首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We conducted a phytochemical survey of tree species growing within the riverine forests of the Tana River National Primate Reserve in Kenya to understand better the feeding ecology of an endangered resident primate, the Tana River red colobus monkey (Procolobus badius rufomitratus).Young leaves, which make up a large percentage of this monkey's diet, are significantly higher in nitrogen and lower in acid detergent fiber than more abundant mature leaves are. Phenolic chemistry had little inhibitory effect on feeding by P. b. rufomitratus.Choice among tree species by P. b. rufomitratusappears to be influenced largely by leaf availability,once an acceptable threshold of nitrogen and fiber is reached When mature leaves are eaten, they selected species that are high in nitrogen and low in fiber. A significantly higher nitrogen content was found for the mature leaves of all leguminous versus nonleguminous tree species. Consequently, the availability of certain types of mature leaf species during periods of preferred food scarcity may prove critical to groups of Tana River red colobus monkeys.  相似文献   

2.
The nonchlorophyllous (albino) tissue of mature C. blumei leaves is a sink for photoassimilate. Transport from the green to the albino region of the same leaf was inhibited by cold and anoxia. When the green tissue of mature leaves was removed, the remaining albino portion imported labeled translocate from other mature leaves in the phloem. Photoassimilate unloading in the albino region of mature leaves was studied by quantitative autoradiography. The unloading was inhibited by cold but not by anoxia. No labeled photoassimilate could be detected in the free space of mature albino tissue by compartmental efflux analysis as phloem unloading proceeded in a N2 atmosphere, indicating that unloading, may occur by a symplastic pathway as it apparently does in sink leaves of other species. The minor veins of mature albino leaf tissue did not accumulate exogenous [14C]sucrose. Minor veins of green tissue in the same leaves accumulated [14C]sucrose but, in contrast to other species studied to date, this accumulation was insensitive to the inhibitor p-chloromercuribenzensulfonic acid (PCMBS).In its capacity to import and unload photoassimilate, and in the inability, of the minor veins to accumulate exogenous sucrose, the albino region of the mature C. blumei lamina differs from mature albino tobacco leaves and darkened mature leaves of other species. This, together with evidence indicating that phloem loading in C. blumei and other species may occur by different routes and with different sensitivity to PCMBS, indicates that the mechanism of transfer of photoassimilates between veins and surrounding tissues, and the mechanism of the sink-source transition, may not be the same in the leaves of all species. It is speculated that the unusual properties of the C. blumei leaf may be a consequence of the presence, in the minor veins, of intermediary cells, large companion cells connected to the bundle sheath by abundant plasmodesmata.Abbreviation PCMBS p-chloromercuribenzenesulfonic acid  相似文献   

3.
Riparian forest plantings are a well‐established restoration technique commonly used to stabilize banks and intercept nutrient flow from adjacent agricultural fields. Tree species planted for these efforts may not reflect mature forest communities within the same region. Given contemporary research on links between biodiversity and ecosystem functioning, we conducted a leaf‐litter decomposition study to investigate how mixing of detrital resources that reflect forest community composition would regulate in‐stream leaf litter. Leaf litter bags containing material from a mature forest (Liriodendron tulipifera, Acer rubrum, Quercus rubra, full factorial treatments = 7) and a restored riparian forest (Cornus sericea, Fraxinus pennsylvanica, Platanus occidentalis, full factorial treatments = 7) were deployed in a stream reach that experienced riparian reforestation in 2004. Litter from the restored riparian community had less mass remaining (45.28 ± 2.27%) than that from the mature riparian community (54.95 ± 2.19%) after 5 weeks. In addition, mixed litter treatments in the restored riparian community had less mass remaining (40.54 ± 2.37%) than single‐species treatments (51.80 ± 4.05%), a pattern not observed in the mature forest community. Results highlight the importance of planting mixed‐species assemblages as this structure may regulate processes such as decomposition and food‐web structure, processes often not targeted in the restoration plans.  相似文献   

4.
Young leaves of most species experience remarkably higher herbivore attack rates than mature leaves. Considerable theoretical effort has focused on predicting optimal defense and tradeoffs in defense allocation during leaf expansion. Among others, allocation to secondary chemistry may be dependent on growth constraints. We studied flavanoid production during leaf development in two species of Inga (Fabaceae: Mimosoideae) with different expansion strategies: Inga goldmanii, a species with slowly expanding young leaves, and Inga umbellifera, a species with fast-expanding young leaves. In these two species, the most abundant and toxic class of defensive compounds is flavanoids (which include tannins). We measured their concentration by leaf dry weight, their total content per leaf, their HPLC chemical profile and their toxicity to a generalist herbivore at different expansion levels. Although in both species the flavanoid concentration decreased with increasing leaf expansion, that decrease was twice as pronounced for I. umbellifera as it was for I. goldmanii. I. umbellifera leaves produced flavanoids only during the first half of their development while I. goldmanii leaves continued production throughout. The changes in flavanoid HPLC profiles and toxicity were also more dramatic for I. umbellifera, which had different flavanoids in young than in mature leaves. Relative to I. umbellifera, I. goldmanii showed smaller changes in both flavanoid composition and toxicity in the transition from young to mature leaves. These results indicate that, even though young leaves suffer higher rates of attack and are predicted to have better chemical defenses than mature leaves, growth constraints may modulate defense allocation and thus, evolution of defense strategies.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

5.
Eriogonum soliceps, a new species of subg.Eucycla sect.Capitata, is described. It may be readily distinguished from all other taxa of the subgenus by its reduced inflorescence. From its presumed nearest relative,E. mancum, this new species differs in its solitary (vs. 2–5) involucre, presence of a peduncle but no scape, lack of bracts at the base of the involucre, and distinctly pustulose midribs of the mature flowers.  相似文献   

6.
The higher growth rates of resprouting shoots compared with those of mature plants in resprouter woody species are supported by higher rates of photosynthesis and transpiration. In this contribution we hypothesize that species with higher resprouting vigour will show a larger enhancement of photosynthesis in resprouting shoots. We test this hypothesis by comparing gas exchange and leaf parameters between resprouting and mature plants in Erica scoparia and E. australis. These two Erica species co-occur in Mediterranean heathlands of the Strait of Gibraltar. Erica scoparia has a higher rate of post-disturbance starch recovery than E. australis, which makes it more resistant to recurrent disturbance. We tested the hypothesis that enhancement of photosynthesis and water use characteristics of resprouting shoots compared with mature plants should be more pronounced in E. scoparia. In both species, resprouts had higher efficiency in the use of light and higher maximum net photosynthesis than mature shoots. However, contrary to expectations, differences in the photosynthetic performance between resprouts and mature plant shoots were larger in E. australis. Higher root to shoot ratios in resprouting E. australis plants, determined by their slower above-ground recovery, together with stronger demand from carbon sinks might explain this result.  相似文献   

7.
Niche partitioning among close relatives may reflect trade‐offs underlying species divergence and coexistence (e.g., between stress tolerance and competitive ability). We quantified the effects of habitat and congeneric species interactions on fitness for two closely related herbaceous plant species, Mimulus guttatus and Mimulus laciniatus, in three common habitat types within their sympatric range. Drought stress strongly reduced survival of M. guttatus in fast‐drying seeps occupied by M. laciniatus, suggesting that divergent habitat adaptation maintains this niche boundary. However, neither seedling performance nor congeneric competition explained the absence of M. laciniatus from shady streams where M. guttatus thrives. M. laciniatus may be excluded from this habitat by competition with other species in the community or mature M. guttatus. Species performance and competitive ability were similar in sympatric meadows where plant community stature and the growing season length are intermediate between seeps and streams. Stochastic effects (e.g., dispersal among habitats or temporal variation) may contribute to coexistence in this habitat. Habitat adaptation, species interactions, and stochastic mechanisms influence sympatric distributions for these recently diverged species.  相似文献   

8.
Abstract. The architecture and development of forest eco-units in a mixed Japanese beech forest were studied by means of aerial photographs and belt-transects. Fagus japónica dominates in this forest because it has the ability to reproduce through root-collar sprouts. Each individual has a number of stems that reach the canopy. Two eco-unit types are recognized. Most abundant is the type dominated by multiple-stem F. japónica individuals (type A). The other type is dominated by other tall tree species, mostly Fagus crenata (type B). The most common cycle of development for type A is mature / stem-breakage / growing / mature. After stem-breakage, suppressed sprouts of the same individual replace the broken stem by growing quickly into the canopy. This accounts for the low coverage of patches in the early growing phases and the high coverage in mature phases in the aerial photographs. After uprooting off. japónica or after death of other canopy tree species, a seedling phase will be necessary, during which canopy species establish themselves from seed and F. japónica may establish itself from sprouts. Dwarf bamboo appeared to inhibit the establishment of seedlings but it does not affect the establishment of F. japónica sprouts. It is concluded that the dominance of F. japónica over other tall tree species is the result of F. japónica reproducing by sprouts.  相似文献   

9.
Summary In order to study the foliar endophytes from teak (Tectona grandis L.) and rain tree (Samanea saman Merr.) growing in the campus of Chulalongkorn University, healthy leaves were collected at two-monthly intervals during January to December. The number of genera and species, together with their colonization frequency (CF%) in mature teak and rain tree leaves were greater than those in the young leaves. More endophytic isolates in the leaves of both trees were recovered during the rainy season. The fungal genera found in both young and mature teak leaves were Alternaria, Colletotrichum, Nigrospora, Phomopsis and mycelia sterilia. Phomopsis was the dominant genus in both young (newly emerged) and mature leaves. Fusarium, Penicillium, Schizophyllum commune and members of the Xylariaceae were found only in mature leaves. For the rain tree leaves, species of Phomopsis and mycelia sterilia were found in both young newly emerged and mature leaves. Colletotrichum and Penicillium were found only in mature leaves, whereas Nigrospora was found only in young newly emerged leaves. In this study, Phomopsis was the dominant genus in the leaves of both tree species. A total of 37 isolates of endophytic fungi isolated from teak and rain tree leaves were tested for the production of antimicrobial activities. Out of these, 18 isolates could produce inhibitory substances effective against Bacillus subtilis, Staphylococcus aureus and Escherichia coli and 3 isolates inhibited growth of Candida albicans in vitro.  相似文献   

10.
D. A. Waller 《Oecologia》1982,52(3):400-403
Summary Leaf-cutting ants (Formicidae; Attini) characteristically never attack some common plant species in their habitats. These plants may be defended against the ants in several ways. In Texas, mature leaves of Sapindus saponaria (Sapindaceae) and Celtis reticulata (Ulmaceae) are unpalatable to Atta texana Buckley foragers, while mature leaves of Berberis trifoliata (Berberidaceae) are palatable to the ants, but are too tough to cut. Young Celtis leaves and and young Berberis leaves are palatable and can be cut by the ants, however. These young leaves may escape attack by remaining palatable a brief amount of time (new Celtis leaves), or by occurring patchily in space and time (new Berberis leaves).  相似文献   

11.
A two year fortnightly collection of data from the 27 m station in the Oresund on the tubificid species Tubificoides amplivasatus was analyzed for population trends and life stages. Recruitment patterns from year to year were consistent in timing but very irratic in magnitude, being similar to patterns seen in other estuarine and marine annelids. Sexually mature T. amplivasatus were found throughout the study period, but mature mated specimens were more abundant during late summer and autumn. It is estimated that from 120 to 150 days is spent, by this species, in the cocoon and individuals may reach maturity in less than one year. There was some indication of individuals with regressed genital organs indicating that they may live longer than one year. At the 27 m station T. amplivasatus is part of a complex and well developed benthic community. Temporal variation in this species was highly correlated to that of other major taxa (bivalves, ophiuroids).  相似文献   

12.
We initiated a study of the effects of mycorrhizal fungal community composition on the restoration of tropical dry seasonal forest trees. Tree seedlings were planted in a severely burned experimental site (1995 fire) during the growing season of 1998 at the El Edén Ecological Reserve, in north Quintana Roo, Mexico. Seedlings of Leucaena leucocephala, Guazuma ulmifolia, Caesalpinia violacea, Piscidia piscipula, Gliricidia sepium, and Cochlospermum vitifolium were germinated in steam‐sterilized soil and either remained uninoculated (nonmycorrhizal at transplanting) or were inoculated with mycorrhizal fungi in soils from early‐seral (recently burned) or late‐seral (mature forest) inoculum. Inoculum from the early‐seral soil was largely Glomus spp., whereas a diverse community of arbuscular mycorrhizal fungi were reintroduced from the mature forest including species of Scutellospora, Gigaspora, Glomus, Sclerocystis, and Acaulospora. Plants grew better when associated with the mature forest inoculum, unlike a previous experiment in which plants grew taller with the early‐seral inoculum. Reasons for the different responses include a less‐intense burn resulting in more residual organic matter. In addition to mycorrhizal responses, plants were severely affected by deer browsing. One tree species, C. vitifolium found in the region but not in the reserve, was eliminated by a resident fungal facultative pathogen. Several practical conclusions for restoration can be made. The common nursery practice of soil sterilization may be detrimental because it eliminates beneficial mycorrhizal fungi; species not native to the site may not survive because they may not be adapted to the local pathogens; and herbivory can be severe depending on the landscape context of the restoration.  相似文献   

13.
Summary The secondary phloem of 3 species of the Taxodiaceae and 13 species of woody dicotyledons was examined for the occurrence of nuclei in mature sieve elements. Nuclei were found in all mature sieve cells of Metasequoia glyptostroboides, Sequoia sempervirens and Taxodium distichum, and in some mature sieve-tube members in 12 of the 13 species of woody dicotyledons. Except for nuclei of sieve cells undergoing cessation of function, the nuclei in mature sieve cells of M. glyptostroboides, S. sempervirens and T. distichum were normal in appearance. The occurrence and morphology of nuclei in mature sieve-tube members of the woody dicotyledons were quite variable. Only 3 species, Robinia pseudoacacia, Ulmus americana and Vitis riparia, contained some mature sieve elements with apparently normal nuclei.This research has been supported by National Science Foundation grants GB-5950 and GB-8330.  相似文献   

14.
The number of developing leaves was compared to the number of mature expanded leaves in the crowns of 42 species of palms representing 28 genera. One species had fewer developing vs. mature leaves. Ten species had approximately the same number of developing and mature leaves. Eighteen species had approximately 1.5 times the number of developing leaves vs. mature leaves. Eleven species had approximately twice as many developing leaves vs. mature leaves. Two species (Copernicia gigas and Gastrococos crispa) had approximately three times the number of developing vs. mature leaves. Additional data from the literature and previously unpublished observations for 19 species are also presented. The 1:1 ratio between the number of developing leaves vs. mature leaves, as hypothesized by earlier authors, was not found in most species of palms.  相似文献   

15.
Liana dynamics in secondary and mature forests are well known in tropical areas dominated by native tree species. Outside the tropics and in secondary forests invaded by exotic species, knowledge is scarce. In this study, we compare liana communities between secondary and mature forests dominated by native species in a subtropical montane area of Sierra de San Javier, Tucuman, Argentina. Additionally, we evaluate changes of liana communities in secondary forests with increasing densities of Ligustrum lucidum and Morus alba, two of the most invasive exotic trees of the area. We surveyed liana species richness and density in three 30-year secondary patches, four 60-year secondary patches, and four mature patches dominated by native tree species, to analyze changes in liana communities with forest age. Within each patch, we sampled 10–25 20 × 20 m quadrats. Additionally, we surveyed liana density and species richness in secondary forest patches with different densities of L. lucidum and M. alba. In native-dominated forests, liana species richness increased and showed a tendency of increasing basal area from 30-year secondary forests to mature forests. Liana density was highly variable, and most of the species were shared between native-dominated secondary and mature forests. Liana density and species richness decreased with L. lucidum density, whereas in secondary forests highly dominated by M. alba, lianas increased in density. Overall, lianas followed different pathways influenced by native forest succession and exotic tree invasions.  相似文献   

16.
Leaf developmental patterns were characterized for three tropical tree species with delayed greening. Changes in the pigment contents, photosynthetic capacity, stomata development, photosystem 2 efficiency, rate of energy dissipation, and the activity of partial protective enzymes were followed in developing leaves in an attempt to elucidate the relative importance of various photoprotective mechanisms during leaf ontogeny. Big leaves of Anthocephalus chinensis, a fast-growing light demanding species, expanded following an exponential pattern, while relatively small leaves of two shade-tolerant species Litsea pierrei and Litsea dilleniifolia followed a sigmoidal pattern. The juvenile leaves of A. chinensis and L. pierrei contained anthocyanin located below the upper epidermis, while L. dilleniifolia did not contain anthocyanin. Leaves of A. chinensis required about 12 d for full leaf expansion (FLE) and photosynthetic development was delayed 4 d, while L. pierrei and L. dilleniifolia required 18 or 25 d for FLE and photosynthetic development was delayed 10 or 15 d, respectively. During the leaf development the increase in maximum net photosynthetic rate was significantly related to changes in stomatal conductance and the leaf maturation period was positively related to the steady-state leaf dry mass per area for the three studied species. Dark respiration rate of leaves at developing stages was greater, and pre-dawn initial photochemical efficiency was lower than that of mature leaves. Young leaves displayed greater energy dissipation than mature leaves, but nevertheless, the diurnal photoinhibition of young L. dilleniifolia leaves was higher than that of mature leaves. The young red leaves of A. chinensis and L. pierrei with high anthocyanin contents and similar diurnal photoinhibition contained more protective enzymes (superoxide dismutase, ascorbate peroxidase) than mature leaves. Consequently, red leaves may have higher antioxidant ability.  相似文献   

17.
The resistance to experimental, highly frequent disturbance has been analysed in three congeneric, strong-resprouter species (Erica australis, E. scoparia and E. arborea) that co-occur in heath-dominated communities of the northern side of the Strait of Gibraltar, southern Spain. To do so, mature individuals of the three species from a long undisturbed location were clipped at the ground level every sixth month during two years. The relationship between the resprouted biomass dry weight (as indicative of the resprouting vigour) and the upper surface area of the lignotuber along the experiment was established separately for each species at each clipping event by means of linear regressions analysis. The resprouting vigour of the three species was compared by means of independent one-way ANOVAs within each clipping event. Resprouting vigour decreased after recurrent clippings in the three species. Nevertheless, significant differences between species in this loss of resprouting vigour were detected, being E. scoparia the most resistant to the experimental, highly frequent clipping. It is concluded that experimental levels of recurrent disturbance may help to find out differences in resilience within similar (taxonomically, morfologically and/or ecologically), strong-resprouter plant species. Considering the history of forestry management in the nothern side of the Strait of Gibraltar, differences in this regard between the three Erica species may contribute to explain their somewhat segregated ecological distribution in this region.  相似文献   

18.
Summary Amplified fragment length polymorphism (AFLP) markers were employed to deteet genetic variation among species of Papever (section Oxytona) and assess genetic fidelity between in vitro cell lines of Papaver bracteatum and mature plants derived from the propagation of their callus cultures. Regenerated plants exhibited morphological and phytochemical characteristics dissimilar to those of their source material. Thebaine, the dominant alkaloid produced by Papaver bracteatum, was not detected in capsules from mature regenerated accessions, indicating that there may have been a loss of genetic uniformity. Instead, the dominant alkaloid produced by the regenerated plant was shown to be isothebaine (by TLC and GC/MS), a metabolic characteristic of P. pseudo-orientale. A Neighbor-Joining tree constructed from AFLP fingerprints distinetly separates the three species of Oxytona while firmly grouping the in vitro-cultured plants with P. pseudo-orientale. Additionally phytochemical data and chromosome counts indicate that the seed used to initiate cultures was of hybrid origin and ihat the loss in genetic uniformity was not due to somaclonal variation occurring during the in vitro culture process. AFLP fingerprinting was therefore able to differentiate Oxytona species and invesgigate allopolyploidy in closely related papaver species.  相似文献   

19.
From 2013 to 2018, surveys were conducted in counties not previously surveyed in order to determine species of mealybugs present in the cocoa orchard in Côte d'Ivoire as well as their abundance according to the age of cocoa trees. Immature and mature cocoa trees were inspected to hand‐height in 5 and 29 counties infected with Cacao swollen shoot virus (CSSV). In each cocoa farm, mealybugs were searched for on fruits, leaves, flowers, twigs and trunks. Mealybug species were identified, and colonies were counted. Five mealybug species were identified on immature cocoa trees: Ferrisia virgata, Formicococcus njalensis, Planococcus citri, Planococcus kenyae and Pseudococcus longispinus. In addition to these species, four species, Dysmicoccus brevipes, Maconellicoccus hirsutus, Phenacoccus hargreavesi and Pseudococcus jackbeardsleyi were identified on mature cocoa trees. On immature cocoa trees, Fo. Njalensis, Pl. citri and Ps. longispinus comprised were, respectively, 35%, 33% and 19% of colonies, respectively. On mature cocoa trees, Fo. Njalensis and Pl. citri comprised 63.2% and 21.0%, and others species 15.8%. Nevertheless, the abundance of mealybug species varied according to the age of cocoa trees. The preferred organs of mealybugs were pods (74.1%) followed by twigs (13.4%) and flowers (7.4%). Previously, the mealybug Paracoccus burnerae (Brain) was found on Theobroma cacao, which is the first record for this species in Côte d'Ivoire and on this host‐plant.  相似文献   

20.
Despite extensive research on coral reproduction from numerous geographic locations, there remains limited knowledge within the Persian Gulf. Given that corals in the Persian Gulf exist in one of the most stressful environments for reef corals, with annual variations in sea surface temperature (SST) of 12°C and maximum summer mean SSTs of 36°C, understanding coral reproductive biology in the Gulf may provide clues as to how corals may cope with global warming. In this study, we examined six locally common coral species on two shallow reef sites in Dubai, United Arab Emirates (UAE), in 2008 and 2009 to investigate the patterns of reproduction, in particular the timing and synchrony of spawning. In total, 71% colonies in April 2008 and 63% colonies in April 2009 contained mature oocytes. However, the presence of mature gametes in May indicated that spawning was potentially split between April and May in all species. These results demonstrate that coral reproduction patterns within this region are highly seasonal and that multi-species spawning synchrony is highly probable. Acropora downingi, Cyphastrea microphthalma and Platygyra daedalea were all hermaphroditic broadcast spawners with a single annual gametogenic cycle. Furthermore, fecundity and mature oocyte sizes were comparable to those in other regions. We conclude that the reproductive biology of corals in the southern Persian Gulf is similar to other regions, indicating that these species have adapted to the extreme environmental conditions in the southern Persian Gulf.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号