首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Distribution of endogenous diffusible auxin into agar blocks from phototropically stimulated maize coleoptile tips was studied using a bioassay and a physicochemical assay, to clarify whether phototropism in maize coleoptiles involves a lateral gradient in the amount of auxin. At 50 min after the onset of phototropic stimulation, when the phototropic response was still developing, direct assay of the blocks with the Avena curvature test showed that the auxin activity in the blocks from the shaded half-tips was twice that of the lighted side, at both the first and second positive phototropic curvatures. However, physicochemical determination following purification showed that the amount of indole-3-acetic acid (IAA) was evenly distributed in the blocks from lighted and shaded coleoptile half-tips at both the first and second positive phototropic curvatures. The even distribution of the IAA was also confirmed with the Avena curvature test following purification by HPLC. These results indicate that phototropism in maize coleoptiles is not caused by a lateral gradient of IAA itself and thus cannot be described by the Cholodny-Went theory. Furthermore, the lower auxin activity in the blocks from the lighted half-tips suggests the presence of inhibitor(s) interfering with the action of auxin and their significant diffusion from unilaterally illuminated coleoptile tips.  相似文献   

2.
Abstract Growth redistribution which occurs as a result of phototropic stimulation was studied in red light-grown, maize (Zea mays L.) seedlings. The pattern of elongation of small areas (0.1mm2) of coleoptile epidermis on intact plants was analysed from time-lapse, photomicrographic records. Growth following unilateral, pulse irradiation with blue light was depressed on the illuminated side and was stimulated on the shaded side. The time at which the change in growth rate occurred, on both illuminated and shaded sides, was significantly earlier in apical patches than it was in basal patches. Both kinds of change in the growth rate (stimulation and depression) occurred rapidly such that a new, constant growth rate was often established within five minutes. Micrographic, time-lapse records were also obtained of growth changes induced by sub-apical, unilateral application of a spot of an indole-3-acetic acid (IAA) and lanolin mixture. Growth on the side of the coleoptile to which IAA had been applied was similar to the growth on shaded sides of phototropically stimulated plants. The distance between apical and basal patches and the elapsed time between their changes in growth rate gave a velocity at which the growth response moved basipetally. Calculation of this velocity for blue light and auxin treatment gave values that were not significantly different. Thus, basipetal movement of a transverse auxin gradient could mediate growth changes that cause curvature of the coleoptile towards first positive fluences of blue light.  相似文献   

3.
The effect of phototropic stimulation of Zea coleoptile tips on the distribution of both endogenous indoleacetic acid (IAA) and applied C14-labeled IAA was determined. The tips rested on bisected agar blocks. More IAA was found in the blocks under the shaded side of the coleoptile tips than those under the irradiated side. However, no significant difference was observed between the total amounts of IAA, endogenous or labeled, in the irradiated and shaded sides of the experimental system. In addition, less endogenous auxin was found in the shaded tissues than in their irradiated counterparts. It is suggested that phototropism following unilateral irradiation with first positive radiant densities might be a consequence of lateral inequalities in the ability of the irradiated and shaded tissues to transport auxin basipetally.  相似文献   

4.
Dark recovery of blue light-induced in vitro phosphorylation in oat (Avena sativa L.) seedlings after in vivo preirradiation with blue light revealed different recovery kinetics for the coleoptile base and tip. Although, in both cases, maximum in vitro phosphorylation was observed 90 min after in vivo blue light treatment, the phosphorylation levels for the entire base were about 3-fold higher than those found in nonpreirradiated plants. The tip response only slightly exceeded that of the dark controls. The fluence applied during preirradiation determined the extent of the increase in phosphorylation. Consequently, unilateral irradiation and subsequent dark incubation resulted in a more pronounced increase in phosphorylation in the irradiated than in the shaded side of the coleoptile base. Furthermore, blue light-irradiation conditions, known to induce neither first- nor second-positive curvature in nonpreirradiated plants, stimulated both asymmetric distribution of protein phosphorylation and second-positive phototropic curvature in the coleoptile base when administered to blue light-pretreated plants. Based on these data, we conclude that photosensitivity of the coleoptile base increases upon exposure to blue light in a time-and fluence-dependent manner, providing an excellent explanation of the invalidity of the Bunsen-Roscoe reciprocity law for second-positive phototropism.  相似文献   

5.
Avena seedlings were germinated and grown while continuously rotated on the horizontal axis of a clinostat. The coleoptiles of these gravity-compensated plants were phototropically more responsive than those of plants rotated on a vertical axis. When the plants were compensated after unilateral irradiation, phototropic curvature of the shoot progressed for the next 6 hours, with the rate of curving decreasing about 3 hours after irradiation. The decrease in rate was less in the plants gravity-compensated before irradiation than in those vertically rotated. In the period 70 to 76 hours after planting, the growth rate of the compensated coleoptiles was significantly less than that of the vertically rotated seedlings. The greater phototropic curvature, the decreased growth rate, and the slower rate of straightening of the curved, compensated shoot can be correlated with several consequences of compensation: an increase in sensitivity to auxin, a lowering of auxin content in the coleoptile tip, and possibly, from an interaction between compensation and phototropic stimulation, an enhanced difference in auxin transport between the illuminated and shaded halves of the unilaterally irradiated shoot.

The phototropic response of the vertically rotated seedling was significantly different from that of the vertical stationary, indicating the importance of vertically rotated controls in clinostat experiments.

  相似文献   

6.
Phototropic curvature results from differential growth on two sides of the elongating shoot, which is explained by asymmetrical indole-3-acetic acid (IAA) distribution. Using 2 cm maize coleoptile segments, 1st positive phototropic curvature was confirmed here after 8 s irradiation with unilateral blue light (0.33 μmol m(-2) s(-1)). IAA was redistributed asymmetrically by approximately 20 min after photo-stimulation. This asymmetric distribution was initiated in the top 0-3 mm region and was then transmitted to lower regions. Application of the IAA transport inhibitor, 1-N-naphthylphthalamic acid (NPA), to the top 2 mm region completely inhibited phototropic curvature, even when auxin was simultaneously applied below the NPA-treated zone. Thus, lateral IAA movement occurred only within the top 0-3 mm region after photo-stimulation. Localized irradiation experiments indicated that the photo-stimulus was perceived in the apical 2 mm region. The results suggest that this region harbours key components responsible for photo-sensing and lateral IAA transport. In the present study, it was found that the NPH3- and PGP-like genes were exclusively expressed in the 0-2 mm region of the tip, whereas PHOT1 and ZmPIN1a, b, and c were expressed relatively evenly along the coleoptile, and ZmAUX1, ZMK1, and ZmSAURE2 were strongly expressed in the elongation zone. These results suggest that the NPH3-like and PGP-like gene products have a key role in photo-signal transduction and regulation of the direction of auxin transport after blue light perception by phot1 at the very tip region of maize coleoptiles.  相似文献   

7.
The distribution of 6-methoxy-2-benzoxazolinone (MBOA) which is induced by blue light stimulation in maize ( Zea mays L. ) coleoplile was investigated by HPLC analysis. The results showed that: 1. The MBOA content on the irradiated side of the coleoptile was 1.5 fold more than that on the shaded side. 2. There was little change of IAA on both sides of the coleoptile which was treated with phototropic stimulation. 3. The growing coleoptile bent towards the side which was treated with MBOA, 5,6-dimethoxy-2-benzoxazolinone (DMBOA) or 2-chloro-5,6-dimethoxy-2-benzoxazolinone ( C1-DMBOA). The above results indicated that the phototropic bending of the coleoptile was attributed to unequal distribution of MBOA.  相似文献   

8.
The possible correlation between blue light-dependent phosphorylation of a 116-kD protein and phototropic responses of etiolated oat (Avena sativa L.) seedlings was tested by a micromethod for protein phosphorylation. Quantitation of the basipetal distribution of this protein showed that the in vitro 32p phosphorylation values declined exponentially from tip to node, with more than 50% of the total label being found in the uppermost 5 mm. Nonsaturating preirradiation of the coleoptiles in vivo resulted in partial phosphorylation with endogenous ATP. Subsequent in vitro phosphorylation under saturating irradiation allowed the determination of the degree of in vivo phosphorylation. Unilateral preirradiation resulted in higher in vivo phosphorylation on the irradiated than on the shaded side of the coleoptile. The fluence-response curve for the difference in phosphorylation between both sides of the coleoptile resembles the fluence-response curve for first-positive phototropic curvature, although it is shifted by two orders of magnitude to higher fluences. Possible reasons for this shift are discussed. In the coleoptile base the phosphorylation gradient across the coleoptile becomes larger with increasing time of irradiation at a constant fluence. Thus, phosphorylation of the 116-kD protein, in accordance with second-positive phototropic curvature, does not obey the Bunsen-Roscoe reciprocity law.  相似文献   

9.
Summary Transport of indolyl-3-acetic acid (IAA) was studied during the phototropic responses of intact shoots and detached coleoptiles of Zea mays L. and Avena sativa L. The use of a high specific activity [5-3H]IAA and glass micropipettes enabled asymmetric application of the IAA to be made to individual coleoptiles with minimal tissue damage.A unilateral stimulus of 2.59×10-11 einstein cm-2 of blue light, probably in the dose range of the first positive phototropic response, caused significant net lateral movement of radioactivity from [5-3H]IAA away from the illuminated side of intact shoots and detached coleoptile apices of both Avena and Zea. The magnitude of the net lateral movement was 15.3% in Zea seedlings and 12.3% in Avena seedlings. Chromatographic analyses indicated that the movement of radioactivity reflected that of IAA. A phototropic stimulus of 1.24×10-7 einstein cm-2, which was probably in the second positive dose range, caused significant lateral movement of radioactivity in intact shoots and detached coleoptiles of Zea but not of Avena.In intact Zea seedlings, neither phototropic dosage affected the longitudinal transport of IAA. In intact Avena seedlings, first positive stimulation inhibited longitudinal transport only when the IAA was applied to the illuminated side of the coleoptile, but second positive stimulation inhibited basipetal movement of IAA regardless of the side of application.Exposing the intact seedlings to red light before phototropic stimulation abolished lateral transport after a first positive stimulus in Zea and in Avena.Phototropic stimulation can thus induce a lateral transport of IAA towards the shaded side of the coleoptiles of both Zea and Avena seedlings, and can affect longitudinal movement of IAA in the coleoptile of Avena. However, since phototropic curvature was observed under certain conditions in the absence of either of these effects, the extent to which they are involved in the induction of asymmetric growth in a stimulated coleoptile has yet to be resolved.  相似文献   

10.
玉米胚芽鞘向光性运动的一些特性   总被引:3,自引:1,他引:2  
利用云母片分隔、HPLC分析等方法研究了玉米胚芽鞘向光性运动的特性。云母片阻隔生长素的移动后并不能阻止胚芽鞘的向光性变弯曲。  相似文献   

11.
During gravitropic and phototropic curvature of the maize coleoptile, the cortical microtubules (MTs) adjacent to the outer epidermal cell wall assume opposite orientations at the two sides of the organ. Starting from a uniformly random pattern during straight growth in darkness, the MTs reorientate perpendicularly to the organ axis at the outer (faster growing) side and parallel to the organ axis at the inner (slower growing) side. As similar reorientations can be induced during straight growth by increasing or decreasing the effective auxin concentration, it has been proposed that these reorientations may be used as a diagnostic test for assessing the auxin status of the epidermal cells during tropic curvature. This idea was tested by determining the MT orientations in the coleoptile of intact maize seedlings in which the gravitropic or phototropic curvature was prevented or inversed by an appropriate mechanical counterforce. Forces that just prevented the coleoptile from curving in a gravity or light field prevented reorientations of the MTs. Forces strong enough to overcompensate the tropic stimuli by enforcing curvature in the opposite direction induced reorientations of the MTs opposite to those produced by tropic stimulation. These results show that the MTs at the outer surface of the coleoptile respond to changes in mechanical tissue strain rather than to gravitropic or phototropic stimuli and associated changes at the level of auxin or any other element in the signal transduction chain between perception of tropic stimuli and asymmetric growth response. It is proposed that cortical MTs can act as strain gauges in a positive feed-back regulatory circle utilized for amplification and stabilization of environmentally induced changes in the direction of elongation growth.  相似文献   

12.
The amounts of two growth inhibitors in diffusates from illuminatedhalves of phototropically stimulated oat (Avena sativa L.)coleoptile tips were larger than those from shaded halves. The less polarinhibitor was isolated from diffusates from oat coleoptile tips illuminatedwithblue light, and identified as uridine from 1H NMR spectrum. Thedistribution of endogenous uridine in diffusates from the illuminated andshadedsides of coleoptile tips unilaterally exposed to blue light for 3, causing a first positive phototropic curvature, and fromdark-control tips, was determined using a physicochemical assay. The uridineconcentration was significantly higher in the diffusates from the illuminatedside than in those from the shaded side and the dark-control. Uridine inhibitedthe growth of etiolated oat coleoptile tips at concentrations of 30 and above. These results suggest that uridine plays a role inthe phototropism of oat coleoptiles.  相似文献   

13.
The distribution of the endogenous auxin-inhibiting substance, 8-epixanthatin, was determined in the lighted and shaded sides of phototropically-stimulated, de-etiolated sunflower ( Helianthus annuus L. cv. Taiyo) hypocotyls. From 40 min after the onset of phototropic stimulation, the growth rate at the lighted side was inhibited, whereas that at the shaded side showed no change. In the lighted side, 8-epixanthatin increased by 20 min after the onset of unilateral illumination and, after 40 min, reached a 3-fold larger concentration than that in the shaded side. Unilateral application of 8-epixanthatin suppressed the growth of etiolated hypocotyls at the applied side only, causing the hypocotyls to bend at the site of application. It is concluded that phototropic curvature in sunflower hypocotyls is caused by a lateral gradient of the auxin-inhibiting substance 8-epixanthatin.  相似文献   

14.
The relationship between the flank growth of oat (Avena sativaL. cv. Victory) coleoptiles and the distribution of endogenousindole-3-acetic acid (IAA) and growth inhibitor(s) in the coleoptileswas studied for the second positive phototropic curvature inducedby a continuous unilateral illumination with white light (0.1W.m–2). The phototropic curvature was caused by growthinhibition at the lighted side and growth promotion at the shadedside. Using electron capture detection gas chromatography, weanalyzed the distribution of endogenous IAA in phototropicallyresponding oat coleoptiles and found that the IAA was evenlydistributed over the lighted and shaded sides during the phototropicresponse; there was also no detectable difference in the amountsof IAA between phototropically stimulated and non-irradiatedcoleoptiles. By contrast, oat coleoptile straight-growth testresults showed that the amount of unknown acidic growth inhibitor(s),different from abscisic acid, increased in the lighted halfof the coleoptiles and decreased in the shaded half, as comparedto the amount in the non-irradiated half. These data suggestthat the phototropic curvature of oat coleoptile is inducedby a difference in lateral flank growth through a lateral gradientof endogenous growth inhibitor(s) rather than of IAA. (Received February 10, 1988; Accepted July 29, 1988)  相似文献   

15.
Nick P  Schäfer E  Furuya M 《Plant physiology》1992,99(4):1302-1308
In red-light grown corn (Zea mays L. cv Brio42.HT) coleoptiles, cortical microtubules adjacent to the outer cell wall of the outer epidermis reorient from transverse to longitudinal in response to auxin depletion and after phototropic stimulation in the lighted side of the coleoptile. This was used as an in situ assay of cellular auxin concentration. The fluence-response relation for the blue light-induced reorientation is compared with that for first positive phototropism and the dose-response relationship for the auxin-dependent reorientation. The result supports the theory by Cholodny and Went, claiming that phototropic stimulation results in auxin displacement across the coleoptile. In terms of microtubule orientation, this displacement becomes even more pronounced after preirradiation with a weak blue light pulse from above.  相似文献   

16.
Haga K  Takano M  Neumann R  Iino M 《The Plant cell》2005,17(1):103-115
We isolated a mutant, named coleoptile phototropism1 (cpt1), from gamma-ray-mutagenized japonica-type rice (Oryza sativa). This mutant showed no coleoptile phototropism and severely reduced root phototropism after continuous stimulation. A map-based cloning strategy and transgenic complementation test were applied to demonstrate that a NPH3-like gene deleted in the mutant corresponds to CPT1. Phylogenetic analysis of putative CPT1 homologs of rice and related proteins indicated that CPT1 has an orthologous relationship with Arabidopsis thaliana NPH3. These results, along with those for Arabidopsis, demonstrate that NPH3/CPT1 is a key signal transduction component of higher plant phototropism. In an extended study with the cpt1 mutant, it was found that phototropic differential growth is accompanied by a CPT1-independent inhibition of net growth. Kinetic investigation further indicated that a small phototropism occurs in cpt1 coleoptiles. This response, induced only transiently, was thought to be caused by the CPT1-independent growth inhibition. The 3H-indole-3-acetic acid applied to the coleoptile tip was asymmetrically distributed between the two sides of phototropically responding coleoptiles. However, no asymmetry was induced in cpt1 coleoptiles, indicating that lateral translocation of auxin occurs downstream of CPT1. It is concluded that the CPT1-dependent major phototropism of coleoptiles is achieved by lateral auxin translocation and subsequent growth redistribution.  相似文献   

17.
Phototropism: mechanisms and ecological implications   总被引:14,自引:5,他引:9  
Abstract. Phototropism in seed plants, either etiolated or de-etiolated, is mediated by unidentified photoreceptor(s) sensitive to blue and near-UV regions of the light spectrum. Green plants may have an additional phototropic system sensitive to red light. Fluence-response studies of the blue light-sensitive phototropism, initially made on oat coleoptiles, have indicated the occurrence of multiple response types. Of those, two are found to be general: the first pulse-induced positive phototropism (fPIPP), or the so-called first positive curvature, and the time-dependent phototropism (TDP) or the second positive curvature. The fPIPP, elicited by a pulse stimulus shorter than a few minutes, is characterized by a bell-shaped fluence-response curve and the validity of reciprocity. The TDP, elicited by prolonged irradiation, is characterized by its dependence on the exposure time and the invalidity of reciprocity. Studies made on these two response types have revealed the following: (1) plants acquire directional light information for phototropism by sensing internal light gradients created by light scattering and absorption; (2) phototropism results from redistribution of growth, i.e. inhibition on the irradiated side and compensating stimulation on the shaded side; (3) lateral movement of growth regulators, the principle of the Cholodny-Went theory, can account for the growth redistribution, and auxin is clearly the mediating regulator in maize coleoptiles. This review further describes some mechanistic implications of fPIPP. Experimental results indicate that (1) fPIPP is mediated by a single step of photoreaction, (2) the responsiveness, reflected in the height of the fluenceresponse curve, is reduced by pre-irradiation with blue light and recovers gradually afterward, and (3) the light sensitivity, reflected in the position of the fluence-response curve along the log fluence axis, is also reduced by the pre-irradiation and recovers gradually. Analyses of these results, based on kinetic models, suggest that the bell-shaped fluence-response curve is caused by the difference in the amounts of a photoproduct between irradiated and shaded sides, and that fPIPP represents a mechanism of TDP. It is also indicated that phytochrome in the red-absorbing form exerts two separate effects on phototropism: reduction of the light sensitivity and enhancement of the responsiveness. Along with the discussion of the mechanisms of phototropism, their ecological implications are considered.  相似文献   

18.
Elongation growth of intact, red-light grown maize (Zea mays L.) coleoptiles was studied by applying a small spot of an indole acetic acid (IAA)-lanolin mixture to the coleoptile tip. We report that: (a) endogenous auxin is limiting for growth, (b) an approximately linear relation holds between auxin concentration and growth rate over a range which spans those rates occurring in phototropism, and (c) an auxin gradient established at the coleoptile tip is well sustained during its basipetal transport. We argue that the growth differential underlying coleoptile phototropism (first-positive curvature) can be explained by redistribution of auxin at the coleoptile tip.  相似文献   

19.
Lateral movement of auxin in phototropism   总被引:2,自引:1,他引:1       下载免费PDF全文
Lateral movement of indoleacetic acid-1-14C in corn coleoptiles was measured as radioactivity moving laterally following unilateral application of the auxin. The data suggest that there is an endogenous lateral movement of auxin, and that phototropic stimulation of the coleoptile depresses lateral movement towards the light and enhances lateral movement away from the light. The lateral movement was found to be principally as indoleacetic acid. In experiments using sunflower hypocotyl sections, evidence is also presented to support the suggestion that lateral redistribution of auxin may be effected by a deflection of auxin around a barrier to basipetal transport.  相似文献   

20.
The crown roots in the coleoptilar node of maize emerge asymmetrically: emergence at the dorsal flank of the node (opposite to the caryopsis) precedes emergence at the ventral flank (facing the caryopsis). This asymmetry can be altered by phototropic stimulation: emergence of crown roots is delayed in the lighted flank and promoted in the shaded flank causing an inversion of the endogenous asymmetry. The curvature induced by the phototropic stimulation is transient, the effect on crown root emergence, in contrast, persists. This stable effect is not a consequence of curvature per se and becomes irreversibly fixed between one and two hours after stimulation. The emergence of crown roots depends on directional signalling from the coleoptile to the node. The data are discussed in terms of a stable blue light induced transverse polarity of the coleoptile that can imprint a stable asymmetry upon the coleoptilar node guiding the emergence of crown roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号