首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To predict the possible evolutionary response of a plant species to a new environment, it is necessary to separate genetic from environmental sources of phenotypic variation. In a case study of the invader Solidago altissima, the influences of several kinds of parental effects and of direct inheritance and environment on offspring phenotype were separated. Fifteen genotypes were crossed in three 5 × 5 diallels excluding selfs. Clonal replicates of the parental genotypes were grown in two environments such that each diallel could be made with maternal/paternal plants from sand/sand, sand/soil, soil/sand, and soil/soil. In a first experiment (1989) offspring were raised in the experimental garden and in a second experiment (1990) in the glasshouse. Parent plants growing in sand invested less biomass in inflorescences but produced larger seeds than parent plants growing in soil. In the garden experiment, phenotypic variation among offspring was greatly influenced by environmental heterogeneity. Direct genetic variation (within diallels) was found only for leaf characters and total leaf mass. Germination probability and early seedling mass were significantly affected by phenotypic differences among maternal plants because of genotype ( genetic maternal effects ) and soil environment ( general environmental maternal effects ). Seeds from maternal plants in sand germinated better and produced bigger seedlings than seeds from maternal plants in soil. They also grew taller with time, probably because competition accentuated the initial differences. Height growth and stem mass at harvest (an integrated account of individual growth history) of offspring varied significantly among crosses within parental combinations ( specific environmental maternal effects ). In the glasshouse experiment, the influence of environmental heterogeneity and competition could be kept low. Except for early characters, the influence of direct genetic variation was large but again leaf characters (= basic module morphology) seemed to be under stricter genetic control than did size characters. Genetic maternal effects, general environmental maternal effects, and specific environmental maternal effects dominated in early characters. The maternal effects were exerted both via seed mass and directly on characters of young offspring. Persistent effects of the general paternal environment ( general environmental paternal effects ) were found for leaf length and stem and leaf mass at harvest. They were opposite in direction to the general environmental maternal effects, that is the same genotypes produced “better mothers” in sand but “better fathers” in soil. The general environmental paternal effects must have been due to differences in pollen quality, resulting from pollen selection within the male parent or leading to pre- or postzygotic selection within the female parent. The ranking of crosses according to mean offspring phenotypes was different in the two experiments, suggesting strong interaction of the observed effects with the environment. The correlation structure among characters changed less between experiments than did the pattern of variation of single characters, but under the competitive conditions in the garden plant height seemed to be more directly related to fitness than in the glasshouse. Reduced competition could also explain why maternal effects were less persistent in the glasshouse than in the garden experiment. Evolution via selection of maternal effects would be possible in the study population because these effects are in part due to genetic differences among parents.  相似文献   

2.
In plant species producing non‐dormant seeds, the germination time (from the start of imbibition to radicle emergence) is the main factor determining the timing of seedling emergence. We investigated maternal and paternal genetic effects on the germination time of non‐dormant seeds of a monocarpic perennial, Aster kantoensis Kitamura (Compositae). Three sets of reciprocal diallel crosses among five plants were conducted to produce genetic variation in seeds, and the germination time of the progeny of each parent was determined. The effects of the maternal parent and the interaction of maternal and paternal parents on the germination time of progeny were significant in all sets, and the effect of the paternal parent was significant in two of the three sets. This result means that the germination time of the progeny of a maternal or paternal parent can vary with the genotype of its mating partners. Because variation in the emergence time of seedlings contributes to avoiding seedling loss owing to unpredictable environmental changes, genetic variation in the germination time among the progeny of each parent mating with multiple partners could contribute to the establishment of the parent's seedlings in species producing non‐dormant seeds in the field.  相似文献   

3.
The purpose of this article was to study the trade-offs among vegetative growth, clonal, and sexual reproduction in an aquatic invasive weed Spartina alterniflora that experienced different inundation depths and clonal integration. Here, the rhizome connections between mother and daughter ramets were either severed or left intact. Subsequently, these clones were flooded with water levels of 0, 9, and 18 cm above the soil surface. Severing rhizomes decreased growth and clonal reproduction of daughter ramets, and increased those of mother ramets grown in shallow and deep water. The daughter ramets disconnected from mother ramets did not flower, while sexual reproduction of mother ramets was not affected by severing. Clonal integration only benefited the total rhizome length, rhizome biomass, and number of rhizomes of the whole clones in non-inundation conditions. Furthermore, growth and clonal reproduction of mother, daughter ramets, and the whole clone decreased with inundation depth, whereas sexual reproduction of mother ramets and the whole clones increased. We concluded that the trade-offs among growth, clonal, and sexual reproduction of S. alterniflora would be affected by inundation depth, but not by clonal integration.  相似文献   

4.
Recent studies in plant populations have found that environmental heterogeneity and phenotypic selection vary at local spatial scales. In this study, I ask if there is evolutionary change in response to environmental heterogeneity and, if so, whether the response occurs for characters or character plasticities. I used vegetative clones of Mimulus guttatus to create replicate populations of 75 genotypes. These populations were planted into the natural habitat where they differed in mean growth, flowering phenology, and life span. This phenotypic variation was used to define selective environments. There was variation in fitness (flower production) among genotypes across all planting sites and in genotype response to the selective environment. Offspring from each site were grown in the greenhouse in two water treatments. Because each population initially had the same genetic composition, variation in the progeny between selective environments reveals either evolutionary change in response to environmental heterogeneity or environmental maternal effects. Plants from experimental sites that flowered earlier, had shorter life spans and were less productive, produced offspring that had more flowers, on average, and were less plastic in vegetative allocation than offspring of longer-lived plants from high-productivity areas. However, environmental maternal effects masked phenotypic differences in flower production. Therefore, although there was evidence of genetic differentiation in both life-history characters and their plasticities in response to small-scale environmental heterogeneity, environmental maternal effects may slow evolutionary change. Response to local-scale selective regimes suggests that environmental heterogeneity and local variation in phenotypic selection may act to maintain genetic variation.  相似文献   

5.
Blue oak (Quercus douglasii) is a deciduous tree species endemic to California that currently exhibits poor seedling survival to sapling age classes. We used common garden techniques to examine how genetic variation at regional and local scales affected phenotypic expression in traits affecting oak seedling growth and survival. Between-population variation was examined for seedlings grown from acorns collected from a northern, mesic population and a southern, xeric population. Within-population variation was examined by comparing seedlings from different maternal families within the mesic population. Acorns were planted into neighborhoods of an annual dicot (Erodium botrys), an annual grass (Bromus diandrus), and a perennial bunchgrass (Nassella pulchra). By varying the species composition of herbaceous neighborhoods into which acorns were planted, the interactive effects of competition and acorn germplasm source on phenotypic expression could also be examined. Potential maternal effects, expressed as variation in acorn size, were assessed by weighing each acorn before planting. Probability of seedling emergence increased significantly with acorn size in the xeric population but not in the mesic population. Similarly, the effect of acorn size on seedling leaf area, stem weight, and root weight was also population-dependent. At a within-population level, acorn size effects on seedling traits varied significantly among maternal families. In addition to acorn size effects, rates of oak seedling emergence were also dependent on an interaction of population source and competitive environment. Interactions between maternal family and competitive environment in the expression of seedling leaf characters suggest the possibility of genetic variation for plasticity in traits such as specific leaf area. Using carbon isotope discrimination () as an index of relative water-use efficiency (WUE), higher water use efficiency was indicated for oak seedlings grown in the annual plant neighborhoods compared to seedlings grown in the bunchgrass neighborhood. This trend may represent an adaptive plastic response because, compared to the bunchgrass neighborhood, soil water depletion was more rapid within annual plant neighborhoods.  相似文献   

6.
Available resources could influence the trade-offs among different reproductive components in plants. Here, we created three nutrient levels to test the nutrient effects on trade-offs among sexual reproduction, clonal propagation and vegetative growth in a monoecious clonal herb Sagittaria pygmaea. The results of this study showed that the plant exhibited different trade-off patterns among different nutrient levels. When the nutrient level was low, there were weak trade-offs between sexual reproduction and vegetative growth and between clonal propagation and vegetative growth; when the nutrient level was moderate, we found a strong trade-off between sexual reproduction and clonal propagation; but when the nutrient level was high, we found no trade-offs among these three different reproductive components. These results indicated that the plant could adjust its trade-off patterns to fit the nutrient variation and suggested that trade-offs are unlikely to constrain the evolution of reproductive strategy in this species.  相似文献   

7.
Michael L. Cain 《Oecologia》1990,82(2):201-209
Summary For the rhizomatous perennial, Solidago altissima, I identified clonal fragments in the field, mapped ramet spatial locations, and documented patterns of ramet recruitment, growth, and mortality. Parent ramet size influenced the size and number of daughter ramets produced, and small ramets had lower survivorship and fecundity than large ramets. Similarly, small rhizomes tended to develop into small ramets, and ramets that survived to produce daughter ramets had longer parent-daughter rhizome connections than ramets that did not survive. In addition, most ramets that died during the growing season were connected to (genetically identical) ramets that persisted. There were large size inequalities among rhizomes, ramets, and clonal fragments. Inequalities in the size of ramets increased during the early part of the growing season, then decreased at the end of the season; similar patterns were observed for the growth of clonal fragments. In both instances, the decrease in size inequality could be attributed to the mortality of small individuals (ramets or clonal fragments). I found little evidence that ramet size hierarchies were structured by intraspecific competition. For example, path analyses and randomization tests indicated that size variation among S. altissima ramets was influenced little by the size of their near neighbors (but was influenced by parent size and rhizome size). In addition, within-season variation for the relative size and growth rate of individual ramets led to poor correlations between early and final ramet size; this result suggests that there was no stable hierarchy of dominant and suppressed ramets. I discuss implications of my results for contrasting interpretations of clonal plant population dynamics.  相似文献   

8.
Natural plant populations consist of individuals that exhibit variation in their phenotypic traits and demographic parameters. Here we report a study on maternal effects and the effects of different light environments on intra-specific variation in survivorship and ecologically relevant phenotypic traits of Fagus crenata seedlings in a cool-temperate forest community. We collected 901 seedlings from the ground beneath five maternal trees and used microsatellite DNA markers to identify maternal siblings that germinated naturally in the forest community. Selected seedlings were planted at three sites––one under a closed canopy with low light availability, one under a canopy gap in the natural forest community with moderate light availability, and one in a common garden with high light availability. The proportion of seedlings that were correctly assigned to their putative mother ranged from 60.0 to 82.7 % per maternal family, and 655 (72.7 %) seedlings in total were used for the analysis of survivorship and phenotypic traits. Among-family differences in survivorship remained after correcting for the effects of initial stem size during the first year after planting. However, this difference in survivorship became less pronounced in subsequent years. Seedlings grown under the canopy gap and/or in the common garden exhibited better performance in terms of phenotypic traits such as stem, leaf, and root morphology. In addition, seedlings of different maternal origins grown in the same environments had different individual leaf areas. These findings suggest that phenotypic variation due to maternal effects was a significant source of intra-specific variation within the local population.  相似文献   

9.
Transgenerational interactions between flower color, seed quality, and seedling performance have rarely been investigated. The ecological model, Ipomopsis aggregata, is a great candidate for examining the maternal effects of flower color because it is a mostly scarlet-flowering plant which shows color polymorphism within natural populations. Anthocyanin, the red flavonoid pigment which gives these flowers color, has been shown to act as an ultraviolet (UV) protectant by shielding chloroplasts and acting as an antioxidant. This study was conducted on scarlet- and fuchsia-flowering maternal plants and their seeds from natural populations in Colorado. Dark-flowering (scarlet) maternal plants from these populations had consistently higher foliar anthocyanin content, photosystem efficiency, and chlorophyll content than light-flowering (fuchsia) plants over a 3-year period in the field. Seeds from a subset of these maternal plants were counted, weighed, and germinated in a growth chamber. Photosystem efficiency, vegetative anthocyanin content, chlorophyll content, and biomass were measured on germinated seedlings after the germination census was completed. Dark-flowering maternal plants yielded seeds and seedlings with higher biomass than light-flowering ones. Seeds from dark-flowering maternal plants also germinated faster than those from light-flowering maternal plants and seedlings had higher vegetative anthocyanin content. The hereditary nature of anthocyanin content thus suggests that higher anthocyanin levels (both floral and vegetative) are potentially linked to measures of fitness such as increased seed weight, germination rate, and seedling biomass. These data suggest that UV protection provided by anthocyanins potentially increases the realized fitness of maternal plants, thereby influencing life history.  相似文献   

10.
I measured the effect of early reproduction on subsequent growth and survival in the alpine perennial wildflower, Polemonium viscosum. Measurements were made over 4 yr on 34 maternal sibships under natural conditions. A significant phenotypic cost of early reproduction characterized the study population. Plants that flowered after only one year's growth had twice as many leaves and 25% more shoots than nonflowering individuals of equal age. However, early flowering decreased leaf number by 18% in the subsequent year and survivorship by 20% after two years relative to changes in leaf number and survival of nonflowering plants. For such trade-offs to shape the further evolution of reproductive schedules, flowering probability and those age-specific components of plant size that represent the energetic currency for reproductive costs must be heritable. Although families showed significant heterogeneity in the probability of early flowering, most (62%) entirely failed to flower. Moreover, phenotypic variation in vegetative size components at ages 1 and 2 had little genetic basis. Only at ages 3 and 4, after vegetative and demographic costs of early reproduction had been incurred, did vegetative size components (leaf length and number, and shoot number) vary significantly among families. Results of this study provide little evidence of a genetically based trade-off between early reproduction and subsequent survival in P. viscosum.  相似文献   

11.
Selection responses in natural plant populations depend on how the phenotypic variation of traits is composed. The contributions of nuclear genetic, maternal, paternal, environmental and inbreeding effects to variation in time to germination, germination percentage, and seed- and seedling size were studied in a population of Lychnis flos-cuculi. It was found that: (1) Maternal effects predominated in the determination of progeny seed size and germination characteristics; (2) Maternal environment during seed development was less important than maternal genotype; (3) Small but significant variation within maternal families could be observed among individuals sired by different fathers; (4) Additive genetic variance was significant for seedling size 4 weeks after germination. In conclusion, selection shortly after emergence will mainly favour particular maternal genotypes, while selection later in the life cycle may act upon zygotic genotypes. Inbreeding depression was significant, especially for vegetative growth. Consistent differences were found among maternal genotypes in the degree of variation in the time to germination, suggesting that selection could operate to favour polymorphic or uniform germination behaviour.  相似文献   

12.
The effect of maternal, facultatively apomictic plants on population diversity was evaluated in seven hybridizing polyploid Pilosella populations, where apomictic (P. bauhini or P. aurantiaca) and sexual (P. officinarum) biotypes coexist. The ploidy level, reproductive system, morphology, clonal structure and chloroplast DNA haplotypes were used to characterize these plants and their hybrids. The reproductive origins of the progeny were assessed through either a flow cytometric seed screen and/or a comparison between the ploidy level of progeny embryos/seedlings and the maternal ploidy level. The cultivated progeny derived from residual sexuality in maternal apomicts were also identified based on their morphology and reproductive behaviour. The progeny different from their maternal parents (0.6?92.3 % of progeny embryos and 0?100 % of progeny seedlings) originated either sexually or via haploid parthenogenesis. Comparing the facultatively apomictic and sexual mothers, the progeny arrays generated in the field showed that apomictic mothers produce progeny that is more variable in ploidy level. This effect was demonstrated at both the embryonic and seedling stages of progeny development. Residual sexuality in apomicts was also effective in experimental crosses, generating progeny similar to spontaneous hybrids in the field. The 2n + n hybrids produced from an apomictic and a sexual parent displayed similar reproductive behaviour, producing polyhaploid, sexual and apomictic progeny in variable ratios. Repeated hybridizations between parental species and/or multi-step crosses can result in hybrid swarms rich in cytotypes and morphotypes. The variation recorded in these populations suggests prevailing introgressive hybridization towards the sexual species P. officinarum.  相似文献   

13.
Abstract. The population dynamics of two monocarpic bamboos, Sasa kurilensis and S. tsuboiana, were studied for more than 10 years after establishment following mass flowering. Both species show vigorous rhizomatous vegetative reproduction after growing up to maturity, but horizontal expansion in the seedling stage was much more vigorous in S. tsuboiana than in S. kurilensis. The pattern of changes in culm density in the two species was strikingly similar: culm densities of both species increased until they reached full-density states, after which they decreased in accordance with seedling growth. However, the mode of regulation in culm density was different. S. kurilensis seedlings were composed of only a few culms and scarcely extended their rhizomes during the observation period. Such poor lateral expansion resulted in asymmetric competition as observed in many non-clonal plants, and consequently their culm density decreased as a result of the mortality of genets due to self-thinning. In S. tsuboiana seedlings, the number of culms per genet increased considerably by frequent tillering and sprouting from rhizomes. However, after reaching full density state, the Bud Utility Ratio (BUR), (the proportion of the rhizome nodes with culms to the total number of rhizome nodes), decreased drastically. In this manner, S. tsuboiana regulated culm density intraclonally as is observed in the stable states of many clonal plants. Hence it is important for the understanding of the regeneration process in clonal species to clarify when and how their seedlings extend rhizomes during their growth.  相似文献   

14.
R Zas  C Cendán  L Sampedro 《Heredity》2013,111(3):248-255
Although maternal environmental effects are increasingly recognized as an important source of phenotypic variation with relevant impacts in evolutionary processes, their relevance in long-lived plants such as pine trees is largely unknown. Here, we used a powerful sample size and a strong quantitative genetic approach to analyse the sources of variation of early seedling performance and to identify seed mass (SM)-dependent and -independent maternal environmental effects in Maritime pine. We measured SM of 8924 individual seeds collected from 10 genotypes clonally replicated in two environments of contrasting quality (favourable and stressful), and we measured seedling growth rate and biomass allocation to roots and shoots. SM was extremely variable (up to 14-fold) and strongly determined by the maternal environment and the genotype of the mother tree. The favourable maternal environment led to larger cones, larger seeds and reduced SM variability. The maternal environment also determined the offspring phenotype, with seedlings coming from the favourable environment being 35% larger and with greater root/shoot ratio. Transgenerational plasticity appears, thus, to be a relevant source of phenotypic variation in the early performance of this pine species. Seed provisioning explained most of the effect of the maternal environment on seedling total biomass. Environmental maternal effects on seedling biomass allocation were, however, determined through SM-independent mechanisms, suggesting that other epigenetic regulation channels may be involved.  相似文献   

15.
The timing of expression of environmental maternal effects on seedling growth was investigated in greenhouse-grown populations of Erigeron annuus (Asteraceae). Maternal differences were generated in genetically identical lines grown under high and low nutrient conditions. There were significant differences among maternal families within genotypes for seed size, cotyledon size, number of leaves, and rosette diameter. When seedlings were grown individually, effects of the maternal fertilizer treatment on leaf number and rosette diameter were present early but could not be detected after eight weeks. When seedlings from HIGH and LOW lines were grown in competition, the maternal effects and the relative size advantage of seedlings from HIGH parents increased throughout the experiment. Most of the variation among nutrient treatments for seedling size characters could be explained by variation in initial seed size. In the competition experiment, the increasing magnitude of maternal environmental differences over time masked genetic variation for seedling characters; without competition, the relative contribution of genetic variation increased through time. Under competitive conditions that generate persistent maternal effects on fitness, maternal environmental effects may retard natural selection.  相似文献   

16.
Ecological and evolutionary studies typically consider variation in single reproductive characters in isolation, without considering how they might be correlated with other reproductive and vegetative characters. In our study, we examined temporal patterns of variation and correlation in flower diameter and fruit length during a reproductive phase in two Massachusetts populations of the herb, Chelidonium majus. We also examined the relationships of such variation to measurements of seed yield components (mean seed weight and number per fruit) and aspects of plant vegetative size. Most of the variation in the sizes of reproductive characters occurred within individual plants, instead of among plants or between populations. Flower and fruit sizes as well as seed number per fruit declined significantly during the season in both populations. Only mean seed size per fruit was relatively stable for individual plants in both populations. Conserving resources by a gradual reduction in the size of reproductive characters over the season may be a strategy for maternal plants to continue seed production. The strong, persistent patterns of correlation between certain characters, such as flower and fruit size, in spite of extensive phenotypic plasticity, was interpreted as indirect evidence for developmental correlation. Furthermore, vegetatively larger plants produced not only more flowers and fruits, but also consistently larger flowers and fruits. The results emphasize that variation in fitness characters, such as seed size and number, should not be viewed in isolation from vegetative characters, flower, and fruit sizes in ecological and evolutionary studies, if the goal is to understand the mechanisms of natural selection in wild populations.  相似文献   

17.
René Verburg  Danny Grava 《Oecologia》1998,115(4):472-477
We compared the patterns of allocation to reproduction among seed-derived and clonal offspring of a woodland pseudo-annual. Pseudo-annuals are clonal plants which survive the winter only as seeds and hibernacles produced by the rhizome system. Previous studies indicate that flowering is related to the size of these hibernacles. Since seedlings do not have a hibernacle, we did not expect that these plants would reproduce sexually. Assuming a trade-off between sexual and asexual reproduction, and assuming a linear relationship between vegetative plant weight and weight of all reproductive structures (i.e., rhizomes, hibernacles, inflorescences, and seeds), we expected that seed-derived plants would have a stronger biomass allocation to rhizomes and hibernacles. Since resource supply affects plant size, and thus hibernacle and seed production, we also subjected the plants to different levels of shade. At the start of the experiment seed-derived and clonal offspring hardly differed in total fresh weight. At the final harvest in September seed-derived and clonal offspring did not differ in vegetative plant weight (i.e., leaves, stems, and roots). Only light availability significantly affected these plant structures. As predicted, seed-derived plants did not flower in either of the light treatments. Seed-derived plants allocated more biomass to rhizomes and hibernacles, but this was only significant in the highest-light treatment. This result was due only to an increase in the number of hibernacles. Dry weight of single hibernacles was not affected by plant type. The ecological implications of this allocation pattern are discussed. Received: 2 October 1997 / Accepted: 8 March 1998  相似文献   

18.
Southern pine genetic improvement programs have selected for faster early growth which has often increased yields over unimproved material, and some of this improvement is likely attributable to variation in growth phenology among genotypes. However, the genetics of shoot growth phenology traits are not well characterized. Loblolly pine cuttings and seedlings from parents originating in the Atlantic coastal plain (ACP) and Florida and grown on sites established in Palatka, FL and Cuthbert, GA were assessed for shoot phenology and growth traits during the second year and for growth in year 6. Individual-tree clonal repeatability in different growth and shoot phenology traits varied from 0.09 to 0.79 in cuttings, and was lower in Palatka than Cuthbert. Non-additive components of heritability were lower, with a few exceptions, than additive effects. Additive and genotypic correlations across sites were high (>0.6) for all traits measured in cuttings and for most seedling traits, suggesting low genotype × environment interactions between these two sites. Compared with progeny from crosses between ACP parents, progeny of Florida parents started growth earlier in the season and ended later. Strong genetic correlations were observed between second-year phenology traits and sixth-year height and diameter. This suggests some two-year traits could be useful for early selection of high-performing genotypes.  相似文献   

19.
Seedling establishment has long been believed to be rare on alpine tundra because of predicted life history trade-offs, the clonality of alpine species, and the harshness of the alpine climate. Contrary to the idea that seedlings are rare on alpine tundra, a 4-yr demographic study of seedlings at Niwot Ridge, Colorado, USA, found seedlings at high densities, particularly in wetter plant communities. Higher germination densities were associated with higher soil moistures both across communities and across time. Mortality of seedlings was highest in the first year and decreased in subsequent years. Species' abundances differed between seedling and adult populations. Many forbs that lacked vegetative reproduction were significantly more abundant among seedling populations, and many monocots and clonal forbs were more abundant among adult populations. In a comparison with published demographic rates, seedling recruitment and mortality rates of Niwot Ridge species fell above or within rates for a wide range of perennial species. Therefore, germination and seedling establishment stages are no more limiting to sexual reproduction in alpine plants than in other perennial plants.  相似文献   

20.
It is generally accepted that larger seeds give rise to seedlings with better performance. On the other hand, the size that a seed reaches is genetically determined by at least two different traits ; the genetic variability of the developing embryo and the genetic variability of the maternal plant. Thus, the relative contributions of these two traits affect seedling performance by influencing seed size. In this paper, I investigate the effect of seed size on seedling performance in the Scots pine ( Pinus sylvestris ). From eight maternal plants, 50 seeds were planted in each of two soil types (800 seeds in total), and seedling performance was monitored for 1 yr. Seed mass proved to be highly constant within maternal plants. Soil type influenced emergence and survival; however, the effect of soil type differed depending on maternal origin. Seed mass was positively correlated with seedling emergence, although this relationship was not found for seedling survival or date of emergence. The initial growth of the shoot was also positively correlated with seed mass. However, after one growing season, seed mass had no effect on seedling performance, which depended exclusively on maternal origin. Nevertheless, the mean mass of seeds produced by plants was positively correlated with mean values of growth parameters. Thus, first-year seedling performance seems to be a maternal trait indirectly associated with seed size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号