首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The principal contributors of biologically fixed N in natural grassland ecosystems appear to be asymbiotic bacteria and heterocystous cyanobacteria. The environmental factors of light, moisture, and temperature play important roles in the magnitude of the N2-fixation activity. Biological N2-fixation was measured in the Elizabeth's Prairie section of the Lynx Prairie Preserve, Adams County, Ohio, during 15 site visits beginning 29 March through 8 November 1980. In situ N2-fixation activity was measured using the acetylene-reduction technique. The percentage cover of cyanobacterial colonies (Nostoc sp.) was determined using Point-Frame Analysis. Soil and air temperatures and soil water potentials also were measured. Intact soil cores with a surface cover of Nostoc were collected and returned to the laboratory to quantify the effect of decreasing water potential on the N2(C2H2)ase activity of Nostoc. The N2(C2H2)ase activity of Nostoc on the intact soil cores displayed a linear response of approximately 10% decrease in N2(C2H2)ase activity per one bar decrease in soil water potential. The cyanobacteria contributed almost all of the biologically fixed N at the site until late June. From late June through to mid September, heterotrophic diazotrophs played the major role in the N2-fixation activity. These changes are attributed to fluctuations in Nostoc sp. colony cover, temperature, and soil water potentials. Extrapolation of the measured rates, and assuming an average of 10 hr per day of activity, Nostoc sp. is shown to have contributed 4.60 ± 1.17 kg N ha−1 yr−1. Heterotrophic diazotrophs contributed an estimated 3.19 ± 1.18 kg N ha−1 yr−1. The total biological N2-fixation for the site was calculated at 8.2 ± 2.55 kg N ha−1 yr−1, from additional measurements which estimated total diazotrophic activity of the site. These rates of N2-fixation are among the highest reported for temperate grassland habitats.  相似文献   

2.
Rates of nitrogen fixation were determined for alder (Abuts tenuifolia Nutt.) with the C2H2 assay and verified by the 15N method. Rates of C2H2 reduction obtained varied between 0.0342 and 10.9 μmoles per gram of nodule tissue (fresh weight) per hour with a seasonal average of 2.70 μmoles g-1 hr-1. Expressed as nitrogen fixation rates these are equivalent to 0.0114, 3.63, and 0.9 μmoles g-1 hr-1 of elemental nitrogen, respectively. Nitrogen fixation (15N) rates averaged 2.20 μmoles N g-1 hr-1 with a standard deviation of 1.14. The influence of pC2H2, pO2, temperature during incubation, length of incubation time, presence vs. absence of N2 in the incubation atmosphere, and amount of nodule biomass per sample were investigated.  相似文献   

3.
Green alder (Alnus viridis ssp. fruticosa) is a dominant understory shrub during secondary successional development of upland forests throughout interior Alaska, where it contributes substantially to the nitrogen (N) economy through atmospheric N2 fixation. Across a replicated 200+ year old vegetation chronosequence, we tested the hypotheses that green alder has strong effects on soil chemical properties, and that ecosystem-level N inputs via N2 fixation decrease with secondary successional stand development. Across early-, mid-, and late-successional stands, alder created islands of elevated soil N and carbon (C), depleted soil phosphorus (P), and more acidic soils. These effects translated to the stand-level in response to alder stem density. Although neither N2 fixation nor nodule biomass differed among stand types, increases in alder densities with successional time translated to increasing N inputs. Estimates of annual N inputs by A. viridis averaged across the upland chronosequence (6.6 ± 1.2 kg N ha?1 year?1) are substantially less than inputs during early succession by Alnus tenuifolia growing along Alaskan floodplains. However, late-succession upland forests, where densities of A. viridis are highest, may persist for centuries, depending on fire return interval. This pattern of prolonged N inputs to late successional forests contradicts established theory predicting declines in N2-fixation rates and N2-fixer abundance as stands age.  相似文献   

4.
The small, arboreal goanna, Varanus caudolineatus, has a field metabolic rate of approximately 0.46 mL CO2 g−1 hr−1 and a daily water intake requirement of approximately 31.6 mL kg−1 day−1 measured during the summer. V. caudolineatus held in a controlled-temperature environment of 35°C have lower metabolic (0.25 mL CO2 g−1 hr−1) and water flux (24.9 mL H2O kg−1d−1) rates than those in the field. Body water content was approximately 80% for V. caudolineatus.  相似文献   

5.
In this study, the response of N2 fixation to elevated CO2 was measured in Scirpus olneyi, a C3 sedge, and Spartina patens, a C4 grass, using acetylene reduction assay and 15N2 gas feeding. Field plants grown in PVC tubes (25 cm long, 10 cm internal diameter) were used. Exposure to elevated CO2 significantly (P < 0·05) caused a 35% increase in nitrogenase activity and 73% increase in 15N incorporated by Scirpus olneyi. In Spartina patens, elevated CO2 (660 ± 1 μ mol mol 1) increased nitrogenase activity and 15N incorporation by 13 and 23%, respectively. Estimates showed that the rate of N2 fixation in Scirpus olneyi under elevated CO2 was 611 ± 75 ng 15N fixed plant 1 h 1 compared with 367 ± 46 ng 15N fixed plant 1 h 1 in ambient CO2 plants. In Spartina patens, however, the rate of N2 fixation was 12·5 ± 1·1 versus 9·8 ± 1·3 ng 15N fixed plant 1 h 1 for elevated and ambient CO2, respectively. Heterotrophic non-symbiotic N2 fixation in plant-free marsh sediment also increased significantly (P < 0·05) with elevated CO2. The proportional increase in 15N2 fixation correlated with the relative stimulation of photosynthesis, in that N2 fixation was high in the C3 plant in which photosynthesis was also high, and lower in the C4 plant in which photosynthesis was relatively less stimulated by growth in elevated CO2. These results are consistent with the hypothesis that carbon fixation in C3 species, stimulated by rising CO2, is likely to provide additional carbon to endophytic and below-ground microbial processes.  相似文献   

6.
Natural 15N abundance measurements of ecosystem nitrogen (N) pools and 15N pool dilution assays of gross N transformation rates were applied to investigate the potential of δ15N signatures of soil N pools to reflect the dynamics in the forest soil N cycle. Intact soil cores were collected from pure spruce (Picea abies (L.) Karst.) and mixed spruce-beech (Fagus sylvatica L.) stands on stagnic gleysol in Austria. Soil δ15N values of both forest sites increased with depth to 50 cm, but then decreased below this zone. δ15N values of microbial biomass (mixed stand: 4.7 ± 0.8‰, spruce stand: 5.9 ± 0.9‰) and of dissolved organic N (DON; mixed stand: 5.3 ± 1.7‰, spruce stand: 2.6 ± 3.3‰) were not significantly different; these pools were most enriched in 15N of all soil N pools. Denitrification represented the main N2O-producing process in the mixed forest stand as we detected a significant 15N enrichment of its substrate NO3 (3.6 ± 4.5‰) compared to NH4+ (−4.6 ± 2.6‰) and its product N2O (−11.8 ± 3.2‰). In a 15N-labelling experiment in the spruce stand, nitrification contributed more to N2O production than denitrification. Moreover, in natural abundance measurements the NH4+ pool was slightly 15N-enriched (−0.4 ± 2.0 ‰) compared to NO3 (−3.0 ± 0.6 ‰) and N2O (−2.1 ± 1.1 ‰) in the spruce stand, indicating nitrification and denitrification operated in parallel to produce N2O. The more positive δ15N values of N2O in the spruce stand than in the mixed stand point to extensive microbial N2O reduction in the spruce stand. Combining natural 15N abundance and 15N tracer experiments provided a more complete picture of soil N dynamics than possible with either measurement done separately.  相似文献   

7.
The rapidly growing areal extent of oil palm (Elaeis guineensis Jacq.) plantations and their high fertilizer input raises concerns about their role as substantial N2O sources. In this study, we present the first eddy covariance (EC) measurements of ecosystem-scale N2O fluxes in an oil palm plantation and combine them with vented soil chamber measurements of point-scale soil N2O fluxes. Based on EC measurements during the period August 2017 to April 2019, the studied oil palm plantation in the tropical lowlands of Jambi Province (Sumatra, Indonesia) is a high source of N2O, with average emission of 0.32 ± 0.003 g N2O-N m−2 year−1 (149.85 ± 1.40 g CO2-equivalent m−2 year−1). Compared to the EC-based N2O flux, average chamber-based soil N2O fluxes (0.16 ± 0.047 g N2O-N m−2 year−1, 74.93 ± 23.41 g CO2-equivalent m−2 year−1) are significantly (~49%, p < 0.05) lower, suggesting that important N2O pathways are not covered by the chamber measurements. Conventional chamber-based N2O emission estimates from oil palm up-scaled to ecosystem level might therefore be substantially underestimated. We show that the dynamic gas exchange of the oil palm canopy with the atmosphere and the oil palms' response to meteorological and soil conditions may play an important but yet widely unexplored role in the N2O budget of oil palm plantations. Diel pattern of N2O fluxes showed strong causal relationships with photosynthesis-related variables, i.e. latent heat flux, incoming photosynthetically active radiation and gross primary productivity during day time, and ecosystem respiration and soil temperature during night time. At longer time scales (>2 days), soil temperature and water-filled pore space gained importance on N2O flux variation. These results suggest a plant-mediated N2O transport, providing important input for modelling approaches and strategies to mitigate the negative impact of N2O emissions from oil palm cultivation through appropriate site selection and management.  相似文献   

8.
The median lethal copper (Cu) concentration (96 hr-LC50) values for acute Cu toxicity for Tilapia sparrmanii (live mass: 30 ± 8g) in Mooi River hard water of dolomitic origin at 20 °C, pH 7.9, was 68.1 μmol l?1. At this 96 hr-LC50 value the specific oxygen consumption rate (∈ O2) decreased by 44.2 (± 2.1) % from a non-exposed value of 6.6 (±0.32) mmol O2 kg?1 hr?1 to 3.63 (±0.23) mmol O2 kg ?1 hr?1. At 46.4 μmol Cu l?1, 100% of the exposed T. sparrmanii were still alive after 96 hours, but the ∈ O2 decreased by a mean value of 1.65 (± 0.16) mmol O2 kg?1 fish hr?1 or 25% (± 2.4). Contrary to Pb and Cd, Cu as CuCl2 2H2O was not precipitated in hard water four days after it was dissolved. Thus T. sparrmanii and other cichlids are shown to be more than an order of magnitude more resistant to Cu as a toxicant than most salmonids.  相似文献   

9.
[Ni(C11H9N2O5)2(H2O)2]?3(C3H7NO) ( 1 ) and [Co(C11H9N2O5)2(H2O)2]?3(C3H7NO) ( 2 ) are synthesized and characterized by elemental analysis, FT‐IR spectra, magnetic susceptibility, and thermal analysis. In addition, the crystal structure of Ni(II) complex is presented. Both complexes show distorted octahedral geometry. In 1 and 2, metal ions are coordinated by two oxygen atoms of salicylic residue and two nitrogen atoms of maleic amide residue from two ligands, and two oxygen atoms from two water molecules. In this paper, both compounds showed excellent inhibitory effects against human carbonic anhydrase (hCA) isoforms I, and II, α‐glycosidase, acetylcholinesterase (AChE), and butyrylcholinesterase (BChE). Compounds 1 and 2 had Ki values of 18.36 ± 4.38 and 26.61 ± 7.54 nM against hCA I and 13.81 ± 3.02 and 29.56 ± 6.52 nM against hCA II, respectively. On the other hand, their Ki values were found to be 487.45 ± 54.18 and 453.81 ± 118.61 nM against AChE and 199.21 ± 50.35 and 409.41 ± 6.86 nM against BChE, respectively.  相似文献   

10.
Cl absorption across isolated, perfused gills of freshwater adapted Chinese crabs (Eriocheir sinensis) was analysed by measuring transepithelial potential differences (PDte) and radioactive tracer fluxes across isolated, perfused posterior gills. Applying hemolymph-like NaCl salines on both sides of the epithelium PDte amounted to −30±1 mV (n=14). Undirectional Cl influxes of 470±38 and effluxes of 245±27 μmol·hr−1·g−1 wet weight (ww) (n=14) resulted in a Cl net influx of 226±31 μmol·hr−1·g−1 ww. Symmetrical substitution of Na+ by choline resulted in a substantial hyperpolarisation of the gill. Cl influx was unchanged under these conditions. However, net influx of Cl decreased by 40%, due to an increase of the Cl efflux.Nevertheless, a significant Cl net influx remained which was independent of the presence of Na+. When 2 mmol/l ouabain were added to the internal perfusion medium, PDte increased, although the fluxes remained unchanged. Following external application of 1μmol/l of the V-type H+-ATPase inhibitor bafilomycin, Al PDte and Cl effluxes were not significantly affected. However, Cl influxes decreased. These findings suggest that Cl can be taken up independently of Na+ and that active Na+ independent Cl uptake across the posterior gill of Eriocheir sinensis is probably driven by a V-type H+-ATPase localized in the apical membrane.  相似文献   

11.
Photoautotrophic growth of a marine non-heterocystous filamentous cyanobacterium, Symploca sp. strain S84, was examined under nitrate-assimilating and N2-fixing conditions. Under continuous light, photon flux density of 55 μmol photons·m−2 ·s−1 was at a saturating level for growth, and light did not inhibit the growth rate under N2-fixing conditions even when the photon flux density was doubled (110 μmol photons·m−2 ·s−1). Doubling times of the N2-fixing cultures under 55 and 110 μmol photons·m−2 ·s−1 were about 30 and 31 h, respectively. Under 110 μmol photons·m−2 ·s−1 during the light phase of an alternating 12:12-h light:dark (L:D) cycle, the doubling time of the N2-fixing culture was also about 30 h. When grown diazotrophically under a 12:12-h L:D regime, C2H2 reduction activity was observed mainly during darkness. In continuous light, relatively large cyclic fluctuations in C2H2 reduction were observed during growth. The short-term (<4 h) effect of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU; 5 μM) indicated that C2H2 reduction activity was not influenced by photosynthetic O2 evolution. Long-term (24 h) effects of DCMU indicated that photosynthesis and C2H2 reduction activity occur simultaneously. These results indicate that strain S84 grows well under diazotrophic conditions when saturating light is supplied either continuously or under a 12:12-h L:D diel light regime.  相似文献   

12.
Complex formation between Pd(II), Pt(II) and iodide has been studied at 25 °C for an aqueous 1.00 M perchloric acid medium. Measurements of the solubility of PdI2(s) in aqueous mercury(II) perchlorate and of AgI(s) and PdI2(s) in aqueous solutions of Pd2+(aq) and Ag+(aq) gave the solubility product of PdI2(s) as Kso=(7±3) × 10−32 M3, which is much smaller than previous literature values.The stability constants β1=[MI(H2O)3+]/([M(H2O)42+][I]) for the two systems were obtained as the ratio between rate constants for the forward and reverse reactions of (i).
The following values of k1 (s−1 M−1), k−1 (s−1) and β1 (M−1) were obtained at 25 °C: (1.14±0.11) × 106, (0.92±0.18), (12±4) × 105 for MPd, and (7.7±0.4), (8.0±0.7) × 10−5, (9.6±1.3) × 104 for MPt. Combination with previous literature data gives the following values of log(β1 (M−1)) to log(β4 (M−4)): 6.08, ∼22, 25.8 and 28.3 for MPd, and 4.98, ∼25, ∼28, and ∼30 for MPt. The present results show that the large overall stability constants β4 observed for the M2+I systems are most likely due to a very large stability of the second complex MI2(H2O)2, which is probably a cis-isomer. A distinct plateau in the formation curve for mean ligand number 2 is obtained both for MPd and Pt. The other iodo complexes are not especially stable compared to those of chloride and bromide.ΔH (kJ mol−1) and ΔS (JK−1 mol−1) for the forward reaction of (i), MPd, are (17.3±1.7) and (−71±5), and for the reverse reaction of (i) MPd, (45±3) and (−95±6), respectively. The kinetics are compatible with associative activation (Ia). The contribution from bond-breaking in the formation of the transition state seems to be less important for Pd than for Pt.  相似文献   

13.
To estimate the N2 fixation ability of the alder (Alnus hirsuta (Turcz.) var. sibirica), we examined the seasonal variation in nitrogenase activity of nodules using the acetylene reduction method in an 18-year-old stand naturally regenerated after disturbance by road construction in Japan. To evaluate the contribution of N2 fixation to the nitrogen (N) economy in this alder stand, we also measured the phenology of the alder, the litterfall, the decomposition rate of the leaf litter, and N accumulation in the soil. The acetylene reduction activity per unit nodule mass (ARA) under field conditions appeared after bud break, peaked the maximum in midsummer after full expansion of the leaves, and disappeared after all leaves had fallen. There was no consistent correlation between ARA and tree size (dbh). The amount of N2 fixed in this alder stand was estimated at 56.4 kg ha?1 year?1 when a theoretical molar ratio of 3 was used to convert the amount of reduced acetylene to the amount of fixed N2. This amount of N2 fixation corresponded to the 66.4% of N in the leaf litter produced in a year. These results suggested that N2 fixation still contributed to the large portion of N economy in this alder stand.  相似文献   

14.
Temperate pastures are often managed with P fertilizers and N2-fixing legumes to maintain and increase pasture productivity which may lead to greater nitrous oxide (N2O) emissions and reduced methane (CH4) uptake. However, the diel and inter-daily variation in N2O and CH4 flux in pastures is poorly understood, especially in relation to key environmental drivers. We investigated the effect of pasture productivity, rainfall, and changing soil moisture and temperature upon short-term soil N2O and CH4 flux dynamics during spring in sheep grazed pasture systems in southeastern Australia. N2O and CH4 flux was measured continuously in a High P (23 kg P ha?1 yr?1) and No P pasture treatment and in a sheep camp area in a Low P (4 kg P ha?1 yr?1) pasture for a four week period in spring 2005 using an automated trace gas system. Although pasture productivity was three-fold greater in the High P than No P treatment, mean CH4 uptake was similar (?6.3?±?SE 0.3 to ?8.6?±?0.4 μg C m?2 hr?1) as were mean N2O emissions (6.5 to 7.9?±?0.8 μg N m?2 hr?1), although N2O flux in the No P pasture did not respond to changing soil water conditions. N2O emissions were greatest in the Low P sheep camp (12.4 μg?±?1.1 N m?2 hr?1) where there were also net CH4 emissions of 5.2?±?0.5 μg C m?2 hr?1. There were significant, but weak, relationships between soil water and N2O emissions, but not between soil water and CH4 flux. The diel temperature cycle strongly influenced CH4 and N2O emissions, but this was often masked by the confounding covariate effects of changing soil water content. There were no consistently significant differences in soil mineral N or gross N transformation rates, however, measurements of substrate induced respiration (SIR) indicated that soil microbial processes in the highly productive pasture are more N limited than P limited after >20 years of P fertilizer addition. Increased productivity, through P fertilizer and legume management, did not significantly increase N2O emissions, or reduce CH4 uptake, during this 4 week measurement period, but the lack of an N2O response to rainfall in the No P pasture suggests this may be evident over a longer measurement period. This study also suggests that small compacted and nutrient enriched areas of grazed pastures may contribute greatly to the overall N2O and CH4 trace gas balance.  相似文献   

15.
A kinetic study of the oxidation of (hydroxyethyl)ferrocene (HEF) by [2-pyridylmethylbis(2-ethyl-thioethyl)ainine]copper(II) (Cu(pmas)2+) is reported, with the objective of documenting the influence of the two thioether sulfur ligands on the electron transfer rate. Both reactants exhibit a first-order dependence at pH 6, I = 0.1 M(NaNO3); k(25°C) = 1.3 × 104M−1sec−1, ΔH3 = 10.1 kcal/mole, ΔS3 = −6 eu. The apparent Cu(pmas)2+/+ self-exchange electron transfer rate constant calculated from this reaction on the basis of relative Marcus theory (4.7 × 101M−1 sec−1) agrees well with previous findings on ferrocytochrome c, Fe(CN)64−, and Ru(NH3)5py2+ oxidations. Spectrophotometric titrations of Cu(pmas)2+ and Cu(tmpa)2+ (tmpa = tris(2-pyridylmethyl)amine) with azide ion showed that both Cu(pmas)N3)+ (Kf1 = 3.1 × 103M−1) and Cu(pmas)(N3)2 (Kf2 = 3.5 × 101M−1) but Cu(tmpa)(N3)+ (Kf = 6.6 × 102M−1) are formed up to 0.15 M N3 (25°C, pH 6, I = 0.2 M), suggesting that a thioether sulfur atom is displaced in the uptake of a second N3 ion by Cu(pmas)(N3)+. The effect of thioether sulfur displacement by azide ion on the HEF-Cu(pmas)2+ reaction rate may be understood entirely through the tendency of N3 to shift the position of the redox equilibrium towards the reactant side, without invoking any special role for the sulfur ligand in promoting electron transfer reactivity.  相似文献   

16.
《Inorganica chimica acta》1988,141(1):139-144
The infrared and Raman spectra of [UO2(salen)(H2O)] and [UO2(salen)(CH3OH)] (salen=N,N′-ethylenebis(salicylideneimine) have been recorded. Assignments for the fundamental vibrations are proposed on the basis of C2v symmetry for the former species and Cs for the latter. The calculated values of the stretching force constant of the uranyl group, FUO, are 6.87 and 6.63 mdyn Å−1 for [UO2(salen)(H2O)] and [UO2(salen)(CH3OH)], respectively. The corresponding values of the UO bond lengths calculated as 1.738 and 1.745 Å.  相似文献   

17.
In this study, a non-sterile (open) continuous fermentation (OCF) process with no-carbon loss was developed to improve lactic acid (LA) productivity and operational stability from the co-utilization of lignocellulose-derived sugars by thermophilic Enterococcus faecium QU 50. The effects of different sugar mixtures on LA production were firstly investigated in conventional OCF at 50°C, pH 6.5 and a dilution rate of 0.20 hr−1. The xylose consumption ratio was greatly lower than that of glucose in fermentations with glucose/xylose mixtures, indicating apparent carbon catabolite repression (CCR). However, CCR could be efficiently eliminated by feeding solutions containing the cellobiose/xylose mixture. In OCF at a dilution rate ca. 0.10 hr−1, strain QU 50 produced 42.6 g L−1 of l -LA with a yield of 0.912 g g−1-consumed sugars, LA yield of 0.655 g g−1 based on mixed sugar-loaded, and a productivity of 4.31 g L−1 hr−1 from simulated energy cane hydrolyzate. In OCF with high cell density by cell recycling, simultaneous and complete co-utilization of sugars was achieved with stable LA production at 60.1 ± 3.25 g L−1 with LA yield of 0.944 g g−1-consumed sugar and LA productivity of 6.49 ± 0.357 g L−1 hr−1. Besides this, a dramatic increase in LA yield of 0.927 g g−1 based on mixed sugar-loaded with prolonged operational stability for at least 500 hr (>20 days) was established. This robust system demonstrates an initial green step with a no-carbon loss under energy-saving toward the feasibility of sustainable LA production from lignocellulosic sugars.  相似文献   

18.
The influence of forest stand age in a Picea sitchensis plantation on (1) soil fluxes of three greenhouse gases (GHGs – CO2, CH4 and N2O) and (2) overall net ecosystem global warming potential (GWP), was investigated in a 2‐year study. The objective was to isolate the effect of forest stand age on soil edaphic characteristics (temperature, water table and volumetric moisture) and the consequent influence of these characteristics on the GHG fluxes. Fluxes were measured in a chronosequence in Harwood, England, with sites comprising 30‐ and 20‐year‐old second rotation forest and a site clearfelled (CF) some 18 months before measurement. Adjoining unforested grassland (UN) acted as a control. Comparisons were made between flux data, soil temperature and moisture data and, at the 30‐year‐old and CF sites, eddy covariance data for net ecosystem carbon (C) exchange (NEE). The main findings were: firstly, integrated CO2 efflux was the dominant influence on the GHG budget, contributing 93–94% of the total GHG flux across the chronosequence compared with 6–7% from CH4 and N2O combined. Secondly, there were clear links between the trends in edaphic factors as the forest matured, or after clearfelling, and the emission of GHGs. In the chronosequence sites, annual fluxes of CO2 were lower at the 20‐year‐old (20y) site than at the 30‐year‐old (30y) and CF sites, with soil temperature the dominant control. CH4 efflux was highest at the CF site, with peak flux 491±54.5 μg m−2 h−1 and maximum annual flux 18.0±1.1 kg CH4 ha−1 yr−1. No consistent uptake of CH4 was noted at any site. A linear relationship was found between log CH4 flux and the closeness of the water table to the soil surface across all sites. N2O efflux was highest in the 30y site, reaching 108±38.3 μg N2O‐N m−2 h−1 (171 μg N2O m−2 h−1) in midsummer and a maximum annual flux of 4.7±1.2 kg N2O ha−1 yr−1 in 2001. Automatic chamber data showed a positive exponential relationship between N2O flux and soil temperature at this site. The relationship between N2O emission and soil volumetric moisture indicated an optimum moisture content for N2O flux of 40–50% by volume. The relationship between C : N ratio data and integrated N2O flux was consistent with a pattern previously noted across temperate and boreal forest soils.  相似文献   

19.
The kinetics of rapid CO substitution by PPh3 in Co4(CO)12 and Rh4(CO)12 have been examined by stopped-flow and low temperature FT-IR methods. In Co4(CO)12 rapid (kobs ∼ 1.8 s−1) substitution of CO occurs after a 1–15 s induction period at 28 °C in C6H5Cl solvent by a catalytic process. Addition of PPh3 to Rh4(CO)12 yields Rh4(CO)11(PPh3) according to a predominantly second order rate law k1[Rh4- (CO)12] + k2[Rh4(CO)12][PPh3] with k1 = 25 ± 11 s−1 and k2 = 2.97 ± 0.27 X 104 M−1 s−1 at 28 °C. Substitution of a second CO ligand also occurs rapidly with k1 = 0.15 ± 0.09 s−1 and k2 = 6.54 ± 0.07 X 102 M−1 s−1 at 28 °C. The reactivity of Rh4(CO)12 toward associative substitution is 104– 1011 faster than for the Co and Ir analogues, In Rh4(CO)11(PPh3) the increase in CO substitution rates over Co and Rh analogues is 102–107. The ordering of associative substitution rates Co << Rh >>> Ir in these clusters exaggerates the trend seen in mononuclear metal complexes.  相似文献   

20.
A. Sellstedt 《Planta》1986,167(3):382-386
Acetylene reduction, 15N2 reduction and H2 evolution were measured in root systems of intact plants of grey alder (Alnus incana (L.) Moench) in symbiosis with Frankia. The ratios of C2H2: 15N2 were compared with C2H2:N2 ratios calculated from C2H2 reduction and H2 evolution, and with C2H2:N2 ratios calculated from accumulated C2H4 production and nitrogen content. It was possible to calculate C2H2:N2 ratios from C2H2 reduction and H2 evolution because this source of Frankia did not show any hydrogenase activity. The ratios obtained using the different methods ranged from 2.72 to 4.42, but these values were not significantly different. It was also shown that enriched 15N could be detected in the shoot after a 1-h incubation of the root-system. It is concluded that the measurement of H2 evolution in combination with C2H2 reduction represents a nondestructive assay for nitrogen fixation in a Frankia symbiosis which shows no detectable hydrogenase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号