首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Production of endogenous pyrogen by human and rabbit blood monocytes in response to stimulation with agents of different origin was studied by inhibitory analysis under comparable conditions. Actinomycin D and cytochalasin B were applied. New evidence was obtained about an important role in the mechanism of activation of mononuclear phagocytes of initial interaction between a stimulating agent and the leukocyte membrane and of the biphasic process of endogenous pyrogen production.  相似文献   

2.
Summary Monocytes were separated from human peripheral blood and allowed to attach to culture flasks, after which the content and production of a number of cysteine proteinase inhibitors was assayed. These were: a low molecular weight (MW 12000) acid cysteine proteinase inhibitor (ACPI); a low-molecular weight inhibitor of the same size with neutral pH (NCPI), and -cysteine proteinase inhibitor with a molecular weight around 90000 (-CPI). Only NCPI was detectable in the cultures at the beginning of the incubation, and it was synthesized and released into the incubation mixture during the incubation, especially if the cells were stimulated with silica. The amount of NCPI contained in and released from the cells was drastically decreased by puromycin. Immunoblots after cell electrophoresis in polyacrylamide gel revealed only one molecular form of NCPI with a molecular weight of 12000 both in the cells and in the culture medium. No ACPI or -CPI could be detected.  相似文献   

3.
4.
Lysophospholipid regulation of mononuclear phagocytes   总被引:4,自引:0,他引:4  
Blood monocytes and tissue macrophages derived from monocyte differentiation in tissues are central elements of innate immunity in host defense against numerous pathogens and other challenges. These mononuclear phagocytes also participate in wound healing and normal tissue remodeling in development and growth. Pathological perversion of their physiological roles leads to participation of mononuclear phagocytes in fibrosing diseases including granulomatous disorders, chronic inflammation typical of arthritis, and atherosclerosis. Lysophospholipids, including lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P), are platelet-derived lipid growth factors considered to participate in leukocyte differentiation and activation. This section summarizes our recent observations of the effects of lysophospholipids on mononuclear phagocytes.  相似文献   

5.
IL-4 inhibits superoxide production by human mononuclear phagocytes   总被引:8,自引:0,他引:8  
The activation of mononuclear phagocytes (M phi) and their generation of oxidative products is influenced by various cytokines as well as by normal maturational changes. We examined the effects of IL-4 on superoxide (O2-) production (cytochrome c reduction) by cultured M phi and the modulation of these effects by IFN-gamma and IL-1. Incubation of IL-4 (200 U/ml) with M phi inhibited M phi PMA (100 ng/ml)-stimulated O2-. production by 23% at 24 h, 34% at 48 h, and 70 to 85% at 72 to 96 h. IL-4 similarly inhibited M phi O2-. production in response to zymosan. IL-4 did not affect M phi viability, adherence to microtiter plates, or ability to phagocytose boiled yeast. In comparison with M phi, neutrophil O2-. production was not inhibited after 4 to 20 h incubation with IL-4. When IL-4 was washed out as early as 1 h after the initiation of M phi culture, significant inhibition of O2-. production was observed 4 days later. Sequential addition of either IL-4 or IFN-gamma to cultures demonstrated reciprocal cytokine effects on M phi; IL-4 partially inhibited O2-. production by M phi previously treated with rIFN-gamma whereas rIFN-gamma partially augmented O2-. production by M phi previously treated with IL-4. Because IL-4 has been reported to inhibit IL-1 production, add-back experiments were performed; addition of IL-1 only partly reconstituted O2-. production in IL-4-treated cells. Further characterization showed that although M phi protein synthesis was enhanced by both rIFN-gamma and IL-4 treatment, acid phosphatase, a marker of maturation to the macrophage phenotype, was markedly increased at an earlier time point in IL-4-treated M phi, and correlated with a decline in O2-. production. The ability of IL-4 to suppress M phi O2-. production implicates IL-4 as an important regulator of this aspect of the inflammatory response.  相似文献   

6.
7.
Endogenous peroxidase activity in mononuclear phagocytes   总被引:1,自引:0,他引:1  
The diaminobenzidine (DAB) technique has been used to visualize the subcellular localization of peroxidatic enzymes in mononuclear phagocytes. The latter cells are part of the mononuclear phagocyte system (MPS), which includes the monocytes in the bone marrow and blood, their precursors in the bone marrow, and the resident macrophages in the tissues. The DAB cytochemistry has revealed distinct subcellular distribution patterns of peroxidase in the mononuclear phagocytes. Thus the technique facilitates the identification of the various phagocyte types: Promonocytes contain peroxidase reaction in the nuclear envelope, endoplasmic reticulum, Golgi apparatus, and cytoplasmic granules. Monocytes exhibit the reaction product only in cytoplasmic granules. Most resident macrophages show the activity only in the nuclear envelope and endoplasmic reticulum. Furthermore, new phagocyte types have been detected based on the peroxidase cytochemistry. Intermediate cells between monocytes and resident macrophages contain reaction product in the nuclear envelope, endoplasmic reticulum and cytoplasmic granules. The resident macrophages can be divided into two subtypes. Most of them exhibit the pattern noted above. Some, however, are totally devoid of peroxidase reaction. Most studies on peroxidase cytochemistry of monocytes and macrophages agree that the peroxidase patterns reflect differentiation or maturation stages of one cell line. Some authors, however, still interpret the patterns as invariable characteristics of separate cell lines. As to the function of the peroxidase in phagocytes, the cytochemical findings imply that two different peroxidatic enzymes exist in the latter cells: one peroxidase is synthesized in the endoplasmic reticulum of promonocytes and transported to granules via the Golgi apparatus. The synthesis ceases when the promonocyte matures to the monocyte. Upon phagocytosis the peroxidase is discharged into the phagosomes. Biochemical and functional studies have indicated that this peroxidase (myeloperoxidase) is part of a microbicidal system operating in host defence mechanisms. The other enzyme with peroxidatic activity is confined to the nuclear envelope and endoplasmic reticulum of resident macrophages in-situ and of monocytes at early stages in culture. As suggested by the subcellular distribution, the inhibition by peroxidase blockers, and the localization during phagocytosis studies, the latter peroxidase is functionally different from the myeloperoxidase.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
9.
10.
These studies demonstrate the IgE-dependent production of IL-1 beta and TNF-alpha by circulating blood monocytes. IL-1 beta production was demonstrated biologically as the stimulation of proliferation of the cloned IL-1-dependent murine T cell line D10.G4.1 in the presence of a submitogenic concentration of PHA. In a representative experiment, 3H-thymidine uptake increased from 57826 cpm in the presence of supernatants obtained from unstimulated cells to 200774 cpm with supernatants from monocytes stimulated by IgE/alpha IgE immune complexes. By ELISA, IgE complexes increased IL-1 beta production from 0.54 +/- 0.06 ng (per 10(6) monocytes) to 2.60 +/- 0.62 ng (p less than 0.01; mean of eight experiments) and TNF-alpha production from 0.17 +/- 0.10 ng to 3.00 +/- 0.54 ng (p less than 0.01; mean of four experiments). No IL-1 alpha secretion was observed. RNA hybridization analysis demonstrated that IL-1 beta production represented de novo synthesis of the cytokine. Stimulated RNA production was observed after a minimal 1/2-h incubation and was maximal at 2 h. The IgE-dependent secretion of these pro-inflammatory cytokines by mononuclear phagocytic cells may contribute to the inflammation characteristic of allergic responses.  相似文献   

11.
Release of IL-1 from mononuclear phagocytes   总被引:15,自引:0,他引:15  
IL-1 alpha and -beta are 31- and 34-kDa cytokines produced by stimulated monocytes, macrophages, and a variety of other cells. These proteins are thought to function primarily as intercellular mediators and can be detected in plasma and the supernatants of cultured cells; however, IL-1 alpha and -beta contain no identifiable signal peptides and are not secreted via the classical secretory pathway. To understand the mechanism of IL-1 release, we have analyzed IL-1 production by LPS-stimulated mononuclear cells. IL-1 was quantified by bioassay, immunoprecipitation, and ELISA. Of these techniques, only immunoprecipitation permitted the quantitative detection of intracellular pro-IL-1. Both the full-length pro-forms and proteolytically processed mature forms of IL-1 were detected in culture supernatants; however, for macrophages the released material represented less than 5% of the total IL-1 alpha and -beta synthesized. Freshly isolated human monocytes released a higher fraction of their total IL-1 (up to 22%): however, monocytes cultured in vitro for 24 h showed very little fractional release, similar to macrophages. Nonspecific release of intracellular contents was determined by measurement of release of lactate dehydrogenase activity and was found to parallel IL-1 release. In fact the higher release of IL-1 from freshly cultured human monocytes correlated also with an increase in the release of lactate dehydrogenase. We conclude that, in cultured LPS-stimulated monocytic cells, IL-1 is not released via a novel secretory pathway, but exits the cell via a nonspecific pathway, most likely as a consequence of cellular injury.  相似文献   

12.
13.
Platelet-activating factor (PAF) is a potent phospholipid mediator that may participate in inflammatory responses by virtue of its ability to activate platelets, leukocytes, and vascular cells. We examined the synthesis and release of PAF by human peripheral blood monocytes (PBM) isolated by countercurrent elutriation. PAF was produced after stimulation by calcium ionophore A23187 (IoA), opsonized zymosan (OpsZ), and PMA with a relative order of potency IoA much greater than OpsZ greater than PMA. The portion of PAF subsequently released from the cell was dependent on the specific agonist, the time of incubation, and the presence of albumin. Under optimal conditions, PBM released 67, 49 and 32% of the total PAF produced in response to IoA, OpsZ, and PMA, respectively. Changes in PAF metabolism were observed in PBM that were examined after short term adherence or differentiation into macrophages. Adherent PBM accumulated and released less PAF than suspended monocytes, and monocyte-derived macrophages produced less PAF than the parent PBM. The ability of monocytes to release significant amounts of newly synthesized PAF from the cell is unusual among human cell types, which in general retain the vast majority of the lipid, and may be of particular pathophysiologic importance.  相似文献   

14.
15.
Vaccination therapy of AD animal models and patients strongly suggests an active role of brain mononuclear phagocytes in immune-mediated clearance of amyloid-beta peptides (Abeta) in brain. Although Abeta uptake by macrophages can be regulated by pro- and anti-inflammatory cytokines, their effects on macrophage-mediated Abeta degradation are poorly understood. To better understand this mechanism of degradation, we examined whether pro- and anti-inflammatory cytokines affect the degradation of Abeta using primary cultured human monocyte-derived macrophages (MDM) and microglia using pulse-chase analysis of fibrillar and oligomer (125)I-Abeta40 and Abeta42. Initial uptake of fibrillar Abeta40 and Abeta42 was 40% and its degradation was saturated by 120 h in both MDM and microglia, compared with an initial uptake of oligomeric Abeta less than 0.5% and saturation of degradation within 24 h. IFN-gamma increased the intracellular retention of fibrillar Abeta40 and Abeta42 by inhibiting degradation, whereas IL-4, IL-10, and TGF-beta1, but not IL-13 and IL-27, enhanced degradation. Fibrillar Abeta degradation in MDM is sensitive to lysosomal and insulin degrading enzyme inhibitors but insensitive to proteasomal and neprilysin inhibitors. IFN-gamma and TNF-alpha directly reduced the expression of insulin degrading enzyme and chaperone molecules (heat shock protein 70 and heat shock cognate protein 70), which are involved in refolding of aggregated proteins. Coculture of MDM with activated, but not naive T cells, suppressed Abeta degradation in MDM, which was partially blocked by a combination of neutralizing Abs against proinflammatory cytokines. These data suggest that proinflammatory cytokines suppress Abeta degradation in MDM, whereas select anti-inflammatory and regulatory cytokines antagonize these effects.  相似文献   

16.
A type IV collagenolytic metalloproteinase secreted by human monocytes/macrophages has been isolated and characterized. Monocytes isolated from peripheral blood and cultured in vitro exhibited a high type IV collagenolytic activity during the first and second day, but such activity declined markedly over subsequent days. Type IV collagenolytic activity was also transiently elaborated by macrophages isolated from (a) bronchioalveolar lavage of patients with pulmonary sarcoidosis, (b) primary human colostrum, and (c) peritoneal lavage of a patient with peritonitis. In contrast, macrophages isolated from the bronchioalveolar lavage of normal individuals, or from noninflammatory peritoneal fluids, failed to exhibit type IV collagenolytic activity. A type IV collagenolytic neutral proteinase was purified from macrophages isolated from inflammatory peritoneal fluid. The proteinase has a mass of 67 kDa on gel electrophoresis and is not altered in its migration under reducing conditions. It produces a characteristic 1/4-3/4 cleavage of type IV collagen, and its activity is abolished by treatment with EDTA but not phenylmethanesulfonyl fluoride. The isoelectric pH of the proteinase is 5.2 as judged by two-dimensional gel electrophoresis. The amino acid composition of the proteinase was notable for a high content of serine, glutamic acid, glycine, and alanine and no detectable hydroxyproline, cysteine, or methionine residues. The carbohydrate content of the proteinase was 11.2%, and galactose was the most abundant monosaccharide (8.7%) released following acid hydrolysis, followed by glucose (1.3%), mannose (1.2%), and trace amounts of fucose and galactosamine. Such a type IV collagenolytic protease may play an important role during the traversal of the vascular basement membrane by extravasating monocytes. The biochemical characteristics and biologic function of the macrophage proteinase may be similar or identical to the type IV collagenolytic proteinase identified in metastatic tumor cells.  相似文献   

17.
High risk human papillomavirus types 16 (HPV16) and 18 (HPV18) can cause cervical cancer. Efficient infection by HPV16 and HPV18 pseudovirions requires interactions of particles with cell-surface receptor heparan sulfate oligosaccharide. To understand the virus-receptor interactions for HPV infection, we determined the crystal structures of HPV16 and HPV18 capsids bound to the oligosaccharide receptor fragment using oligomeric heparin. The HPV-heparin structures revealed multiple binding sites for the highly negatively charged oligosaccharide fragment on the capsid surface, which is different from previously reported virus-receptor interactions in which a single type of binding pocket is present for a particular receptor. We performed structure-guided mutagenesis to generate mutant viruses, and cell binding and infectivity assays demonstrated the functional role of viral residues involved in heparin binding. These results provide a basis for understanding virus-heparan sulfate receptor interactions critical for HPV infection and for the potential development of inhibitors against HPV infection.  相似文献   

18.
19.
Expression of stress proteins in human mononuclear phagocytes   总被引:3,自引:0,他引:3  
The heat shock/stress response is characterized by the induction of several highly evolutionarily conserved proteins during thermal stress, chemical stress, or glucose starvation. It has recently been recognized that members of the stress protein family are synthesized constitutively and subserve functions that are critical to protein folding during intracellular transport. In this study we examined the expression of heat shock/stress proteins in human mononuclear phagocytes, cells dependent on intracellular transport for Ag processing, Ag presentation, generation of reactive oxygen intermediates, and secretion of proinflammatory and antiinflammatory polypeptides. The results indicate that there are distinct patterns in expression of individual members of the highly homologous SP70, SP90, and ubiquitin gene families during different stress states. There is a marked increase in expression of the heat-inducible form of SP70 and SP90 in human monocytes during heat shock. Expression of GRP 78/BiP and GRP 94 increases predominantly during glucose starvation but also increases during heat shock. Ubiquitin gene expression increases during both heat shock and glucose starvation. There is no change in synthesis of the constitutive form of SP 70 or of the ubiquitin activating enzyme E1 during heat shock or glucose starvation. Synthesis of the constitutive form of SP 70 and novel SP 90-like polypeptides increase during endotoxin-mediated inflammatory activation. One intracellular transport process of the mononuclear phagocyte, secretion of specific proinflammatory and antiinflammatory polypeptides, is affected by glucose starvation and by heat shock.  相似文献   

20.
Summary A double staining method is presented which allows the enzyme histochemical differentiation between osteoclasts (mono- and multinucleated forms) and mononuclear phagocytes (macrophages, multinucleated inflammatory giant cells). Osteoclasts are characterized by a strong acid phosphatase activity whereas macrophages and inflammatory giant cells show a variable non-specific esterase activity. The described method may be useful in studying the osteoclast origin and the extraosseus distribution of these cells.Supported by Deutsche Forschungsgemeinschaft, SFB 244,A1  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号