首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary This paper discusses the interactions among prefire shrub abundance, soil moisture, and plant and animal species on postfire seedling establishment in mixed chparral in southern California. Postfire germination and survival of seedlings in a stand dominated by a facultative seeder (Adenostoma fasciculatum) and by an obligate seeder (Ceanothus greggii) were monitored for 2 years. Relative to prefire abundance, germination of C. greggii was higher than that of A. fasciculatum. Survival during the first year was also higher in C. greggii than in A. fasciculatum. During the second year, however, mortality of C. greggii was greater than that of A. fasciculatum, mostly due to a psyllid infection. Germination of A. fasciculatum was negatively related to prefire shrub abundance. C. greggii germination was not associated with prefire shrub abundance. Seedling mortality of both species was very strongly related to the depletion of soil moisture the first few months after germination. A. fasciculatum was more sensitive than C. greggii to the drying of the soil, especially in the upper levels. C. greggii seedlings had longer roots, greater root/shoot biomass ratios, higher water potentials, and a later peak in seasonal growth activity compared to A. fasciculatum. Herbs promoted greater survival of A. fasciculatum. Our results indicate that the obligate seeder species, C. greggii, is better adapted to establish seedling in chaparral by producing greater relative germination and greater seedling survival than the facultative seeder species A. fasciculatum. The greater adaptability of C. greggii to the physical environment is counteracted by interspecific interference by plant and animal interactions which tend to favor A. fasciculatum over C. greggii.  相似文献   

2.
The composition and density of soil seed banks beneath co-occurring Adenostoma fasciculatum and Ceanothus greggii shrubs from three chaparral stands last burned 9, 35 and 85 years before 1986 were investigated. The overall density of seeds in the soil, as estimated by germinations under greenhouse conditions, increased with time since fire (ca. 8000 to 25000/m2). However, this increase was due entirely to the accumulation of A. fasciculatum seed in the soil (ca. 2000 to 21000/m2). In contrast, the density of C. greggii seed was different in each of the three stands, but was not correlated with time since fire: maximum densities were recorded from the 35 year old stand (ca. 2000/m2).A total of 31 taxa germinated and 17 occurred in sufficient numbers to be analyzed statistically. Germinable seed densities of three herb species were not influenced by soil source (beneath A. fasciculatum or C. greggii), time since fire, or the direct effects of a controlled fire treatment. Germinable seed densities of a further nine species were significantly influenced by the elapsed time since stands last burned. The densities of four decreased and five increased. Four of the species that increased in seed density over the three stands were annuals, suggesting that the chaparral sub-canopy habitat is not as unfavorable for annuals as is often assumed. The fire treatment decreased germinable seed densities of four annual species by 40–70%, but increased the germinable seed densities of the shrubs A. fasciculatum and C. greggii, and the annual Phacelia brachyloba. Our results indicate that seeds of A. fasciculatum will increase in the soil bank for at least 85 years after fire in chaparral where it is dominant. In contrast, seed reserves of C. greggii appear to be influenced primarily by site-specific patterns of seed production and by the intensity of post-dispersal seed predation.  相似文献   

3.
Water use patterns of two California chaparral shrub species, chamise (Adenostoma fasciculatum H. and A.) and Stanford manzanita (Arctostaphylos stanfordiana Parry), were compared during summer drought. Observations of diurnal and seasonal courses of shoot water potential, leaf conductance and transpiration revealed that chamise was more conservative in water use than manzanita. Evidence obtained cast doubt on a hypothesis previously proposed to explain an anomalous pattern of shoot water potential in chamise.  相似文献   

4.
The occurrence of mature individuals of Pseudotsuga menziesii in stands of Arctostaphylos species mark the initial stages of mixed evergreen forest invasion into chaparral in central coastal California. We planted two cohorts of P. menziesii seeds at three sites under stands of two Arctostaphylos species and Adenostoma fasciculatum in order to determine whether first-year seedling emergence and survival, particularly during the regular summer drought, underlie the spatial distribution of mature trees observed in chaparral. Regardless of the chaparral species they were planted under, P. menziesii seeds that were not protected from vertebrate predation displayed very little emergence and no survival. In contrast, emergence of P. menziesii that were protected from vertebrate predators was much higher but still did not significantly differ among the three chaparral species. However, survival of protected seedlings under Arctostaphylos glandulosa was much greater than under A. fasciculatum, with intermediate survival under Arctostaphylos montana. While mortality of protected seedlings due to insect herbivory, fungal infection, and disturbance displayed no consistent patterns, summer drought mortality appeared to drive the patterns of survival of P. menziesii under the different chaparral species. These emergence, mortality, and survival data suggest that spatial patterns of P. menziesii recruitment in chaparral are driven by first-year summer drought seedling mortality, but only in years when seeds and seedlings are released from vertebrate predation pressure. Because the first-year drought mortality and survival patterns of P. menziesii seedlings differed strongly depending on the chaparral species, we examined the additional hypothesis that these patterns are associated with differences in the availability of soil moisture under different chaparral species. Both higher survival and lower drought mortality of P. menziesii seedlings were associated with higher soil water potential under Arctostaphylos stands during the summer drought, especially in the subsurface soil. The data suggest that Arctostaphylos stands, particularly stands of A. glandulosa, ameliorate xeric summer conditions to a degree that facilitates first-year establishment of P. menziesii and strongly influences spatial distribution of mature trees. Received: 18 September 1998 / Accepted: 23 December 1998  相似文献   

5.
There are 10 genes in the Arabidopsis genome that contain a domain described in the Pfam database as domain of unknown function 579 (DUF579). Although DUF579 is widely distributed in eukaryotic species, there is no direct experimental evidence to assign a function to it. Five of the 10 Arabidopsis DUF579 family members are co‐expressed with marker genes for secondary cell wall formation. Plants in which two closely related members of the DUF579 family have been disrupted by T‐DNA insertions contain less xylose in the secondary cell wall as a result of decreased xylan content, and exhibit mildly distorted xylem vessels. Consequently we have named these genes IRREGULAR XYLEM 15 (IRX15) and IRX15L. These mutant plants exhibit many features of previously described xylan synthesis mutants, such as the replacement of glucuronic acid side chains with methylglucuronic acid side chains. By contrast, immunostaining of xylan and transmission electron microscopy (TEM) reveals that the walls of these irx15 irx15l double mutants are disorganized, compared with the wild type or other previously described xylan mutants, and exhibit dramatic increases in the quantity of sugar released in cell wall digestibility assays. Furthermore, localization studies using fluorescent fusion proteins label both the Golgi and also an unknown intracellular compartment. These data are consistent with irx15 and irx15l defining a new class of genes involved in xylan biosynthesis. How these genes function during xylan biosynthesis and deposition is discussed.  相似文献   

6.
Summary Resprouting is the main regeneration mechanism after fire in Mediterranean-type ecosystems. Herbivores play an important role in controlling postfire seedling establishment, but their influence on regeneration by resprouting is less well known. To study the effects of fire intensity on resprouting of Adenostoma fasciculatum in southern California chaparral, and its interaction with herbivory, we conducted an experimental burn at three levels of fire intensity. We found that increasing fire intensity increased plant mortality, reduced the number of resprouts per plant, and delayed the time of resprouting. Herbivory increased with fire intensity, and was related to the time of resprouting. Plants resprouting later in the season and out of synchrony with the main flush were attacked more readily by herbivores. Post-resprouting mortality also increased with fire intensity and was significantly associated with herbivory in the higher fire intensity plots. Fire intensity effects on chaparral regeneration by resprouting may be farreaching through effects on the population structure, resprout production, and growth of Adenostoma fasciculatum.  相似文献   

7.
Summary The seasonal course of water relations was measured in the field in Adenostoma fasciculatum, Quercus dumosa, Ceanothus greggii, and Arctostaphylos glauca, four prominent members of the southern California chaparral vegetation. Ceanothus greggii and A. glauca developed similar seasonal patterns of minimum leaf water potentials, as estimated by xylem pressure measurements, which were much less negative than A. fasciculatum and Q. dumosa growing in close proximity on the same pole-facing slope site. Adenostoma fasciculatum on an adjacent equator-facing slope developed more negative water potentials than did A. fasciculatum on the pole-facing slope.Leaf conductance differed between species, and by leaf age class and slope exposure within a species. The greatest differences were measured between leaf age classes in A. fasciculatum on the pole-facing slope, with new leaves showing the greatest conductances early in the season. The same trend was measured in A. fasciculatum on the equator-facing slope, but the differences were less between leaf age classes and diminished earlier in the season than in A. fasciculatum on the pole-facing slope. The analysis of daily hysteresis in the leaf conductance-water potential relation suggests that early in the season when water is available, stomatal behavior is simultaneously governed by a complex of environmental factors, while late in the season stomatal behavior becomes increasingly dominated by tissue water status.  相似文献   

8.
An amylase was purified from the culture filtrate ofTermitomyces clypeatus by ammonium sulphate precipitation, DEAE-Sephadex chromatography and gel filtration on Bio-Gel P-200 column. The electrophoretically homogeneous preparation also exhibited hydrolytic activity (in a decreasing order) on amylose, xylan, amylopectin, glycogen, arabinogalactan and arabinoxylan. The enzyme had characteristically endo-hydrolytic activity on all the substrates tested and no xylose, glucose, arabinose or glucuronic acid could be detected even after prolonged enzymatic digestion of the polysaccharides. Interestingly the enzyme had similar pH optima (5.5), temperature optima (55°C), pH stability (pH 3–10) and thermal denaturation kinetics when acted on both starch and xylan (larch wood) .K m values were found to be 2.63 mg/ml for amylase and 6.25 mg/ml for xylanase activity. Hill’s plot also indicated that the enzyme contained a single active site for both activities. Hg2+ was found to be most potent inhibitor. Ca2+, a common activator for amylase activity, appeared to be an inhibitor for this enzyme. Thus it appeared that the enzyme had multisubstrate specificity acting as α-amylase on starch and also acting as xylanase on side chain oligosaccharides of xylan containing α-linked sugars.  相似文献   

9.
The flavonoid and phenolic acid pattern of Adenostoma fasciculatum and A. sparsifolium, two dominant, endemic species of the Californian chaparral, was analysed qualitatively and quantitatively. Adenostoma sparsifolium was found to secrete large amounts of lipophilic, unusually substituted flavonoids onto the leaf surface; A. fasciculatum produces five hydrophilic flavonol 3-O-glycosides of kaempferol, quercetin and isorhamnetin. The phenolic acid pattern differed quantitatively but not qualitatively between the species. The amounts of phenolic acids that could be detected within the leaves, leaf litter and soil beneath the shrubs seem too small to explain allelopathic effects as the main reason for the dominance of the two species.  相似文献   

10.
Seasonal changes of fine root density in the Southern Californian chaparral   总被引:1,自引:0,他引:1  
Summary Fine root extractions from soil cores of a south facing slope in the Southern Californian chaparral were used to study the dynamics of feeder root growth in a summer-dry area. The studies were concentrated on the root systems of Adenostoma fasciculatum, Arctostaphylos glauca, Ceanothus greggii, and Rhus ovata. The total fine root biomass of Adenostoma fasciculatum increased from 0.6 g dm-3 in early spring to 3.6 g dm-3 in late summer. Considering the specific soil conditions at this site and earlier gained information on fine root distribution with depth, the value of 3.6 g dm-3 converts to 1.58 kg m-2 of ground shaded by the shrub canopy. The observed seasonal biomass increase is mainly due to the accumulation of dead root material in the soil when low soil moisture contents presumably inhibited decomposition processes. The total length of living fine roots also increased during the season, e.g. from 0.8 m dm-3 to more than 5 m dm-3 (0.35 km m-2 to 2.2 km m-2) in A. fasciculatum. Unusual summer rains in the research year stimulated vigorous fine root growth at a time when the normally low soil moisture would prohibit further fine root growth. The average fine root diameters and total lengths of fine roots beneath one square meter of ground surface allowed an estimate of root area indices (RAI) analogous to the leaf area indices (LAI). The data provide evidence for a significant fine root turnover in the chaparral.  相似文献   

11.
Root systems of chaparral shrubs   总被引:3,自引:2,他引:3  
Summary Root systems of chaparral shrubs were excavated from a 70 m2 plot of a mixed chaparral stand located on a north-facing slope in San Diego County (32°54 N; 900 m above sea level). The main shrub species present were Adenostoma fasciculatum, Arctostaphylos pungens, Ceanothus greggii, Erigonum fasciculatum, and Haplopappus pinifolius. Shrubs were wired into their positions, and the soil was washed out beneath them down to a depth of approximately 60 cm, where impenetrable granite impeded further washing and root growth was severely restricted. Spacing and interweaving of root systems were recorded by an in-scale drawing. The roots were harvested in accordance to their depths, separated into diameter size classes for each species, and their dry weights measured. Roots of shrubs were largely confined to the upper soil levels. The roots of Eriogonum fasciculatum were concentrated in the upper soil layer. Roots of Adenostoma fasciculatum tended to be more superficial than those from Ceanothus greggii. It is hypothesized that the shallow soil at the excavation site impeded a clear depth zonation of the different root systems. The average dry weight root:shoot ratio was 0.6, ranging for the individual shrubs from 0.8 to 0.4. The root area always exceeded the shoot area, with the corresponding ratios ranging from 6 for Arctostaphylos pungens to 40 for Haplopappus pinifolius. The fine root density of 64 g dry weight per m2 under the canopy was significantly higher than in the unshaded area. However, the corresponding value of 45 g dry weight per m2 for the open ground is still high enough to make the establishment of other shrubs difficult.  相似文献   

12.
In the dilute acid pretreatment of lignocellulose, xylose substituted with α-1,2-methylglucuronate is released as methylglucuronoxylose (MeGAX), which cannot be fermented by biocatalysts currently used to produce biofuels and chemicals. Enterobacter asburiae JDR-1, isolated from colonized wood, efficiently fermented both MeGAX and xylose in acid hydrolysates of sweetgum xylan. Deletion of pflB and als genes in this bacterium modified the native mixed acid fermentation pathways to one for homolactate production. The resulting strain, Enterobacter asburiae L1, completely utilized both xylose and MeGAX in a dilute acid hydrolysate of sweetgum xylan and produced lactate approximating 100% of the theoretical maximum yield. Enterobacter asburiae JDR-1 offers a platform to develop efficient biocatalysts for production of fuels and chemicals from hemicellulose hydrolysates of hardwood and agricultural residues.  相似文献   

13.
Xylan comprises up to one‐third of plant cell walls, and it influences the properties and processing of biomass. Glucuronoxylan in Arabidopsis is characterized by a linear β‐(1,4)‐linked backbone of xylosyl residues substituted by glucuronic acid and 4‐O‐methylglucuronic acid (collectively termed [Me]GlcA). The role of these substitutions remains unclear. GUX1 (glucuronic acid substitution of xylan 1) and GUX2, recently identified as glucuronyltransferases, are both required for substitution of the xylan backbone with [Me]GlcA. Here, we demonstrate clear differences in the pattern of [Me]GlcA substitution generated by each of these glucuronyltransferases. GUX1 decorates xylan with a preference for addition of [Me]GlcA at evenly spaced xylosyl residues. Intervals of eight or 10 residues dominate, but larger intervals are observed. GUX2, in contrast, produces more tightly clustered decorations with most frequent spacing of five, six or seven xylosyl residues, with no preference for odd or even spacing. Moreover, each of these GUX transferases substitutes a distinct domain of secondary cell wall xylan, which we call the major and minor domains. These major and minor xylan domains were not separable from each other by size or charge, a finding that suggests that they are tightly associated. The presence of both differently [Me]GlcA decorated domains may produce a xylan molecule that is heterogeneous in its properties. We speculate that the major and minor domains of xylan may be specialised, such as for interaction with cellulose or lignin. These findings have substantial implications for our understanding of xylan synthesis and structure, and for models of the molecular architecture of the lignocellulosic matrix of plant cell walls.  相似文献   

14.
Olsson AM  Bjurhager I  Gerber L  Sundberg B  Salmén L 《Planta》2011,233(6):1277-1286
Polarisation Fourier transform infra-red (FTIR) microspectroscopy was used to characterize the organisation and orientation of wood polymers in normal wood and tension wood from hybrid aspen (Populus tremula × Populus tremuloides). It is shown that both xylan and lignin in normal wood are highly oriented in the fibre wall. Their orientation is parallel with the cellulose microfibrils and hence in the direction of the fibre axis. In tension wood a similar orientation of lignin was found. However, in tension wood absorption peaks normally assigned to xylan exhibited a 90° change in the orientation dependence of the vibrations as compared with normal wood. The molecular origin of these vibrations are not known, but they are abundant enough to mask the orientation dependence of the xylan signal from the S2 layer in tension wood and could possibly come from other pentose sugars present in, or associated with, the gelatinous layer of tension wood fibres.  相似文献   

15.
Summary Diverse populations of ephemeral herbs form the dominant element of community biomass in the first year of growth following a fall burn in chamise chaparral. Ephemeral herbs constituted 337 kg ha-1 of above-ground biomass after the first season of post-fire growth. This was 64% of the total, with the majority of the remaining biomass being in resprouts of Adenostoma fasciculatum. Ephemeral herb biomass following fire in other stands was as high as 1117 kg ha-1. Nutrient contents of ephemeral herbs were 6.68 kg N ha-1, 0.71 kg P ha-1, 10.05 kg K ha-1, 4.75 kg Ca ha-1 and 0.91 kg Mg ha-1. These were 55, 54, 81, 71 and 70% respectively of the above-ground totals. In the second year following fire, the total herb biomass was 40% higher, but the nutrient pool in above-ground biomass of these herbs was only 30–60% of what it had been the first year. Resprouts of A. fasciculatum and short-lived wood shrubs constituted more than 90% of above-ground biomass at this stage of postfire succession.  相似文献   

16.
Summary A new anionic extracellular polysaccharide (AEPS) with high molecular mass (1700 kD) was produced by an isolate tentatively identified as Enterobacter cloacae isolated from an acid hydrolysate of wood. The sugar composition of this AEPS is glucose, galactose, glucuronic acid, and fucose (5:4:4:11). Under specified conditions this AEPS is rheologically comparable to xanthan.  相似文献   

17.
Tissue water relations of four co-occurring chaparral shrubs   总被引:8,自引:0,他引:8  
Summary Chaparral shrubs of California have a suite of morphological and physiological adaptations to withstand the prolonged summer droughts of a mediterranean climate. Not all species of chaparral have the same rooting depth and there is some evidence that those with shallow roots have tissue that is most tolerant to water stress. We tested this notion by comparing the tissue water relations of four co-occurring chaparral shrubs: Quercus durata, Heteromeles arbutifolia, Adenostoma fasciculatum, and Rhamnus californica. We used a pressure-volume technique and a dew-point hygrometer to metsure seasonal changes in osmotic potential when plant tissue was fully hydrated and osmotic potential at predawn, midday, and the turgor loss point. We also calculated seasonal changes in the minimum daily turgor potential, saturated weight/dry weight ratio of leaf tissue, and the bulk modulus of elasticity. We had information on the seasonal water use patterns and apparent rooting depths of these same four shrubs from a previous study (Davis and Mooney 1986). All evidence indicated that Rhamnus had shallow roots and Quercus deep roots. Our results indicated that the tissue water relations of our four co-occurring chaparral shrubs were not alike. Even though Rhamnus had shallow roots, it had the least xerophytic tissue. Seasonal osmotic potential and saturated weight/dry weight ratios were relatively high and bulk modulus of elasticity and minimum daily turgor potentials were low. Furthermore, even though Quercus had deep roots and experienced no seasonal water stress at our study site, its tissue water relations indicated relatively high tolerance to water stress. We conclude that seasonal drought tolerance of stem and leaf tissue of co-occurring chaparral shrubs does not necessarily correspond to rooting depth, to soil moisture resources available to the shrub, or to the degree of seasonal water stress experienced by the shrub.  相似文献   

18.
We investigated the hypothesis that maritime climatic factors associated with summer fog and low cloud stratus (summer marine layer) help explain the compositional diversity of chaparral in the coast range of central California. We randomly sampled chaparral species composition in 0.1‐hectare plots along a coast‐to‐interior gradient. For each plot, climatic variables were estimated and soil samples were analyzed. We used Cluster Analysis and Principle Components Analysis to objectively categorize plots into climate zone groups. Climate variables, vegetation composition and various diversity measures were compared across climate zone groups using ANOVA and nonmetric multidimensional scaling. Differences in climatic variables that relate to summer moisture availability and winter freeze events explained the majority of variance in measured conditions and coincided with three chaparral assemblages: maritime (lowland coast where the summer marine layer was strongest), transition (upland coast with mild summer marine layer influence and greater winter precipitation), and interior sites that generally lacked late summer water availability from either source. Species turnover (β‐diversity) was higher among maritime and transition sites than interior sites. Coastal chaparral differs from interior chaparral in having a higher obligate seeder to facultative seeder (resprouter) ratio and by being dominated by various Arctostaphylos species as opposed to the interior dominant, Adenostoma fasciculatum. The maritime climate influence along the California central coast is associated with patterns of woody plant composition and β‐diversity among sites. Summer fog in coastal lowlands and higher winter precipitation in coastal uplands combine to lower late dry season water deficit in coastal chaparral and contribute to longer fire return intervals that are associated with obligate seeders and more local endemism. Soil nutrients are comparatively less important in explaining plant community composition, but heterogeneous azonal soils contribute to local endemism and promote isolated chaparral patches within the dominant forest vegetation along the coast.  相似文献   

19.
Water use patterns of four co-occurring chaparral shrubs   总被引:9,自引:0,他引:9  
Summary Mixed stands of chaparral in California usually contain several species of shrubs growing close to each other so that aerial branches and subterranean roots overlap. There is some evidence that roots are stratified relative to depth. It may be that root stratification promotes sharing of soil moisture resources. We examined this possibility by comparing seasonal water use patterns in a mixed stand of chaparral dominated by four species of shrubs: Quercus durata, Heteromeles arbutifolia, Adenostoma fasciculatum, and Rhamnus californica. We used a neutron probe and soil phychrometers to follow seasonal depletion and recharging of soil moisture and compared these patterns to seasonal patterns of predawn water potentials, diurnal leaf conductances, and diurnal leaf water potentials. Our results indicated that 1) Quercus was deeply rooted, having high water potentials and high leaf conductances throughout the summer drought period, 2) Heteromeles/Adenostoma were intermediate in rooting depth, water potentials, and leaf conductances, and 3) Rhamnus was shallow rooted, having the lowest water potentials and leaf conductances. During the peak of the drought, predawn water potentials for Quercus corresponded to soil water potentials at or below a depth of 2 m, predawn water potentials of Heteromeles/ Adenostoma corresponded to a depth of 0.75 m, and predawn water potentials of Rhamnus corresponded to a depth of 0.5 m. This study supports the concept that co-occurring shrubs of chaparral in California utilize a different base of soil moisture resources.  相似文献   

20.
Adenostoma fasciculatum H. & A. and Ceanothus leucodermis Green in chaparral stands of the foothill zone of Sequoia National Park, California, show a rapid decline in foliage concentrations of nitrogen over the first six years following fire. This is followed by a more gradual decline over succeeding years. Phosphorus concentrations show a similar early decline, followed by an increase in older age stands. Considerable data suggest luxury consumption of nutrients in both species following fire. Following a sharp increase in aboveground nutrients per unit of Adenostoma canopy area for the first 16 years of growth, a plateau is reached. The contemporaneous occurrence of restricted net nutrient uptake and observed stand senescence suggest a possibility of a causal relationship. Natural chaparral fire frequencies promote fire-cycling of nutrients at intervals consistent with periods when nutrient availability becomes limiting. The fire-nutrient interactions are of critical importance in influencing quality and quantity of suitable browse for vertebrate herbivores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号