首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
New chromosome counts are reported for four African diploid species of Hibiscus L. sect. Furcaria DC: H. greenwayi Bak. f., H. hiernianus Exell et Mendonça, and H. mechowii Garcke, n = 18; and H. berberidifolius A. Rich., 2n = 36. Chromosome behavior is described in seven new hybrid combinations. Hibiscus greenwayi is shown to carry an A genome. Hibiscus hiernianus and H. mastersianus have similar genomes which are not homologous with that of H. mechowii. New and earlier data are integrated to elucidate genome relationships among 13 taxa–each of the four tetraploid species has a different formula encompassing 2 of 6 mutually nonhomologous genomes, A, B, G, H, X and Y (H. acetosella Welw. ex Hiern = AABB; H. meeusei Exell = AAXX; H. sabdariffa L. = AAYY; H. rostellatus Guill. et Perr. = GGHH). Diploid donors of A, B, G, X and Y are proposed on the basis of plant, flower and pollen morphology. Diploid carriers of A (H. asper Hook. f., H. cannabinus L., H. greenwayi), B (H. surattensis L.) and G (H. sudanensis Hochr.) have been verified cytologically. Cytological confirmation of X (H. hiernianus, H. mastersianus Hiern) and Y (H. mechowii) carriers is incomplete. No putative diploid carrier of H is at hand. Genome affinities of H. berberidifolius are unknown.  相似文献   

2.
Hybrids were produced with relative ease from controlled crosses of Elymus canadensis L. with European Agropyron caninum (L.) Beauv., North American A. trachycaulum (Link) Malte ex H. F. Lewis, and Asian A. striatum Nees ex Steud. All hybrids appeared to be completely sterile and were, for the most part, morphologically intermediate between their parents. The E. canadensis × A. caninum hybrids were exceptionally vigorous and leafy and may have some potential as forage grasses if fertility can be achieved. All parent plants were tetraploid, 2n = 28, and they behaved cytologically as alloploids. Chromosome pairing in the hybrids indicated that both E. canadensis genomes were closely homologous with those of A. trachycaulum and somewhat less homologous with those of A. caninum. Interchanged and inverted chromosome segments apparently constitute the major differences between E. canadensis, A. trachycaulum, and A. caninum genomes; however, cryptic structural differences must also exist. Partial homologies were detected between one A. striatum and E. canadensis genome, but their other genomes were distinctly different. The genome relations between the parent species were expressed in terms of the following genome formulas: E. canadensis, S1S1X1X1; A. trachycaulum, S2S2X2X2; A. caninum, S3S3X3X3 : and A. striatum S4S4YY or X4X4YY, where “S” refers to a genome derived from A. spicatum and “X” and “Y” are genomes of unknown origin.  相似文献   

3.
Five hybrids were obtained from 12 seeds formed in 26 emasculated florets of A. riparium pollinated by A. repens. The hybrid plants were morphologically intermediate between the parents for vegetative and spike characteristics, although they resembled A. repens more closely than A. riparium. The 28-chromosome A. riparium parent behaved cytologically as an allotetraploid and formed an average of 13.98 II and 0.04 I in 94 cells at metaphase I. An average of 20.27 II and 0.36 IV were observed at metaphase I in 55 cells of A. repens, which was designated as a segmental autoallohexaploid. The hybrids contained 35 chromosomes and averaged 6.75 I, 12.49 II, 1.05 III, 0.01 IV, and 0.01 V in 162 cells interpreted at metaphase I. Bivalent chromosome pairing in the hybrids was attributed to autosyndetic pairing of 2 A. repens genomes and allosyndetic pairing between 1 A. riparium genome and 1 A. repens genome. Multivalent chromosome associations were attributed to structural hybridity. A. repens and A. riparium apparently share a genome in common, and this genome is the one responsible for rhizomes in both species. A. riparium was given a genome formula of R2R2SS; whereas the A. repens genome formula was written as R1R1X1X1X2X2, and the hybrid genome formula was designated as R1R2X1X2S. The “S” genome of A. riparium was derived from A. spicatum, and the “R” genome is the genome shared by A. repens and A. riparium. The origin and distribution of the so-called “X” genomes of A. repens remain unknown. The hybrids produced from 3 to 10% stainable pollen; however, no seed was set on the hybrids during 2 years in the field.  相似文献   

4.
Interspecific hybrids from the crossing Brassica campestris x B. hirta are reported in our study for the first time. F1 plants were obtained by using ovary culture. The phenotype of hybrids was similar to B. napus; the plants were self-fertile. Investigation of meiotic division and nuclear DNA content measurements showed the amphidiploid origin of these hybrids. The relationship between genome A and D, as well as the spontaneous amphidiploidization of the hybrids, are discussed.  相似文献   

5.
Three hybrids of A. repens, 2n = 42, × A. spicatum, 2n = 28, and two reciprocal hybrids were obtained from emasculated and unemasculated crosses, respectively. The 35-chromosome hybrids tended to be morphologically intermediate between the parent species but resembled A. repens more closely than A. spicatum. A. repens behaved cytologically as a segmental autoallohexaploid, and A. spicatum acted cytologically as an autotetraploid. Mean chromosome associations of 8.04 I, 12.72 II, 0.41 III, 0.06 IV, and 0.009 V were observed in 116 hybrid cells at metaphase I. Most chromosome pairing in the hybrids was attributed to autosyndesis. A. spicatum, A. repens, and their hybrids were represented by genome formulas of SSSS, R1R1X1X1X2X2, and SSR1X1X2, respectively. Hybrid fertility ranged from 0.02 to 0.69 seeds per spikelet.  相似文献   

6.
The Drosophila simulans Lhr rescues lethal hybrids from the cross of D. melanogaster and D. simulans. We describe here, the phenotypes of Lhr dependent rescue hybrids and demonstrate the effects of Lhr on functional morphology of the salivary chromosomes in the hybrids. Our results reveal that the phenotypes of the ‘Lhr dependent rescued’ hybrids were largely dependent on the genetic background and the dominance in species and hybrids, and not on Lhr. Cytological examination reveal that while the salivary chromosome of ‘larval lethal’ male carrying melanogaster X chromosome was unusually thin and contracted, in ‘rescued’ hybrid males (C mel X mel Y sim ; A mel A sim ) the X chromosome showed typical pale staining, enlarged diameter and incorporated higher rate of 3H-uridine in presence of one dose Lhr in the genome. In hybrid males carrying simulans X chromosome (C mel X sim Y mel ; A mel A sim ), enlarged width of the polytene X chromosome was noted in most of the nuclei, in Lhr background, and transcribed at higher rate than that of the single X chromosome of male. In hybrid females (both viable, e.g., C mel X mel X sim ; A mel A sim and rescued, e.g., C mel X mel X mel ; A mel A sim ), the functional morphology of the X chromosomes were comparable to that of diploid autosomes in presence of one dose of Lhr. In hybrid metafemales, (C mel X mel X mel X sim ; A mel A sim ), two dose of melanogaster X chromosomes and one dose of simulans X chromosome were transcribed almost at ‘female’ rate in hybrid genetic background in presence of one dose of Lhr. In rescued hybrid males, the melanogaster-derived X chromosome appeared to complete its replication faster than autosomes. These results together have been interpreted to have suggested that Lhr suppresses the lethality of hybrids by regulating functional activities of the X chromosome(s) for dosage compensation.  相似文献   

7.
Ten kinds of interspecific hybrids were obtained involving the following species: H. surattensis L. (2x, genome constitution BB), H. sudanensis Hochr. (2x, GG), and H. rostellatus Guill. and Perr. (4x, GGHH) from Africa; H. furcatus Roxb. non Willd. (8x) from India and Ceylon; H. furcellatus Lam. and H. bifurcatus Cav. (both 4x, PPQQ) from South America; and H. heterophyllus Vent. (6x) from Australia. Chromosome pairing in pollen mother cells (PMC's) at metaphase I in the 4x hybrids H. bifurcatus-rostellatus and H. furcellatus-rostellatus indicated that the parents have one genome in common (Q = G or H). Hibiscus furcatus was shown earlier to have a B genome; hybrids of H. surattensis-sudanensis F1 X furcatus were hexaploid, having received an unreduced gamete from their hybrid parent, and had approximately 36 II, 36 I in PMC's. The genome formula of H. furcatus may therefore be designated BBGGWWZZ. The hybrid H. rostellatus-furcatus (BGGHWZ) confirmed that H. furcatus has a G genome in common with H. rostellatus; pairing of the other three genomes was inconsistent, as was that in H. rostellatus-heterophyllus. Some samples of the latter approached 36 II, 36 I, expected if H. heterophyllus were GGHHJJ; other samples had less pairing. Hibiscus furcatus-heterophyllus hybrids apparently arose from unreduced gametes of H. heterophyllus and originated as decaploids rather than heptaploids; chromosome number was unstable in PMC's. Nevertheless, multivalents, especially trivalents, were frequent enough to suggest that H. furcatus and H. heterophyllus share G genomes. On the other hand, an 8x H. bifurcatus-furcatus hybrid, which apparently arose from an unreduced gamete of H. bifurcatus, had a low multivalent frequency. Hybrids were obtained of H. heterophyllus X sudanensis and H. surattensis-sudanensis X heterophyllus, but the plants were weak and were not analyzed cytologically. We suggest that the New World, African, Indian, and Australian genomes which retain a considerable degree of homology (G or H or both) were distributed by land prior to separation of the southern continents by continental drift.  相似文献   

8.
Natural hybrids between the boreal species Hexagrammos octogrammus and two temperate species Hexagrammos agrammus and Hexagrammos otakii were observed frequently in southern Hokkaido, Japan. Previous studies revealed that H. octogrammus is a maternal ancestor of both hybrids; the hybrids are all fertile females and they frequently breed with paternal species. Although such rampant hybridization occurs, species boundaries have been maintained in the hybrid zone. Possible explanations for the absence of introgressions, despite the frequent backcrossing, might include clonal reproduction: parthenogenesis, gynogenesis and hybridogenesis. The natural hybrids produced haploid eggs that contained only the H. octogrammus genome (maternal ancestor) with discarded paternal genome and generated F1‐hybrid type offspring by fertilization with the haploid sperm of H. agrammus or H. otakii (paternal ancestor). This reproductive mode was found in an artificial backcross hybrid between the natural hybrid and a male of the paternal ancestor. These findings indicate that the natural hybrids adopt hybridogenesis with high possibility and produce successive generations through hybridogenesis by backcrossing with the paternal ancestor. These hybrids of Hexagrammos represent the first hybridogenetic system found from marine fishes that widely inhabit the North Pacific Ocean. In contrast with other hybridogenetic systems, these Hexagrammos hybrids coexist with all three ancestral species in the hybrid zone. The coexistence mechanism is also discussed.  相似文献   

9.
Interspecific hybrids from the crosses betweenBrassica campestris, B. carinata, B. juncea andB. napus were obtained throughin vitro ovary and ovule culture. F1 hybrids were studied morphologically and flow cytometry was used to estimate 2C nuclear DNA content both in parentalBrassica species and their hybrids. It was found that in comparison with the A genome, the B and the C genomes ofBrassica contained 26.9 % and 43.9 % more DNA, respectively. This finding may be used to distinguish interspecific hybrids containing various genome combinations. It was concluded that flow cytometric analysis of nuclear DNA content might be useful tool inBrassica breeding.  相似文献   

10.
Cytogenetic investigation of microsporogenesis in Agropyron sericeum, Hordeum jubatum, their spontaneous hybrid, Agrohordeum pilosilemma, its amphiploid, and the backcross of the amphiploid to A. sericeum, B1, elucidated the genome relationships of A. sericeum and H. jubatum. The tetraploid parental species share a partially homologous genome which affects the pairing relationships evidenced in their hybrids. The genome formulae assigned to these plants are: A. sericeum, A“A”BB; H. jubatum, AAA'A‘; Agrohordeum pilosilemma, AA'A“B; the amphiploid, AAA'A‘A”A“BB; and B1, AA'A”A“BB. Observed pairing configurations were compatible with the expected maximum pairing configurations predicted under the assumption of genetic control of pairing with dosage effects. This is interpreted as further support for the hypothesis that pairing in the hybrids of H. jubatum is controlled by the A genome, one dose of A allowing homeologous pairing and two doses of A promoting homeologous association.  相似文献   

11.
Menzel , Margaret Y. (Florida State U., Tallahassee), and F. D. Wilson . Chromosomes and crossing behavior of Hibiscus cannabinus, H. acetosella, and H. radiatus. Amer. Jour. Bot. 48(8): 651–657. Illus. 1961.—Chromosomes of diploid H. cannabinus L. (kenaf) form 18 bivalents at metaphase I. In autotetraploid H. cannabinus (2n = 72), more than 50% of the chromosomes pair as trivalents or quadrivalents. In the tetraploid species H. radiatus Cav. and H. acetosella Welw. ex Hiern (H. eetveldeanus De Wild. & Dur.) (2n = 72), only 4% of the chromosomes pair as multivalents and the rest pair as bivalents. Vigorous, highly fertile F1 hybrids between H. acetosella and H. radiatus are easily obtained, show complete chromosome pairing, and give rise to a freely segregating, vigorous, fertile F2: apparently the parental species have similar genome constitutions and are closely related. Chromosome pairing in the triploid hybrids of H. radiatus and H. acetosella with H. cannabinus, in hexaploids obtained by doubling the chromosome number of H. acetosella-cannabinus F1, and in pentaploid and tetraploid backcrosses of the hexaploids to H. cannabinus shows that the tetraploid species each contain 1 genome (A) very similar to, but not identical with, that of H. cannabinus and 1 dissimilar genome (B). Morphology, fertility, and other characteristics of the various hybrids are discussed in connection with the problem of recombining the resistance to root-knot nematodes found in the tetraploid species with the desirable fiber properties of H. cannabinus.  相似文献   

12.
It has been proposed that both complete and partial separation of the parental genomes during mitosis and meiosis occurs in the intergeneric hybrids between Orychophragmus violaceus (2n=24) and the three cultivated Brassica tetraploids (B. napus, B. carinata and B. juncea). The hypothesis has been that this and the variations in chromosome numbers of these hybrids and their progenies result from the different roles of the A, B and C genomes originating from Brassica. To test this hypothesis, we produced hybrids between O. violaceus and the cultivated Brassica diploids. The hybrids with B. oleracea (2n=18, CC) had an intermediate morphology, but their petals were purple like those of O. violaceus. They were sterile and had the expected chromosome number (2n=21) in their mitotic and meiotic cells. The hybrid with B. campestris (2n=20, AA) was morphologically intermediate, except for its partial fertility and its yellow petals, which were similar to those of B. campestris. It was mixoploid (2n=23–42), and cells with 2n=34 were most frequent. Partial separation of parental genomes during mitosis, leading to the addition of O. violaceus chromosomes to the B. campestris complement, was proposed to explain the findings in the mitotic and meiotic cells of the hybrid and its progeny. In crosses with B. nigra (2n=16, BB), the majority of the F1 plants were of the maternal type (2n=16), a small fraction had B. nigra morphology but were mixoploids (2n=16–18), predominantly with 2n=16 cells and three plants, each with a specific morphology, were mixoploids consisting of cells with varying ranges of chromosome numbers (2n=17–26, 11–17 and 14–17). The origin of these different types of plants was inferred to be a result of the complete and partial separation of parental genomes and the loss of O. violaceus chromosomes. Our findings in the three crosses suggest that the A genome was more influential than the C genome with respect to complete genome separation during mitosis and meiosis of the hybrids with B. napus. Possible complete and partial genome separation during mitotic divisions of the hybrids with B. carinata was mainly attributed to the role of the B genome. The combined roles of the A and B genomes would thus contribute to the most variable chromosome numbers of mitotic and meiotic cells in the hybrids with B. juncea and their progenies. The possible cytological mechanisms pertaining to these hybrids and the potential of genome separation in the production of Brassica aneuploids and homozygous plants are discussed. Received: 8 February 1998 / Accepted: 12 March 1999  相似文献   

13.
Li ZY  Ge XH 《Plant cell reports》2007,26(6):701-710
Researchers recognized early that chromosome behavior, as other morphological characters, is under genetic control and gave some cytogenetical examples such as the homoeologous chromosome pairing in wheat. In the intergeneric sexual hybrids between cultivated Brassica species and another crucifer Orychophragmus violaceus, the phenomenon of parental genome separation was found under genetic control during mitosis and meiosis. The cytogenetics of these hybrids was species-specific for Brassica parents. The different chromosome behavior of hybrids with three Brassica diploids (B. rapa, B. nigra and B. oleracea) might contribute to the different cytology of hybrids with three tetraploids (B. napus, B. juncea and B. carinata). The finding that genome-specific retention or loss of chromosomes in hybrids of O. violaceus with B. carinata and synthetic Brassica hexaploids (2n=54, AABBCC) is likely related to nucleolar dominance gives new insight into the molecular mechanisms regarding the cytology in these hybrids. It is proposed that the preferential expressions of genes for centromeric proteins from one parent (such as the well presented centromeric histone H3) are related with chromosome stability in wide hybrids and nucleolar dominance is beneficial to the production of centromere-specific proteins of the rRNAs-donor parent and to the stability of its chromosomes.  相似文献   

14.
Spontaneous hybridization between a male-sterile oilseed rape and two weeds   总被引:1,自引:0,他引:1  
Spontaneous interspecific hybrids were produced under natural conditions (pollination by wind and bees) between a male-sterile cybrid Brassica napus (AACC, 2n = 38) and two weeds Brassica adpressa (AdAd, 2n = 14) and Raphanus raphanistrum (RrRr, 2n = 18). After characterization by chromosome counts and isozyme analyses, we observed 512 and 3 734 inter-specific seeds per m2 for the B. napus-B. adpressa and B. napus-R. raphanistrum trials respectively. Most of the hybrids studied had the expected triploid structure (ACX). In order to quantify the frequency of allosyndesis between the genomes involved in the hybrids, their meiotic behavior was compared to a haploid of B. napus (AC). For the B. napus-B. adpressa hybrids, we concluded that probably no allosyndesis occurred between the two parental genomes, and that genetic factors regulating homoeologous chromosome pairing were carried by the B. adpressa genome. For the B. napus-R. raphanistrum hybrids, high chromosome pairing and the presence of multivalents (in 9.16% of the pollen mother cells) indicate that recombination is possible between chromosomes of different genomes. Pollen fertility of the hybrids ranged from 0 to 30%. Blackleg inoculation tests were performed on the three parental species and on the interspecific hybrids. BC1 production with the weeds and with rapeseed was attempted. Results are discussed in regard to the risk assessment of transgenic rapeseed cultivation, F1 hybrid rapeseed variety production, and rapeseed improvement.  相似文献   

15.
With the object of studying the genomic relationships of Brassica tournefortii Gouan with the other elementary species of Brassica viz. B. campestris (2n=20, A genome), B. oleracea (2n=18, C genome) and B. nigra (2n=16, B genome), it has been hybridized with them. The percentage of F1 hybrids formed, their morphology and meiotic behaviour have been described. Based upon crossability relationships and meiotic pairing in the F1 hybrids, it is inferred that the D genome of B. tournefortii is more closely related to the A genome than to the B and C genomes. It may have been derived from the A genome which likewise shows a strong genetic isolation from B and C. The species has developed a strong genetic barrier in the course of its evolution and shows little crossability, high hybrid sterility and no gene flow with any of the other elementary species. The fact that it has not formed any natural amphidiploids with the elementary species which otherwise are formed in all combinations, is more evidence that it originated more recently than the A genome. It is presumed that B. tournefortii, being more distantly related to B. nigra than to other elementary species, may form stable artificial aphid resistant amphidiploids with the former.  相似文献   

16.
Marker genes are essential for the selection and identification of rarely occurring transformation events generated in biotechnology. This includes plastid transformation, which requires that multiple copies of the modified chloroplast genome be present to obtain genetically stable transplastomic plants. However, the marker gene becomes dispensable when homoplastomic plants are obtained. Here, we demonstrate the precise excision of attP‐ and attB‐flanked DNA from the plastid genome mediated by the large serine recombinase Bxb1. We transformed the tobacco plastid genome with the pTCH‐PB vector containing a stuffer fragment of DNA flanked by directly oriented nonhomologous attP and attB recombinase recognition sites. In the absence of the Bxb1 recombinase, the transformed plastid genomes were stable and heritable. Nuclear‐transformed transgenic tobacco plants expressing a plastid‐targeted Bxb1 recombinase were crossed with transplastomic pTCH‐PB plants, and the T1 hybrids exhibited efficient excision of the target sequence. The Bxb1–att system should prove to be a useful tool for site‐specifically manipulating the plastid genome and generating marker‐free transplastomic plants.  相似文献   

17.
Summary A comparative study of eight independently isolated mitochondrial oligomycin resistant mutants obtained from three laboratories show a variety of phenotypes based on cross resistance to venturicidin and sensitivity to low temperature. Analysis of recombination between pairs of markers indicate the existence of at least three genetic classes; class A, cross resistant to venturicidin and including the mutations O III, [oli1-r], [OLG1-R], [tso-r]; class B, mutations O I, [oli17-r], [OLG2-R]; and class C, the mutation O II. The recombination data is consistent with mutations of each class residing in three separate genes, although mutations of class A and B show very close linkage.Recombination in non-polar crosses has demonstrated that markers of all three classes are linked to the mik1 locus in the configuration (AB)-mik1-C. The mapping of this segment with respect to other markers of the mitochondrial genome and the order of classes A and B was established by analyses of co-retention frequencies of markers in primary petite isolates as well as by analysis of marker overlap of genetically and physically defined petite genomes. The unambiguous order ery1-A-B-mik1-C-par was obtained. DNA-DNA hybridization studies using mtDNA isolated from selected petites confirms this map and estimates the physical separation of markers. A reasonable correlation exists in this region of the genome between distances estimated physically by hybridization and genetically by frequency of recombination in non-polar crosses.It is postulated that the oligomycin-mikamycin linkage group represents a cluster of genes involved in determining a number of mitochondrial membrane proteins associated with the mitochondrial ATPase and respiratory complex III.This work was supported by the Australian Research Grants Committee, Project D65/15930  相似文献   

18.
19.
Summary Based on meiotic chromosome behavior in intra- and interspecific hybrids, genome symbols were assigned to the following diploid (2n=40) Glycine species: G. canescens = AA; G. clandestina- Intermediate pod (Ip)=A 1 A 1; G. clandestina-Short pod (Sp)=BB; G. latifolia = B 1 B 1; G. tabacina = B 2 B 2; G. cyrtoloba = CC; and G. tomentella = DD. Genome symbol GG was reserved for the soybean, G. max. At metaphaseI, loose chromosome associations were observed in completely sterile interspecific hybrids whose parents differed in their genomes, suggesting some chromosome homologies among species. Although G. clandestina-Sp, G. latifolia and G. tabacina are morphologically distinct species, they differ only by a paracentric inversion. Similar observations were recorded for G. canescens and G. clandestina-Ip. Evidence is presented that demonstrates that G. tabacina (2n=80) and G. tomentella (2n=78, 80) are allotetraploid species complexes. Hybrid weakness, sterility, seedling lethality and seed inviability were found in intra- and interspecific hybrids.This research was supported in part by the Illinois Agricultural Experiment Station and the U.S. Department of Agriculture (Special grant 82-CRSR-2-2007). Travel grants to collect Glycine germplasm were received from the Rockefeller Foundation, the Illinois Soybean Program Operating Board, the National Science Foundation (INT76-14753) and the International Board for Plant Genetic Resources  相似文献   

20.
Oilseed crop Brassica carinata BBCC is a natural allotetraploid of diploid species B. nigra BB and B. oleracea CC. To transfer the nuclear and organelle genes in a concerted manner from an alien species, B. tournefortii TT, to B. carinata, we produced somatic hybrids with genomic configuration TCBB using B. nigra and B. oleracea stocks that carried selectable marker genes. B. tournefortii TT was sexually crossed with hygromycin-resistant B. oleracea CC. Protoplasts isolated from shoot cultures of hygromycin-resistant F1 hybrids of B. tournefortiixB. oleracea TC were fused with protoplasts of kanamycin-resistant B. nigra BB. In two different fusion experiments 80 colonies were obtained through selection on media containing both hygromycin and kanamycin. Of these, 39 colonies regenerated into plants. Analysis of 15 regenerants by random amplified polymorphic DNA (RAPD) markers showed the presence of all three genomes, thereby confirming these to be true hybrids. Restriction fragment length polymorphism (RFLP) analysis of organelle genomes with heterologous chloroplast (cp)and mitochondrial (mt) DNA probes showed that the chloroplast genome was inherited from either of the two parents while mitochondrial genomes predominantly showed novel configurations due to either rearrangements or intergenomic recombinations. We anticipate that the TCBB genomic configuration will provide a more conducive situation for recombination between the T and C genomes during meiosis than the TTCCBB or TCCBB type configurations that are usually produced for alien gene transfer. The agronomic aim of producing TCBB hybrids is to transfer mitochondrial genes conferring cytoplasmic male sterility and nuclear genes for fertility restoration from B. tournefortii to B. carinata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号