首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Low phosphorus availability is often a primary constraint to plant productivity in native soils. Here we test the hypothesis that root carbon costs are a primary limitation to plant growth in low P soils by assessing the effect of P availability and mycorrhizal infection on whole plant C budgets in common bean ( Phaseolus vulgaris L.). Plants were grown in solid-phase-buffered silica sand providing a constant supply of low (1 μ m ) or moderate (10 μ m ) P. Carbon budgets were determined weekly during the vegetative growth phase. Mycorrhizal infection in low-P plants increased the root specific P absorption rate, but a concurrent increase in root respiration consumed the increased net C gain resulting from greater P uptake. The energy content of mycorrhizal and non-mycorrhizal roots was similar. We propose that the increase in root respiration in mycorrhizal roots was mainly due to increased maintenance and growth respiration of the fungal tissue. Plants grown with low P availability expended a significantly larger fraction of their total daily C budget on below-ground respiration at days 21, 28 and 35 after planting (29–40%) compared with plants grown with moderate P supply (18–25%). Relatively greater below-ground respiration in low P plants was mainly a result of their increased root:shoot ratio, although specific assimilation rate was reduced significantly at days 21 and 28 after planting. Specific root respiration was reduced over time by low P availability, by up to 40%. This reduction in specific root respiration was due to a reduction in ion uptake respiration and growth respiration, whereas maintenance respiration was increased in low-P plants. Our results support the hypothesis that root C costs are a primary limitation to plant growth in low-P soils.  相似文献   

2.
Root respiration associated with nitrate assimilation by cowpea   总被引:2,自引:1,他引:1  
Nitrate uptake by roots of cowpea (Vigna unguiculata) was measured using 15NO3, and the energy cost to the root was estimated by respirometry. Roots of 8-day-old cowpea seedlings respired 0.6 to 0.8 milligram CO2 per plant per hour for growth and maintenance. Adding 10 millimolar NO3 to the root medium increased respiration by 20 to 30% during the following 6 hours. This increase was not observed if the shoots were in the dark. Removal of NO3 from the root medium slowed the increase of root respiration. The ratios of additional respiration to the total nitrogen uptake and reduced nitrogen content in roots were 0.4 gram C per gram N and 2.3 grams C per gram N, respectively. The latter value is close to theoretical estimates of nitrate assimilation, and is similar to estimates of 1 to 4 grams C per gram N for the respiratory cost of symbiotic N2 fixation.  相似文献   

3.
Plantago lanceolata L., a grassland species from a relatively nutrient-poor habitat, was grown in nutrient-rich and in nutrient-poor culture solutions. Half of the plants were trensferred from high to low or from low to high nutrient conditions. Shoot growth was immediately reduced upon transfer to low nutrient conditions, whilst it reacted more slowly upon transfer of plants to high nutrient conditions. Root growth was less dependent on the supply of nutrients, but it was slightly reduced upon transfer of plants to high nutrient conditions.
Photosynthesis was largely independent of the nutrient supply, apart from an initial increase upon transfer of plants to low nutrient conditions. Photosynthesis decreased with age in all treatments, and this decrease was not due to mutual shading. The decrease of photosynthetic rate was not accompanied by a decreased relative growth rate: it was compensated by a more efficient root respiration, since the activity of the alternative nonphosphorylating pathway continuously decreased in plants grown in a high nutrient environment.
It is concluded that the alternative pathway was of significance in removal of carbohydrates, which could not be utilized for growth, energy production, etc. , due to a temporary or structural imbalance between assimilate production and requirement. The alternative pathway also appeared to allow P. lanceolata plants to adapt to a changed environment as regards mineral nutrition.
The experimental value for root growth respiration of P. lanceolata grown under high nutrient conditions was compared with a theoretical value, calculated from the biochemical composition of plant dry matter and the known energy costings for biosynthetic and transport processes. A good correlation between the experimental and theoretical value of root growth respiration was found if it was assumed that ion uptake required c . 1.0 molecule of ATP per ion per membrane passage.  相似文献   

4.
Two experiments were carried out to study physiological effects of vesicular-arbuseular mycorrhizal infection on Plantago major L., ssp. pleiosperma (Pilger). In the first experiment, infection by the Glomus fasciculatum (Thaxt. sensu Gerdemann) Gerdemann and Trappe increased growth, shoot to root ratio, P concentrations in both shoot and roots and total uptake of P per plant. The percentages of dry matter in both shoot and roots were lower in mycorrhizal plants.
In the second experiment different P treatments were applied to both mycorrhizal and non-mycorrhizal P. major plants to separate any effects of mycorrhizal infection from increased uptake of P. In addition to the effects found in the first experiment, mycorrhizal, P, and mycorrhizal x P interaction effects were found on root respiration rate and the concentration of soluble sugars in the roots. No clear effects on total dry weight, N and starch concentrations in shoot and roots and sugar concentraion in the shoot were found. Irrespective of the mycorrhizal treatment, increased P concentration in the shoot correlated with an increased shoot to root ratio and root respiration rate, and a decreased percentage dry matter and sugar concentration in the roots. However, the root respiration rate and the P concentration in the roots of mycorrhizal plants were enhanced more than expected from the increased P concentrations in the shoots of these plants.  相似文献   

5.
Rates of extension, numbers of laterals and rates of respiration were measured in different fractions of wheat ( Triticum aestivum L. cv. Alexandria) roots following changes in carbohydrate supply. The supply of carbohydrate was varied by selective pruning and exogenously fed sugars. Pruning shoots to a single leaf (leaf-pruning) reduced the rate of O2 uptake by intact roots. Rates were not stimulated by shortterm feeding of sucrose (25 m M ), but were stimulated by the uncoupler p -trifluoro-methoxy(carbonylcyanide)phenylhydrazone (FCCP). Feeding glucose to roots of leaf-pruned and non-pruned plants for 16–24 h increased the rate of O2 uptake. It is concluded that respiration is under fine control by adenylates and coarse control by carbohydrate supply, with carbohydrates regulating directly the rate of some energy consuming process(es). These energy consuming processes are located in growing tissue fractions. Feeding glucose to leaf-pruned and non-pruned plants increased rates of O2 uptake in seminal root tips, the zone of developing lateral primordia and mature root sections with elongating laterals, but had no effect on mature sections from which the laterals had been excised. Leaf-pruning reduced the extension rate of seminal axes and first-order laterals when measured over 24 h. Feeding glucose to roots from the time of pruning increased the rate, but did not fully restore it to control values. Pruning roots to a single seminal axis (root-pruning) and feeding glucose to non-pruned plants had no effect on the extension rate of the seminal axis or its laterals over this time period, although rates were increased by root-pruning when measured over 3 days. The number of lateral root primordia was reduced by leaf-pruning and increased by root-pruning and feeding glucose. The results are discussed in terms of the role of carbohydrates in the control of root growth and branching.  相似文献   

6.
Maize (Zea mays L.) plants with two primary nodal root axes were grown for 8 d in flowing nutrient culture with each axis independently supplied with NO3-. Dry matter accumulation by roots was similar whether 1.0 mol m-3 NO3- was supplied to one or both axes. When NO3- was supplied to only one axis, however, accumulation of dry matter within the root system was significantly greater in the axis supplied with NO3-. The increased dry matter accumulation by the +N-treated axis was attributable entirely to increased density and growth of lateral branches and not to a difference in growth of the primary axis. Proliferation of lateral branches for the +N axis was associated with the capacity for in situ reduction and utilization of a portion of the absorbed NO3-, especially in the apical region where lateral primordia are initiated. Although reduced nitrogen was translocated to the -N axis, concentrations in the -N axis remained significantly lower than in the +N axis. The concentration of reduced nitrogen, as well as in vitro NO3- reductase activity, was greater in apical than in more basal regions of the +N axis. The enhanced proliferation of lateral branches in the +N axis was accompanied by an increase in total respiration rate of the axis. Part of the increased respiration was attributable to increased mass of roots. The specific respiration rate (micromoles CO2 evolved per hour per gram root dry weight) was also greater for the +N than for the -N axis. If respiration rate is taken as representative of sink demand, stimulation of initiation and growth of laterals by in situ utilization of a localized exogenous supply of NO3- establishes an increased sink demand through enhanced metabolic activity and the increased partitioning of assimilates to the +N axis responds to the difference in sink demand between +N and -N axes.  相似文献   

7.
Adventitious rooting contributes to efficient phosphorus acquisition by enhancing topsoil foraging. However, metabolic investment in adventitious roots may retard the development of other root classes such as basal roots, which are also important for phosphorus acquisition. In this study we quantitatively assessed the potential effects of adventitious rooting on basal root growth and whole plant phosphorus acquisition in young bean plants. The geometric simulation model SimRoot was used to dynamically model root systems with varying architecture and C availability growing for 21 days at 3 planting depths in 3 soil types with contrasting nutrient mobility. Simulated root architectures, tradeoffs between adventitious and basal root growth, and phosphorus acquisition were validated with empirical measurements. Phosphorus acquisition and phosphorus acquisition efficiency (defined as mol phosphorus acquired per mol C allocated to roots) were estimated for plants growing in soil in which phosphorus availability was uniform with depth or was greatest in the topsoil, as occurs in most natural soils. Phosphorus acquisition and acquisition efficiency increased with increasing allocation to adventitious roots in stratified soil, due to increased phosphorus depletion of surface soil. In uniform soil, increased adventitious rooting decreased phosphorus acquisition by reducing the growth of lateral roots arising from the tap root and basal roots. The benefit of adventitious roots for phosphorus acquisition was dependent on the specific respiration rate of adventitious roots as well as on whether overall C allocation to root growth was increased, as occurs in plants under phosphorus stress, or was lower, as observed in unstressed plants. In stratified soil, adventitious rooting reduced the growth of tap and basal lateral roots, yet phosphorus acquisition increased by up to 10% when total C allocation to roots was high and adventitious root respiration was similar to that in basal roots. With C allocation to roots decreased by 38%, adventitious roots still increased phosphorus acquisition by 5%. Allocation to adventitious roots enhanced phosphorus acquisition and efficiency as long as the specific respiration of adventitious roots was similar to that of basal roots and less than twice that of tap roots. When adventitious roots were assigned greater specific respiration rates, increased adventitious rooting reduced phosphorus acquisition and efficiency by diverting carbohydrate from other root types. Varying the phosphorus diffusion coefficient to reflect varying mobilities in different soil types had little effect on the value of adventitious rooting for phosphorus acquisition. Adventitious roots benefited plants regardless of basal root growth angle. Seed planting depth only affected phosphorus uptake and efficiency when seed was planted below the high phosphorus surface stratum. Our results confirm the importance of root respiration in nutrient foraging strategies, and demonstrate functional tradeoffs among distinct components of the root system. These results will be useful in developing ideotypes for more nutrient efficient crops.  相似文献   

8.
Summary Experiments on cucumber plants grown in nutrient solution were conducted in order to study long and short time effects of ammonia on growth, nutrient element uptake and respiration of roots.Shoot yield and potassium concentration in tissue of plants treated 18 days with varied ammonia concentration were decreased. However, it was not assumed that K deficiency caused the yield reduction. The ammonia effect on K content was more pronounced in roots than in shoots.The decreased K concentration of plant tissue was linked to a diminished ability of plant roots to absorb potassium. The maximum rate of potassium uptake was lowered by ammonia during both, long- and short-time treatment. The results indicated that the NH3 influence on potassium uptake was due to effects on metabolism and permeability of roots because changes of K uptake rate occurred immediately after starting the NH3 treatment. Furthermore, it is shown that ammonia inhibited respiration of roots.During the short-time treatment net potassium efflux of roots was observed at higher NH3 concentrations. The extent of K efflux depended on K concentration of both, root tissue and nutrient solution.Pretreating the plants for 12 hours with ammonia also resulted a decline in K uptake rate. However, plant roots subjected to ammonia concentrations up to 0.09 mM completely recovered during 24 hours after removing the NH3 treatment whereas at higher NH3 concentrations only a partial recovery occurred.Furthermore, it was shown that ammonia also influenced P uptake by plant roots.  相似文献   

9.
Summary This paper provides some quantitative data on the relationship between the rate of uptake of phosphorus and potassium from soil and the amount of root, root density and rate of root growth. Three experiments were conducted with winter wheat, all grown in the same soil. Root growth and density were manipulated in three ways: (1) by root pruning; (2) by a split-root technique; (3) by growing plants in different soil volumes. Root lengths as well as weights were determined.Potassium uptake per unit amount of root was generally lower the higher the root density, suggesting that roots were competing with each other for potassium even at the lowest density. In contrast, phosphorus uptake showed a good correlation with root growth irrespective of root density or plant age. Phosphorus uptake during a period was more closely and consistently correlated with root growth during that period than with the total amount of root on the plant. The results can be explained in terms of ion supply to the root surface, taking into account the diffusion coefficients of the ions and the approximate distances between neighbouring roots.Now Mrs. Watkins; address 39 Leach Heath Lane, Rubery, Birmingham.Now Mrs. Watkins; address 39 Leach Heath Lane, Rubery, Birmingham.  相似文献   

10.
The effect of nitrogen source (N(2) or nitrate) on carbon assimilation by photosynthesis and on carbon partitioning between shoots and roots was investigated in pea (Pisum sativum L. 'Baccara') plants at different growth stages using (13)C labelling. Plants were grown in the greenhouse on different occasions in 1999 and 2000. Atmospheric [CO(2)] and growth conditions were varied to alter the rate of photosynthesis. Carbon allocation to nodulated roots was unaffected by N source. At the beginning of the vegetative period, nodulated roots had priority for assimilates over shoots; this priority decreased during later stages and became identical to that of the shoot during seed filling. Carbon allocation to nodulated roots was always limited by competition with shoots, and could be predicted for each phenological stage: during vegetative and flowering stages a single, negative exponential relationship was established between sink intensity (percentage of C allocated to the nodulated root per unit biomass) and net photosynthesis. At seed filling, the amount of carbon allocated to the nodulated root was directly related to net photosynthesis. Respiration of nodulated roots accounted for more than 60 % of carbon allocated to them during growth. Only at flowering was respiration affected by N supply: it was significantly higher for strictly N(2)-fixing plants (83 %) than for plants fed with nitrate (71 %). At the vegetative stage, the increase in carbon in nodulated root biomass was probably limited by respiration losses.  相似文献   

11.
Ammonium nitrate solution applied to the leaves of sugar-beetincreased plant dry weight and uptake of nitrogen by the roots.Uptake of phosphorus by the roots of swedes, but not sugar-beet,grown with high phosphorus supply to the roots, was decreasedby applying sodium phosphate solution to the leaves; uptakefrom a lower phosphorus supply to the roots was unaffected.Phosphorus applied to the leaves had no effect on dry weight.Potassium uptake by the roots of sugar-beet plants grown withhigh potassium supply to the roots was unaffected by paintingthe leaves with a potassium chloride solution, that of plantswith an intermediate potassium supply was increased, and plantsgrown with a low supply to the roots absorbed almost all theavailable potassium so painting could not much increase uptakeby the roots. Application of potassium to the leaves increaseddry weight of plants with low or medium potassium supply tothe roots and did not affect that of plants with a high potassiumsupply. The top: root ratio for phosphorus content in mg. per plantwas greater for phosphorus absorbed via leaves than for phosphorusabsorbed via roots. Increasing the phosphorus supply to theroots increased this ratio for phosphorus absorbed either vialeaves or roots. Potassium absorbed by leaves was slightly more efficient inincreasing dry weight than potassium absorbed at the same timeby the root. A similar comparison was not possible for nitrogenor phosphorus. The results of these and previous experiments indicate thatall the nitrogen and potassium and over 80 per cent. of thephosphorus applied to leaves was absorbed. The small amountof phosphorus remaining unabsorbed on the surface of the leafwas unaffected by phosphorus supply to the root.  相似文献   

12.
HUMPHRIES  E. C. 《Annals of botany》1958,22(2):251-257
Removal of up to 50 per cent. of the roots of barley and ryehas no effect on the growth-rate of the root which is the sameas in the intact plant. In contrast the growth-rate of the shootdecreases as more roots are removed. When more than 50 per cent.of the roots are removed, root growth declines but not so rapidlyas that of the shoot. Similar results are obtained by the removalof lateral roots of tomato but root growth begins to declinewhen 40 per cent. of the lateral roots are removed. The uptake of potassium by barley plants with proportions ofthe root system excised is closely proportional to the dry-matterincrease when the nutrient supply is not limiting. In conditionsof low nutrition the potassium uptake is less than the dry-matterincrease.  相似文献   

13.
Summary A single-root technique is used to measure the rate of supply of potassium by diffusion to 1-cm portions of cylindrical roots of onion and leek plants growing in soils containing different levels of exchangeable potassium. The relation between uptake and characteristics of the plant and soil is interpreted on the basis of a diffusion supply model. Uptake is accounted for in terms of the geometry of the absorbing root surface, the physiologically controlled absorbing power of the root, and the diffusion through the soil. The different uptakes of potassium by roots of comparable absorbing power from different soils can be predicted with some success from calculations using the root dimensions and either diffusion coefficients of potassium in soil, derived from flux to a cation exchange resin paper, or the form of the potassium scorption isotherm relating the concentration of labile ions to those in the soil solution. It is calculated that diffusion through the soil has reduced potassium uptake by the roots to between 87 and 39 per cent of that expected for roots of the same absorbing power in a stirred culture solution at the same initial soil solution concentration.  相似文献   

14.
The root systems of wheat seedlings ( Triticum aestivum L. cv. SUN 9E) were pruned to two seminal roots. One of the roots was supplied with a suboptimal level of NO3, the other was deprived of N. Different levels of kinetin were supplied to the NO3-deprived roots. Root respiration and the increment of C and N in the roots were measured to determine the C/N ratio of the phloem sap feeding the NO3-deprived roots. Thus, it was possible to determine retranslocation of N from the shoots to the roots, as affected by the rate of kinetin application. It was calculated that the C/N ratio of phloem sap feeding roots growing without kinetin was ca 61. Kinetin application increased this ratio to ca 75, partly due to decreased translocation of N from the shoots back to the roots. Kinetin application decreased the proportion of N that was retranslocated to the roots after translocation to the shoots. Kinetin increased the rate of NO3 uptake per root and the rate of N incorporation in both roots and shoots by ca 60%, but had no effect on shoot dry matter production. In control plants at most 70% of the N incorporated in the NO3-fed roots could have been imported from the shoots, whilst kinetin application reduced this value to ca 40%. Thus root growth was not fully dependent on a supply of N via the phloem.
It is concluded that cytokinins affect the pattern of N-translocation in wheat plants by increasing incorporation of N in dry matter of the shoot, thus leaving less for export. Cytokinins did not play a major role in the regulation of shoot growth and the shoot to root ratio of the present plants.  相似文献   

15.
The objective of the present study was to investigate the influence of a reduced maize root-system size on root growth and nitrogen (N) uptake and flow within plants. Restriction of shoot-borne root growth caused a strong decrease in the absorption of root: shoot dry weight ratio and a reduction in shoot growth. On the other hand, compensatory growth and an increased N uptake rate in the remaining roots were observed. Despite the limited long-distance transport pathway in the mesocotyl with restriction of shoot-borne root growth, N cycling within these plants was higher than those in control plants, implying that xylem and phloem flow velocities via the mesocotyl were considerably higher than in plants with an intact root system. The removal of the seminal roots in addition to restricting shoot-borne root development did not affect whole plant growth and N uptake, except for the stronger compensatory growth of the primary roots. Our results suggest that an adequate N supply to maize plant is maintained by compensatory growth of the remaining roots, increased N uptake rate and flow velocities within the xylem and phloem via the mesocotyl, and reduction in the shoot growth rate.  相似文献   

16.
Coaldrake, P. D., Pearson, C. J. and Saffigna, P. G. 1987. Grainyield of Pennisetum americanum adjusts to nitrogen supply bychanging rates of grain filling and root uptake of nitrogen.–J.exp. Bot 38: 558–566. Pearl millet (Pennisetum americanum(L.)Leeke) was grown in containers at three constant rates of nitrogensupply or with the nitrogen supply increased from the lowestto the highest rate during panicle differentiation or at anthesis.We measured the rate and duration of nitrogen and dry weightgain by individual grains and nitrogen (15N) uptake by rootsand its distribution during grain filling. The total amountsof nitrogen and dry weight in all grain per plant at the lowestnitrogen supply were 8% and 14% respectively of plants growncontinuously at the highest rate of nitrogen. This was becauselow rates of nitrogen supply reduced grain number, mean grainweight and the nitrogen content of each individual grain. Theamino acid composition of the grain protein was affected onlyslightly by nitrogen treatments. Rates of grain growth were sensitive to nitrogen supply whereasthe duration of nitrogen movement to the grain was not. Nitrogenuptake by roots continued throughout grain filling; rates ofuptake per g root in plants given least nitrogen were one-halfthose of plants given the highest amount of nitrogen. A changefrom lowest to highest nitrogen supply at panicle differentiationincreased the uptake of nitrogen by roots and the rates of growthof individual grains, to the rates observed in plants whichhad been supplied continuously with the highest nitrogen. Whenthe change in supply was made at anthesis there was rapid movementof nitrogen into the plant but this was not translated intomore rapid grain growth. Key words: Nitrogen supply, Pennisetum americanum, grain yield, root uptake  相似文献   

17.
Summary The influence of nitrogen, phosphorus, and potassium on the reduction processes in the rhizosphere of rice grown in solution culture and of rice under lowland conditions was studied. In solution culture the redox potential in the complete nutrient solution was highest, indicating that fully nourished roots have the highest oxidizing power. When the supply of only one element was interrupted, the lack of potassium in the nutrient solution caused the greatest decline in redox potential. Redox potential was further decreased when, besides nitrogen, either phosphorus or potassium was discontinued. Simultaneous deficiencies of nitrogen and potassium lowered redox potential even more severely than did deficiency of all three elements. A long-term nitrogen fertilizer trial under lowland conditions, however, revealed that an abundant supply of nitrogen can decrease redox potential. Redox potential was higher in the soil near plants than in the soil away from plants. In solution culture, at low Eh levels, the increase in iron reducing power of the solution was correlated with the decrease in redox potential. The total number of bacteria and iron reducing bacteria increased almost parallel to the decrease in redox potential and increase in iron reducing power. These relationships show that the nutritional status of the rice plant essentially influences bacterial activity and, thus, oxidation-reduction conditions around the roots. Since sufficient potassium nutrition seems important in maintaining the oxidising power of rice roots, root growth in a potassium deficient soil with K application was compared with root growth without K application. Without potassium the fine lateral roots far from the root base showed black coloration due to ferrous sulfide, indicating a loss of oxidising power. With increasing potassium supply, this phenomenon disappeared and the iron content of the rice plants decreased. re]19751208  相似文献   

18.
Effects of vesicular-arbuscular mycorrhizal (VAM) infection and P on root respiration and dry matter allocation were studied in Plantago major L. ssp. pleiosperma (Pilger). By applying P, the relative growth rate of non-VAM controls and plants colonized by Glomus fasciculatum (Thaxt. sensu Gerdemann) Gerdemann and Trappe was increased to a similar extent (55-67%). However, leaf area ratio was increased more and net assimilation rate per unit leaf area was increased less by VAM infection than by P addition. The lower net assimilation rate could be related to a 20 to 30% higher root respiration rate per unit leaf area of VAM plants. Root respiration per unit dry matter and specific net uptake rates of N and P were increased more by VAM infection than by P addition. Neither the contribution of the alternative respiratory path nor the relative growth rate could account for the differences in root respiration rate between VAM and non-VAM plants. It was estimated that increased fungal respiration (87%) and ion uptake rate (13%) contributed to the higher respiratory activity of VAM roots of P. major.  相似文献   

19.
Ecosystem studies often study soil CO2 flux as a function of environmental factors, such as temperature, that affect respiration rates by changing the rate of utilization of carbon substrates. These studies tend not to include factors, such as photosynthesis, that affect the supply of carbon substrates to roots and root-associated processes. We examined the role of decreased carbohydrate source on soil CO2 flux and root respiration in an annually-burned grassland through manipulations of light intensity and removal of above ground biomass. We also quantified the contribution of root respiration to soil CO2 flux by measuring the respiration rates of excised roots. Two days of shading caused a 40% reduction in soil CO2 flux, while clipping was associated with a 19% reduction in soil CO2 flux. Both reductions were independent of soil and air temperature at the time of measurement. The relative decrease in soil CO2 flux observed in the clipping experiment was similar in magnitude to an observed decrease in root respiration per gram of root, linking decreased root activity and soil CO2 flux. From these experiments, we conclude that variation in factors that affect carbon availability to roots can be important determinants of soil CO2 flux and should be included explicitly in studies that measure or model soil CO2 flux. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
C. Engels 《Plant and Soil》1993,150(1):129-138
The effects of low root zone temperatures (RZT) on nutrient demand for growth and the capacity for nutrient acquisition were compared in maize and wheat growing in nutrient solution. To differentiate between direct temperature effects on nutrient uptake and indirect effects via an altered ratio of shoot to root growth, the plants were grown with their shoot base including apical shoot meristem either within the root zone (low SB), i.e. at RZT (12°, 16°, or 20°C) or, above the root zone (high SB), i.e. at uniformly high air temperature (20°/16° day/night).At low SB, suboptimal RZT reduced shoot growth more than root growth in wheat, whereas the opposite was true in maize. However, in both species the shoot growth rate per unit weight of roots, which was taken as parameter for the shoot demand for mineral nutrients per unit of roots, decreased at low RZT. Accordingly, the concentrations of potassium (K) and phosphorus (P) remained constant or even increased at low RZT despite reduced uptake rates.At high SB, shoot growth at low RZT in both species was higher than at low SB, whereas root growth was not increased. At high SB, the shoot demand per unit of roots was similar for all RZT in wheat, but increased with decreasing RZT in maize. Uptake rates of K at high SB and low RZT adapted to shoot demand within four days, and were even higher in maize than in wheat. Uptake rates of P adapted more slowly to shoot demand in both species, resulting in reduced concentrations of P in the shoot, particularly in maize.In conclusion, the two species did not markedly differ in their physiological capacity for uptake of K and P at low RZT. However, maize had a lower ability than wheat to adapt morphologically to suboptimal RZT by increasing biomass allocation towards the roots. This may cause a greater susceptibility of maize to nutrient deficiency, particularly if the temperatures around the shoot base are high and uptake is limited by nutrient transport processes in the soil towards the roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号