首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Though predation, productivity (nutrient richness), spatial heterogeneity, and disturbance regimes are known to influence species diversity, interactions between these factors remain largely unknown. Predation has been shown to interact with productivity and with spatial heterogeneity, but few experimental studies have focused on how predation and disturbance interact to influence prey diversity. We used theory and experiments to investigate how these factors influence diversification of Pseudomonas fluorescens by manipulating both predation (presence or absence of Bdellovibrio bacteriovorus) and disturbance (frequency and intensity of disturbance). Our results show that in a homogeneous environment, predation is essential to promote prey species diversity. However, in most but not all treatments, elevated diversity was transitory, implying that the effect of predation on diversity was strongly influenced by disturbance. Both our experimental and theoretical results suggest that disturbance interacts with predation by modifying the interplay of resource and apparent competition among prey.  相似文献   

2.
Disturbance, productivity, and natural enemies are significant determinants of the evolution of diversity, but their interactive effect remains unresolved. We develop a simple, qualitative model assuming trade-offs between growth rate, competitive ability and parasite resistance, to address the interactive effects of these variables on the evolution of host diversity. Consistent with previous studies our model predicts maximum diversity at intermediate levels of disturbance and productivity in the absence of parasitism. However, parasites break down these unimodal diversity relationships with productivity and disturbance, as selection for parasite resistance reduces the importance of growth rate-competitive ability trade-offs. We tested these predictions using the bacterium Pseudomonas fluorescens, which undergoes an adaptive radiation into spatial niche specialists under laboratory conditions. This is the first study of adaptive radiation in response to experimental manipulation of the three-way interaction between productivity, disturbance, and natural enemies. As hypothesized, unimodal diversity relationships with disturbance and productivity were weakened or disappeared in the presence of parasitic phages. This was the result of phages increasing diversity at environmental extremes, by imposing selection for phage-resistant variants, but decreasing diversity in less stressful environments, probably through reductions in resource competition. Phages had a net effect of increasing host diversity. Parasites and other natural enemies are therefore likely to have a large effect in mitigating the influence of other environmental variables on the evolution and maintenance of diversity.  相似文献   

3.
Explaining productivity-diversity relationships in plants   总被引:8,自引:0,他引:8  
Tara K. Rajaniemi 《Oikos》2003,101(3):449-457
Relationships between productivity and diversity in plant communities have been widely documented. Unimodal productivity-diversity relationships are most common along natural productivity gradients, and fertilization generally reduces diversity. Five distinct hypotheses invoke changes in competition to explain why diversity should decline from intermediate to high productivity. Because experiments measuring the effects of competition on diversity are rare, four of the five hypotheses have not been directly tested, but each hypothesis makes unique predictions that allow for indirect tests. The indirect evidence is often conflicting, and while none of the hypotheses can be rejected, only the dynamic equilibrium hypothesis is consistently supported. A new hypothesis, however, is supported by indirect evidence and may help to explain the variation in the shape of productivity-diversity relationships, as well as the most common patterns. Diversity may be high in environments that promote size symmetric competition, where soil resources limit growth and are homogeneously distributed within the soil volume explored by individual plants. Conversely, diversity may be low in environments that promote size asymmetric competition, where light is limiting, or where soil resources are limiting and are patchily distributed within rooting zones.  相似文献   

4.
Aims and Methods Disturbance is supposed to play an important role for biodiversity and ecosystem stability as described by the intermediate disturbance hypothesis (IDH), which predicts highest species richness at intermediate levels of disturbances. In this study, we tested the effects of artificial soil disturbances on diversity of annual and perennial vascular plants and bryophytes in a field experiment in 86 agricultural grasslands differing in land use in two regions of Germany. On each grassland, we implemented four treatments: three treatments differing in application time of soil disturbances and one control. One year after experimental disturbance, we recorded vegetation and measured biomass productivity and bare ground. We analysed the disturbance response taking effects of region and land-use-accompanied disturbance regimes into account.Important findings Region and land-use type strongly determined plant species richness. Experimental disturbances had small positive effects on the species richness of annuals, but none on perennials or bryophytes. Bare ground was positively related to species richness of bryophytes. However, exceeding the creation of 12% bare ground further disturbance had a detrimental effect on bryophyte species richness, which corresponds to the IDH. As biomass productivity was unaffected by disturbance our results indicate that the disturbance effect on species richness of annuals was not due to decreased overall productivity, but rather due to short-term lowered inter- and intraspecific competition at the newly created microsites. Generally, our results highlight the importance of soil disturbances for species richness of annual plants and bryophytes in agricultural grasslands. However, most grasslands were disturbed naturally or by land-use practices and our additional experimental soil disturbances only had a small short-term effect. Overall, total plant diversity in grasslands seemed to be more limited by the availability of propagules rather than by suitable microsites for germination. Thus, nature conservation efforts to increase grassland diversity should focus on overcoming propagule limitation, for instance by additional sowing of seeds, while the creation of additional open patches by disturbance might only be appropriate where natural disturbances are scarce.  相似文献   

5.
Pakeman RJ  Lennon JJ  Brooker RW 《Oecologia》2011,167(1):209-218
Understanding how communities assemble is a key challenge in ecology. Conflicting hypotheses suggest that plant traits within communities should show divergence to reflect strategies to reduce competition or convergence to reflect strong selection for the environmental conditions operating. Further hypotheses suggest that plant traits related to productivity show convergence within communities, but those related to disturbance show divergence. Data on functional diversity (FDvar) of 12 traits from 30 communities ranging from arable fields, mown and grazed grasslands to moorland and woodland were employed to test this using randomisations tests and correlation and regression analysis. No traits showed consistent significant convergence or divergence in functional diversity. When correlated to measures of the environment, the most common pattern was for functional diversity to decline (7 out of 12 traits) and the degree of convergence (7 out of 12 traits) to increase as the levels of productivity (measured as primary productivity, soil nitrogen release and vegetation C:N) and disturbance increased. Convergence or a relationship between functional diversity and the environment was not seen for a number of important traits, such as LDMC and SLA, which are considered as key predictors of ecosystem function. The analysis indicates that taking into account functional diversity within a system may be a necessary part of predicting the relationship between plant traits and ecosystem function, and that this may be of particular importance within less productive and less disturbed systems.  相似文献   

6.
7.
Ecological consequences of genetic diversity   总被引:4,自引:0,他引:4  
Understanding the ecological consequences of biodiversity is a fundamental challenge. Research on a key component of biodiversity, genetic diversity, has traditionally focused on its importance in evolutionary processes, but classical studies in evolutionary biology, agronomy and conservation biology indicate that genetic diversity might also have important ecological effects. Our review of the literature reveals significant effects of genetic diversity on ecological processes such as primary productivity, population recovery from disturbance, interspecific competition, community structure, and fluxes of energy and nutrients. Thus, genetic diversity can have important ecological consequences at the population, community and ecosystem levels, and in some cases the effects are comparable in magnitude to the effects of species diversity. However, it is not clear how widely these results apply in nature, as studies to date have been biased towards manipulations of plant clonal diversity, and little is known about the relative importance of genetic diversity vs. other factors that influence ecological processes of interest. Future studies should focus not only on documenting the presence of genetic diversity effects but also on identifying underlying mechanisms and predicting when such effects are likely to occur in nature.  相似文献   

8.
Unifying the relationships of species richness to productivity and disturbance   总被引:11,自引:0,他引:11  
Although species richness has been hypothesized to be highest at 'intermediate' levels of disturbance, empirical studies have demonstrated that the disturbance-diversity relationship can be either negative or positive depending on productivity On the other hand, hypothesized productivity diversity relationships can be positive, negative or unimodal, as confirmed by empirical studies. However, it has remained unclear under what conditions each pattern is realized, and there is little agreement about the mechanisms that generate these diverse patterns. In this study, I present a model that synthesizes these separately developed hypotheses and shows that the interactive effects of disturbance and productivity on the competitive outcome of multispecies dynamics can result in these diverse relationships of species richness to disturbance and productivity The predicted productivity diversity relationship is unimodal but the productivity level that maximizes species richness increases with increasing disturbance. Similarly, the predicted disturbance diversity relationship is unimodal but the peak moves to higher disturbance levels with increasing productivity Further, these patterns are well explained by the opposite effects of productivity and disturbance on competitive outcome that are suggested by the change in community composition along these two environmental gradients: higher productivity favours superior competitors while higher disturbance levels favour inferior competitors.  相似文献   

9.
Species richness is the most commonly used metric to quantify biodiversity. However, examining dark diversity, the group of missing species which can potentially inhabit a site, can provide a more thorough understanding of the processes influencing observed biodiversity and help evaluate the restoration potential of local habitats. So far, dark diversity has mainly been studied for specific habitats or large‐scale landscapes, while less attention has been given to variation across broad environmental gradients or as a result of local conditions and biotic interactions. In this study, we investigate the importance of local environmental conditions in determining dark diversity and observed richness in plant communities across broad environmental gradients. Using the ecospace concept, we investigate how these biodiversity measures relate to abiotic gradients (defined as position), availability of biotic resources (defined as expansion), spatiotemporal extent of habitats (defined as continuity), and species interactions through competition. Position variables were important for both observed diversity and dark diversity, some with quadratic relationships, for example, plant richness showing a unimodal response to soil fertility corresponding to the intermediate productivity hypothesis. Interspecific competition represented by community mean Grime C had a negative effect on plant species richness. Besides position‐related variables, organic carbon was the most important variable for dark diversity, indicating that in late‐succession habitats such as forests and shrubs, dark diversity is generally low. The importance of highly competitive species indicates that intermediate disturbance, such as grazing, may facilitate higher species richness and lower dark diversity.  相似文献   

10.
In landscapes subject to intensive agriculture, both soil fertility and vegetation disturbance are capable of impacting strongly, evenly and simultaneously on the herbaceous plant cover and each tends to impose uniformity on the traits of constituent species. In more natural and ancient grasslands greater spatial and temporal variation in both productivity and disturbance occurs and both factors have been implicated in the maintenance of species‐richness in herbaceous communities. However, empirical data suggest that disturbance is the more potent driver of trait differentiation and species co‐existence at a local scale. This may arise from the great diversity in opportunities for establishment, growth or reproduction that arise when the intensity of competition is reduced by damage to the vegetation. In contrast to the diversifying effects of local disturbances, productivity‐related plant traits (growth rate, leaf longevity, leaf chemistry, leaf toughness, decomposition rate) appear to be less variable on a local scale. This difference in the effects of the productivity and disturbance filters arises from the relative constancy of productivity within the community and the diversity in agency and in spatial and temporal scales exhibited by disturbance events. Also, evolutionary responses to disturbances involve minor adaptive shifts in phenological and regenerative traits and are more likely to occur as micro‐evolutionary steps than the shifts in linked traits in the core physiology associated with the capacity to exploit productive and unproductive habitats. During the assembly of a community and over its subsequent lifespan filters with diversifying and convergent effects may operate simultaneously on recruitment from the local species pool and impose contrasted effects on the similarity of the trait values exhibited by co‐existing species. Moreover, as a consequence of the frequent association of productivity with the convergence filter, an additional difference is predicted in terms of the effects of the two filters on ecosystem functioning. Convergence in traits selected by the productivity filter will exert effects on both the plant community and the ecosystem while divergent effects of the disturbance filter will be restricted to the plant community.  相似文献   

11.
Disturbance is an important factor influencing diversity patterns. Ecological theory predicts that diversity peaks at intermediate levels of disturbance, but this pattern is not present in a majority of empirical tests and can be influenced by the level of ecosystem productivity. We experimentally tested the effects of disturbance on diversity and show that species' autecological traits and community relations predicted species loss. We found that – alone or in concert – increasing disturbance intensity or frequency, or decreasing productivity, reduced diversity. Our species did not exhibit a clear competition-colonization trade-off, and intrinsic growth rate was a more important predictor of response to disturbance and productivity than measures of competitive ability. Furthermore, competitive ability was more important in predicting responses when, in addition to killing individuals, disturbance returned nutrients to the ecosystem. Our results demonstrate that species' traits can help resolve conflicting patterns in the response of diversity to disturbance and productivity.  相似文献   

12.
The dynamic equilibrium model of species diversity predicts that ecosystem productivity interacts with disturbance to determine how many species coexist. However, a robust test of this model requires manipulations of productivity and disturbance over a sufficient timescale to allow competitive exclusion, and such long-term experimental tests of this hypothesis are rare. Here we use long-term (27 years), large-scale (8 × 50-m plots), factorial manipulations of soil resource availability and sheep grazing intensity (disturbance) in grasslands to test the dynamic equilibrium model. As predicted by the model, increased productivity not only reduced plant species richness, but also moderated the effects of grazing intensity, shifting them from negative to neutral with increasing productivity. Reductions in species richness with productivity were associated with dominance by faster growing (i.e. high specific leaf area) and taller plants. Conversely, grazing favoured shorter plants and this effect became stronger with greater productivity, consistent with the view that grazing can lead to weaker asymmetric competition for light. Our study shows that the dynamic equilibrium model can help to explain changes in plant species richness following long-term increases in soil resource availability and grazing pressure, two fundamental drivers of change in grasslands worldwide.  相似文献   

13.
The lack of clarity on how the intensity and importance of plant interactions change under the co‐occurrence of stress and disturbance strongly impedes assessing the relative importance of plant interactions for species diversity. We addressed this issue in subalpine grasslands of the French Pyrenees. A natural soil moisture gradient further experimentally stretched at both ends was used and a mowing disturbance treatment was applied at each position along the soil moisture gradient. Changes in intensity and importance of plant interactions were assessed by a neighbour removal experiment using four target ecotypes. A structural equation modelling approach was used to assess the relative impact of stress, disturbance, the intensity and importance of plant interactions on diversity at both the neighbourhood and community scales. Without mowing, changes in intensity and importance of plant interactions only diverged in the dry part of the soil moisture gradient. The intensity of plant interactions linearly shifted from competition to facilitation with increasing stress, while the importance followed a hump‐shaped relationship. Species diversity components were tightly related to the importance of plant interactions only, both the neighbourhood and community scales. Mowing disturbance strongly reduced the importance of facilitation along the soil moisture gradient, and suppressed the relationship between the importance of plant interactions and diversity components. Together, our results highlight that 1) the importance is the best predictor of variations in species diversity in this subalpine herbaceous system, and 2) that fine‐scale processes such as plant interactions can affect the entire plant communities. Finally, our results suggest that high level of constraints due to co‐occurring stress and disturbance can inhibit the effects of plant interactions on species diversity, highlighting their potential role in regulating diversity and the maintenance/extinction of plant communities. Synthesis How plant interactions change along environmental gradients is an unsolved debate, particularly when both stress and disturbance interact. This lack of clarity explains why the relative impact of plant interactions (intensity and importance) on species diversity has been rarely assessed. Using an experimental approach, we found that the importance of plant interactions highly contributed to variation in species diversity, confirming that neighbourhood scale processes such as plant interactions can affect the entire plant communities. The co‐occurrence of stress and disturbance inhibited the effects of plant interactions, highlighting that plant interactions may regulate drops of diversity and the maintenance/extinction of plant communities.  相似文献   

14.
高寒草甸植物群落物种多样性和生产力关系的光竞争研究   总被引:4,自引:1,他引:3  
邱波  杜国祯 《西北植物学报》2004,24(9):1646-1650
通过施肥形成的生产力由低到高的过程中,物种多样性往往降低。总体竞争假说认为对所有资源的竞争作用对多样性的影响随着生产力提高而加剧,导致物种多样性的下降;光竞争假说则认为随着生产力提高,种间竞争从低生产力时的地下竞争转向高生产力时的光竞争,是光竞争导致了物种多样性的下降。为了验证这两种假说,本文通过在甘南玛曲高寒草甸的均匀施肥实验,研究了光竞争对高寒草甸植物群落物种多样性和生产力关系的影响。结果表明:(1)随着施肥梯度的增加,大部分植物的生长速率加快,高度和叶面积增加;(2)随着施肥梯度的增加,植物群落地上总的生物量提高,叶面积指数增加,透光率降低,物种多样性减少;(3)个体大小不对称的光竞争导致了高寒草甸植物群落物种多样性随施肥梯度的增加而减少。  相似文献   

15.
Understory Vegetation Dynamics of North American Boreal Forests   总被引:2,自引:0,他引:2  
Understory vegetation is the most diverse and least understood component of North American boreal forests. Understory communities are important as they act as drivers of overstory succession and nutrient cycling. The objective of this review was to examine how understory vegetation abundance, composition, and diversity change with stand development after a major stand replacing disturbance. Understory vegetation abundance and diversity increase rapidly after fire, in response to abundant resources and an influx of disturbance adapted species. The highest diversity occurs within the first 40 years following fire, and declines indefinitely thereafter as a result of decreasing productivity and increased dominance of a small number of late successional feather mosses and woody plant species. Vascular plant and bryophyte/lichen communities undergo very different successional changes. Vascular plant communities are dynamic and change more dramatically with time after fire, whereas bryophyte and lichen communities are much slower to establish and change over time. Considerable variations in these processes exist depending on canopy composition, site condition, regional climate, and frequently occurring non-stand-replacing disturbances. Forest management practices represent a unique disturbance process and can result in different understory vegetation communities from those observed for natural processes, with potential implications for overstory succession and long-term productivity. Because of the importance of understory vegetation on nutrient cycling and overstory composition, post-harvest treatments emulating stand-replacing fire are required to maintain understory diversity, composition, and promote stand productivity in boreal forests.  相似文献   

16.
The effect of community productivity on competition was studied in 82 permanent plots using two removal experiments with the rhizomatous perennial grass Anthoxanthum odoratum. The removal of neighbouring plants had a positive effect on the number of shoots and total above-ground biomass of Anthoxanthum but no significant effect on mean shoot biomass. The relative competition intensity coefficient (RCI) calculated from these data showed that competition intensity increased with increasing community productivity. Similarly, the importance of competition and the difference between local maximum and local average population density increased with increasing community productivity. We concluded that for Anthoxanthum the impact of competition is greater in high-productivity areas and that competition reduces population density. No evidence was found supporting the importance of positive interactions between plants in tundra areas. Received: 22 June 1999 / Accepted: 3 April 2000  相似文献   

17.
Predicting the relationships between disturbance, biodiversity and productivity of ecosystems continue to preoccupy ecologists and resource managers. Two hypotheses underpin many of the discussions. The Intermediate Disturbance Hypothesis (IDH), which proposes that biodiversity peaks at intermediate levels of disturbance, is often extended to predict that productivity follows the same response pattern. The Mass Ratio Hypothesis (MRH) proposes that the biological traits of the dominant species are the critical drivers of ecosystem function (e.g., productivity) and that these species increase in biomass rapidly after disturbance then stabilize. As a consequence, species diversity first peaks then declines after disturbance as a few species dominate the site. Both provide a conceptual link among disturbance, species diversity and productivity (an index of ecosystem function). We assessed the current state of empirical support for these two hypotheses with a literature survey and determined if their conformance is related to ecosystem type or site productivity. Conformance of IDH reported in past reviews (considering all ecosystems) ranged from 16 to 21%. This contrasts with our finding that in terrestrial ecosystems conformance to IDH was 46% (22 of 48 studies), 17% studies reported non-compliance, and 23% reported inconclusive results. Most studies explained their results with respect to IDH or MRH. Only two studies were specifically designed to test the validity of IDH or MRH. We conclude that (i) the IDH is mostly applicable to predict species diversity response to disturbance in upland sites of medium to high productivity and the MRH is applicable to organic sites of low productivity; (ii) there is a critical need for more studies specifically designed to test these hypotheses in natural ecosystems using common protocols; and (iii) enhanced understanding of these models will add value in refining management policies and in the selection of meaningful diversity indicators of sustainability.  相似文献   

18.
Competition is often invoked as the cause of plant species loss with increasing system productivity. Experimental results for multispecies assemblages are virtually absent and mathematical models are thus used to explore the relationship between competition and coexistence. Modelling approaches to coexistence and diversity in competitive communities commonly employ Lotka-Volterra-type (LV) models with additive pairwise competitive effects.Using pairwise plant competition experiments, we calibrate the LV system and use it to predict plant biomass and coexistence in six three-species and one seven-species experimental mixture. Our results show that five out of the six three-species sets and the seven-species set deviate significantly from LV model predictions. Fitting an additional non-additive competition coefficient resulted in predictions that more closely matched the experimental results, with stable coexistence suggested in all but one case. These results are discussed with particular reference to the possible underlying mechanisms of coexistence in our experimental community. Modelling the effect of competition intensity on stability indicates that if non-additive effects occur, they will be relevant over a wide range of community sizes. Our findings caution against relying on coexistence predictions based on LV models.  相似文献   

19.
The intensity of competition is a physiological concept, related directly to the well-being of individual organisms but only indirectly and conditionally to their fitness, and even more indirectly to the evolution of populations and the structure of communities. The importance of competition is primarily an ecological and evolutionary concept, related directly to the ecology and fitness of individuals but only indirectly to their physiological states. The intensity of competition is not necessarily correlated with the intensities of predation, disturbance, abiotic stress, or other ecological processes. The importance of competition is necessarily relative to the importances of other processes. Intensity refers primarily to the process of present competition, whereas importance refers primarily to the products of past competition. The distinction between the intensity and the importance of competition clarifies two long-standing ecological debates. Some ecologists have proposed that competition is greater in more stressful habitats, others the opposite, and still others that no such relationship exists. Evidence cited to refute or support these positions often confuses intensity and importance. Distinguishing between them focuses questions more sharply and indicates what sorts of new evidence should be sought. The more widely known debate over the prevalence of competition as an agent of community structure is a debate about the importance of competition, but evidence about the intensity of competition has often been used by both sides. We argue that intensity and importance need not be correlated, and so measurements of the intensity of competition are not directly relevant to this debate. This distinction also generates testable hypotheses and suggests directions for research. For example, we hypothesize that competition can be unimportant even if it is very intense: no such hypothesis is possible unless importance is distinguished from intensity. We discuss the application of these ideas to methods and theories used to study competition, ecological communities, and the evolution of competitive ability. We advocate a research approach that presumes multiple, interacting causes, including competition, affecting community structure, and we show how the distinction between intensity and importance helps to make this feasible.  相似文献   

20.
Background and Aims There is still debate regarding the direction and strength of plant interactions under intermediate to high levels of stress. Furthermore, little is known on how disturbance may interact with physical stress in unproductive environments, although recent theory and models have shown that this interplay may induce a collapse of plant interactions and diversity. The few studies assessing such questions have considered the intensity of biotic interactions but not their importance, although this latter concept has been shown to be very useful for understanding the role of interactions in plant communities. The objective of this study was to assess the interplay between stress and disturbance for plant interactions in dry calcareous grasslands. Methods A field experiment was set up in the Dordogne, southern France, where the importance and intensity of biotic interactions undergone by four species were measured along a water stress gradient, and with and without mowing disturbance. Key Results The importance and intensity of interactions varied in a very similar way along treatments. Under undisturbed conditions, plant interactions switched from competition to neutral with increasing water stress for three of the four species, whereas the fourth species was not subject to any significant biotic interaction along the gradient. Responses to disturbance were more species-specific; for two species, competition disappeared with mowing in the wettest conditions, whereas for the two other species, competition switched to facilitation with mowing. Finally, there were no significant interactions for any species in the disturbed and driest conditions. Conclusions At very high levels of stress, plant performances become too weak to allow either competition or facilitation and disturbance may accelerate the collapse of interactions in dry conditions. The results suggest that the importance and direction of interactions are more likely to be positively related in stressful environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号