for orangutan censuses fluctuate among habitat types and emphasize the need to determine specific values of r for specific orangutan populations and of t for different tree species in order to achieve accurate analysis of census data.  相似文献   

14.
The aboveground wood biomass (AWB) of tropical forests plays an important role in the global carbon cycle, and local AWB estimates provide essential data that enable the extrapolation of biomass stocks to ecosystem or biome-wide carbon cycle modelling. Few AWB estimates exist in Neotropical freshwater floodplains, where tree species distribution and forest structure depend on the height and duration of periodic inundations. We investigated tree species composition, forest structure, wood specific gravity, and AWB of trees ≥10 cm dbh in 16 plots totalling an area of 1 ha in a seasonally inundated riparian forest of the lower Miranda River, southern Pantanal, Brazil. The 443 tree individuals belonged to 46 species. Four species (Inga vera, Ocotea suaveolens, Tabebuia heptaphylla and Cecropia pachystachya) comprised more than 50% of the Total Importance Values (TIV), and floristic similarities between the plots averaged 38%. Although we detected an overall increase in species diversity correlated with decreasing flood levels, the most important tree species had almost identical distribution patterns along the flooding gradient. The stand basal area per plot (±?s.d.) amounted to 3.0?±?1.1 m2 (47.8?±?18.1 m2/ha), and the tree heights averaged 10.9?±?1.4 m. Multiplying the individual basal areas by individual tree heights and a form factor of 0.6, we estimated the aboveground wood volume (AWV) for each individual, and for each plot (24.4?±?11.7 m3, 391.1?±?188 m3/ha). Wood specific gravity (SG) varied between 0.39 g/cm3 (Cecropia pachystachya) and 0.87 g/cm3 (Tabebuia heptaphylla), with a stand level average of 0.63?±?0.12 g/cm3. Multiplying the individual AWV with species SG, we estimated the plot AWB to be 16.2?±?6.4 Mg (259.4?±?102 Mg/ha). This value is comparable to that reported for late-successional forest stands of Amazonian floodplain forests, and it is close to the worldwide tropical average AWB. Because tree heights in the present forest were comparatively low when compared to other Neotropical forests, we found that resprouting of stems accounted for comparatively high basal areas. We argue that stem resprouting is an adaptation of tree species originating in non-flooded Cerrado to the seasonal inundations of riparian forests.  相似文献   

15.
Much of the previous research on spatial reference conditions in dry frequent fire pine forests have come from stand‐level patterns under regionally average ecosystem conditions (e.g. soil type and precipitation). We evaluated the 1883 reference conditions of an uncut ponderosa pine stand representing a far end of the range of variability in terms of regionally unusual environmental conditions. Using a forest reconstruction model, univariate and bivariate Ripley's K functions, and regression analysis, we determined 1883 structural and spatial reference conditions, and compared those to the contemporary (2010) stand. Historical stand density was 77 trees/ha with a basal area of 8.0 m2/ha. Reference spatial patterns were significantly aggregated from 1 to 2 m and randomly distributed at distances greater than 2 m. Nearly 40% of the reconstructed trees were individuals, the average patch size was 2.9 trees, and the largest patch had 7 members. The contemporary stand had considerably greater densities and basal area than historical conditions and showed aggregation at all distances. Bivariate spatial analysis indicated attraction of post‐settlement recruitment to live pre‐settlement trees from 1 to 6 m and no association at distances greater than 6 m. We speculate that the historically random tree pattern is the product of a variety of factors including soil parent material, climate, and more homogeneous resource partitioning.  相似文献   

16.
Abstract. This study deals with stand dynamics over a 6‐yr period in a conifer/broad‐leaved mixed forest in Hokkaido, northern Japan. The annual rates of gap formation and recovery were 81.3 m2/ha and 66.7 m2/ha, respectively and turnover time of the canopy was 125 yr. The recruitment processes of the component species in this cool‐temperate forest were governed by different canopy types: gap, canopy edge and closed canopy. Magnolia obovata regenerated in canopy edges, and Acer mono and Prunus ssiori regenerated in canopy edges and gaps. The results suggested that the mosaic structure made up of closed canopy, canopy edge and gap was related to various regeneration niches. Abies sachalinensis had high mortality rates, initiating gap expansion. The transition probabilities from closed canopy or canopy edge to gap for deciduous broad‐leaved trees were lower than for A. sachalinensis, which implies that the difference in degeneration patterns of conifer and broad‐leaved canopies contributes to the heterogeneity of spatial structure in the mixed forests. Spatial dynamics were determined by a combination of gap expansion by A. sachalinensis (neighbour‐dependent disturbance) and gap formation by deciduous broad‐leaved trees (random disturbance).  相似文献   

17.
The study determined linear edge effects on liana and tree community assemblages in moist semi-deciduous (Afram Headwaters Forest Reserve) and upland evergreen (Tano Offin Forest Reserve) forests in Ghana. Fifteen plots (20 × 20 m2) were randomly set up at each habitat in the forests: edge habitat (0–40 m) and interior habitat (≥500 m). Lianas (diameter at 1.30 m from rooting base ≥1 cm) and trees (diameter at breast height, dbh ≥5 cm) were identified and enumerated in the plots. In the forest ecosystems, liana and tree species composition differed significantly between the two habitats. Liana and tree diversity did not differ significantly between edge and interior habitats. Nevertheless, edge habitat in moist semi-deciduous forest supported significantly higher liana abundance and basal area than its interior habitat, whereas edge habitat in upland evergreen forest harboured significantly lower liana basal area than its corresponding interior habitat. Edge habitat in moist semi-deciduous and upland evergreen forests had significantly lower tree abundance and basal area, respectively, than interior habitat. The results suggest that overall, linear edge effects on liana and tree assemblages were more pronounced in moist semi-deciduous forest than upland evergreen forest. Lianas exhibited dominance over trees in edge habitat within moist semi-deciduous forest, implying that they can have serious implications on tree diversity and ecosystem functioning in the forest. As our study is the first of its kind in the tropics with respect to edge type and forest ecosystems studied, our findings can contribute towards edge theory development.  相似文献   

18.
《农业工程》2021,41(4):259-284
Diversity, stand structure and regeneration potential are the key elements of any forest ecosystem. For the present study, seven sites were selected with the aims of assessing plant diversity, structure and regeneration potential in tropical forests across Kanyakumari Wildlife Sanctuary (KWLS), Western Ghats, India. The sites were classified based on the similarity: tropical dry deciduous sites (TDDs I and II), tropical semi-evergreen sites (TSEs I and II) and tropical evergreen sites (TEFs I-III). The phytosociological survey was done by laying a total of 70 plots (10 plots in each study site). Standard methods were followed for the assessment of diversity, structure and regeneration patterns. A total of 267 species (205 genera, 70 families) were recorded. The tree species richness ranged 24 (TDD II) – 76 (TEF III). Of the vegetation spectrum, trees, vines and understorey accounted 56.5, 15.3 and 28.2% respectively to the total flora documented. A total of 66 species were endemic. The total tree density and tree basal area (seedlings, saplings, juveniles and adults) were 18,790 individuals (mean 2684) and 137.6 m2 (mean 19.7 m2) in 70 plots respectively. The mean tree adult density and basal area ranged 370 (TDD I) – 900 (TEF I) individuals/ha and 24.2 (TDD I) – 75.3 (TEF III) m2/ha respectively. The overall species richness was highest in TDD I, but TEF III had the highest tree species richness. The diameter class-wise distribution showed the characteristic ‘reverse J-shaped’ curve. Most tree species were ‘newly recruited’. The dominant species had ‘fair’ to ‘good’ regeneration potential. However, 12 tree species showed ‘no’ regeneration. The overall regeneration pattern of trees was ‘good’, but ‘no’ or ‘poor’ regeneration patterns in some tree species, especially endemics is a point of concern. Since a majority of tree species were ‘new recruits’, species composition may likely change in the future. The results obtained would help in understanding diversity patterns, structural attributes and regeneration potential in tropical forests of protected areas for better forest management and conservation.  相似文献   

19.
  • 1 Bark beetles (Coleoptera: Curculionidae, Scolytinae) are commonly recognized as important tree mortality agents in coniferous forests of the western U.S.A.
  • 2 High stand density is consistently associated with bark beetle infestations in western coniferous forests, and therefore thinning has long been advocated as a preventive measure to alleviate or reduce the amount of bark beetle‐caused tree mortality.
  • 3 The present study aimed to determine the effectiveness of thinning to reduce stand susceptibility to bark beetle infestations over a 10‐year period in Pinus jeffreyi forests on the Tahoe National Forest, California, U.S.A. Four treatments were replicated three times within 1‐ha square experimental plots. Treatments included thinning from below (i.e. initiating in the smallest diameter classes) to a residual target basal area (cross‐sectional area of trees at 1.37 m in height) of: (i) 18.4 m2/ha (low density thin); (ii) 27.6 m2/ha (medium density thin); (iii) 41.3 m2/ha (high density thin); and (iv) no stand manipulation (untreated control).
  • 4 Throughout the present study, 107 trees died as a result of bark beetle attacks. Of these, 71% (75 trees) were Abies concolor killed by Scolytus ventralis; 20.6% (22 trees) were Pinus ponderosa killed by Dendroctonus ponderosae; 4.7% (five trees) were P. jeffreyi killed by Dendroctonus jeffreyi; 1.8% (two trees) were P. jeffreyi killed by Ips pini; 0.9% (one tree) were P. jeffreyi killed by Orthotomicus (= Ips) latidens; 0.9% (one tree) were P. ponderosa killed by both Dendroctonus brevicomis and D. ponderosae; and 0.9% (one tree) were P. jeffreyi killed by unknown causes.
  • 5 In the low density thin, no pines were killed by bark beetles during the 10‐year period. Significantly fewer trees (per ha/year) were killed in the low density thin than the high density thin or untreated control. No significant treatment effect was observed for the percentage of trees (per year) killed by bark beetles.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号