首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Rocky Mountain (USA) subalpine forests, seedlings of Picea engelmannii (Engelmann spruce) colonize logs more frequently than seedlings of its codominant associate Abies lasiocarpa (subalpine fir). We hypothesized that spruce germinates more readily on logs than fir, perhaps because small spruce seeds are more likely to lodge in log crevices than larger fir seeds. Our objectives were to test this hypothesis and compare both species' germination among several substrates to assess germination influences on natural seedling distributions. Spruce and fir seeds were sown on field-collected logs, litter, and soil in the greenhouse and monitored for 36 d. To test the crevice hypothesis, seeds were either scattered on logs or wedged into crevices, assuming that if both species were placed in crevices, interspecific germination differences on logs would decrease. Spruce mean germination percentages were significantly greater than fir's in all substrate treatments except when seeds were wedged in log crevices. The difference in means between the two log treatments was greater for fir (68%) than spruce (21%). Spruce germinated more rapidly than fir on all substrates. We suggest that large seed size reduces fir's success in colonizing logs, and that germination and establishment factors interact to determine natural seedling distributions for these subalpine conifers.  相似文献   

2.
Variation in the mating systems of Engelmann spruce and subalpine fir was examined in two adjacent subpopulations in the Colorado Front Range. Multilocus outcrossing rates were estimated from analysis of allozyme variation in embryo and megagametophyte tissue. The overall multilocus outcrossing rate of 0.93 for spruce was significantly higher than the outcrossing rate of 0.89 for fir. Outcrossing rates varied from 0.73 to 0.97 for spruce and from 0.65 to 0.94 for fir when trees of each species were grouped according to age, size, spatial distribution, maternal heterozygosity, cone production, and year of sampling. In both spruce and fir, trees with higher levels of male-cone production and/or more clumped spatial distribution had lower outcrossing rates. Temporal variation in outcrossing rates within subpopulations, examined only in spruce, was less than variation between subpopulations. Male-cone production was significantly correlated with tree size, and regression analyses revealed that the highest outcrossing rates are expected on trees that are medium to large in size, rather than the largest trees in the forest. The results show that, while there is some temporal variation, patterns of male cone production and spatial distribution of individuals are the most important factors influencing outcrossing levels in these wind-pollinated forest trees.  相似文献   

3.
Forest–alpine tundra ecotones (FTEs) are dynamic transition zones between forest and alpine tundra ecosystems that play an important role in regulating ecological processes, which are in turn directly influenced by the spatial patterns of trees and environmental constraints such as topography and climate. Our objectives were to characterize the spatial patterns of tree species and size classes, determine whether spatial patterns of trees differed among three FTE types, and examine FTE- and tree-environmental relationships in our study area on Niwot Ridge, CO, USA. Overall, spatial aggregation was more extensive for seedlings than saplings or trees. Distributions were largely random in limber pine but were highly aggregated in Engelmann spruce and especially subalpine fir, reflecting these species’ relative shade tolerance and expected sequence of establishment following disturbance. Fragmented and patchy tree distributions were observed in the FTE with the most heterogeneous topography, characterized by high relief and associated physical disturbances. The least patchy distributions were associated with the FTE containing a relative absence of disturbance. Intermediate levels of tree aggregation were associated with low topographic relief and presence of meadows and wetlands. Our results emphasize the importance of spatial structure as an initial controlling factor of vegetation pattern in FTEs occurring in the same landscape.  相似文献   

4.
Cyclic phenomena have been the focus of many studies in stressed conifer forests. In these systems, suppressed seedlings are released following the synchronous death of canopy trees. These cycles occur over hundreds of years, and thus studying them in the field is difficult, if not impossible in some cases. This difficulty highlights the advantages of vegetation modeling studies. We used the individual-based gap model, University of Virginia Forest Model Enhanced (UVAFME), to simulate forest dynamics over time at a high-elevation, subalpine forest (dominated by Engelmann spruce and subalpine fir) in southern Wyoming. Following model calibration, UVAFME was validated by running it up an elevation gradient to determine if it could simulate changes in species composition with elevation. UVAFME was then run exclusively at the high-elevation location for periods of 3000 years to simulate long-term forest dynamics at the site. It was found that without the intrusion of exogenous disturbances, the subalpine zone of the Rocky Mountains demonstrates cyclic phenomena, both at the plot scale and the landscape scale. By itself, Engelmann spruce demonstrates a natural periodicity of 300 years, whereas subalpine fir has a natural periodicity of 200 years. In the two-species forest, both species have a periodicity of 300 years. This output corresponds well with field data from similar high-elevation conifer sites. These results, along with other examples of cyclic phenomena in ecological systems, indicate that periodicities in ecosystems may be more common than previously thought, though they may be difficult to distinguish due to disturbances and the time- and space-scales at which they occur.  相似文献   

5.
Forests around the world are undergoing rapid changes due to changing climate and increasing physiological stress, but forest response to climate at the ecosystem scale can be highly variable due to the mixed responses of different trees across heterogeneous landscapes. To determine the response of ecosystems in the Rocky Mountains to climate stress, we investigated the response of subalpine fir (Abies lasiocarpa) and Engelmann spruce (Picea engelmannii), two widely distributed subalpine forest species of Rocky Mountains, to climate warming across a region characterized by gradients of elevation, aspect and soil type. We investigated the growth trend of individual trees through time, determined the climate variables most important for driving growth and quantified the interactions between climate and topography that influence long-term growth trends and potential ecological changes across the study region. Growth trends of these two species are similar through the first part of the century, but diverge during the last several decades. Since 1975, subalpine fir growth decreased through time, while Engelmann spruce growth increased. We find that aspect and warm summer temperatures are the most important factors determining growth in subalpine fir, and subalpine fir growth declines are greatest on east- and south-facing aspects. In contrast, Engelmann spruce growth is uniformly unresponsive to climate. In addition to highlighting the importance of species-level differences in growth response to climate, our results also identify interactions between climate and local physiography as controls on long-term growth trends and suggest that the local landscape physiography can mediate climate-related stress in forested ecosystems. This work advances our understanding of how forest stress is mitigated by landscape factors at the ecosystem scale, and how interactions of species, landscape and climate will control future ecosystem composition and forest growth dynamics.  相似文献   

6.
Tree regeneration has traditionally been used as a measure of the response of treeline to climate Changes in growth form of krummholz trees may also indicate whether treeline is responding to changes in climate The purpose of this study was to determine whether krummholz trees m the forest-tundra ecotone of Rocky Mountain National Park, Colorado have experienced significant vertical stem growth, in the absence of mortality, and if this growth occurred in response to recent changes in climate We sampled and dated Engelmann spruce and subalpine fir krummholz leaders stratified by height class at three sampling locations to determine the dates leaders initiated growth above mean snow depth At one sampling location, 215 additional leaders were sampled to construct an age structure of leader release dates Dates of leader release taken from the age structure were compared with seasonal temperatures, seasonal precipitation, winter snow depths, and annual runoff using t-tests Dates of leader release were also compared to proxy climate records for the southern Rocky Mountain region Based on historical photos as well as the data presented here, both spruce and fir krummholz trees experienced significant height growth as early as the 1850's and continued to grow vertically, at least through the 1970's This vertical stem growth occurred in the absence of significant mortality Running mean annual temperature and May snow depth are both positively associated with years of leader release, suggesting that a warmer, wetter climate, possibly following the end of the Little Ice Age ca 1850, may have induced these changes in the ecotone  相似文献   

7.
贺丹妮  杨华  温静  谢榕 《应用生态学报》2020,31(6):1916-1922
2019年8月在云冷杉针阔混交林样地(0.36 hm2),对48个林隙及幼苗(0.2<更新高度RH<1 m)、幼树(RH≥1 m,胸径DBH<5 cm)进行调查,分析林隙大小(<20 m2,小;20~50 m2,中;50~120 m2,大;>120 m2,特大)对林隙内红松、鱼鳞云杉及冷杉幼苗幼树密度和生长指标(高、基径)的短期影响,并采用核密度估计法分析其空间分布规律。结果表明: 云冷杉更新的密度通常随林隙增大而降低,仅对幼树影响显著,小林隙下云冷杉幼树密度分别为0.34和1.74株·m-2,红松密度不受林隙大小的影响。林隙大小对冷杉幼苗幼树生长指标的影响最大,对红松影响最小,平均最大值多出现在大林隙。红松和云杉幼树的基径和树高最大值均分布在小、中、大林隙东北部,在特大林隙中转移至冠空隙西北部。小林隙有助于幼苗的建立和萌发,可通过择伐冷杉创造小林隙,随后扩大林隙面积(>50 m2)促进幼树生长,需要持续监测来确定林隙大小对森林更新的长期影响。  相似文献   

8.
Extreme climatic events are key factors in initiating gradual or sudden changes in forest ecosystems through the promotion of severe, tree-killing disturbances such as fire, blowdown, and widespread insect outbreaks. In contrast to these climatically-incited disturbances, little is known about the more direct effect of drought on tree mortality, especially in high-elevation forests. Therefore projections of drought-induced mortality under future climatic conditions remain uncertain. For a subalpine forest landscape in the Rocky Mountains of northern Colorado (USA), we quantified lag effects of drought on mortality of Engelmann spruce Picea engelmannii , subalpine fir Abies lasiocarpa , and lodgepole pine Pinus contorta . For the period 1910–2004, we related death dates of 164 crossdated dead trees to early-season and late-season droughts. Following early-season droughts, spruce mortality increased over five years and fir mortality increased sharply over 11 years. Following late-season droughts, spruce showed a small increase in mortality within one year, whereas fir showed a consistent period of increased mortality over two years. Pine mortality was not affected by drought. Low pre-drought radial growth rates predisposed spruce and fir to drought-related mortality. Spruce and fir trees that died during a recent drought (2000–2004) had significantly lower pre-drought growth rates than live neighbour trees. Overall, we found large interspecific differences in drought-related mortality with fir showing the strongest effect followed by spruce and pine. This direct influence of climatic variability on differential tree mortality has the potential for driving large-scale changes in subalpine forests of the Rocky Mountains.  相似文献   

9.
Non-random seed shadows are commonly seen in plant species whose seeds are dispersed by animals, in particular by birds. The behaviour of birds can influence the spatial pattern of seed dispersal and, consequently, the entire regeneration process of fleshy-fruited trees. This study examined regeneration patterns in a fleshy-fruited tree species, rowan (Sorbus aucuparia L.), growing in West Carpathian subalpine spruce forests, focussing on two problems: the temporal relationship between rowan regeneration and gap formation, and the spatial relationship between rowan regeneration and stand structure. It was found that rowan seedlings and saplings were recruited in advance of gap formation. Establishment of new rowan individuals in gaps was infrequent, but gaps enhanced their regeneration nearby under spruce canopy, where they occurred densely in a narrow belt about 15 m wide. Inside spruce stands, the highest density of young rowans was directly under crowns, especially near trunk bases. Few rowan saplings were found growing under mature rowan trees. The presence of a rowan seedling and sapling bank determines whether rowans fill spruce stand gaps. Dense rowan groves can develop mainly in extensive but slowly expanding gaps.  相似文献   

10.
The relationship between monthly climate predictors and radial growth of Engelmann spruce (Picea engelmanni Parry) and subalpine fir (Abies lasiocarpa (Hook.) Nutt) were explored using both a standard dendroclimatological approach and a multiple adaptive regressions splines (MARS) framework. Consistent with previous research, the radial growth of fir and spruce was related to temperature variables over the time period of the instrumental record. We identify important temporal instability in the statistical relationships between climate variables and the radial growth of both subalpine fir and Engelmann spruce. Using a 30-year running window, only four of the climate variables related to the radial growth of either spruce or fir did not show a switch in the sign of the correlation. A multiple adaptive regressions spline method was then used to gain insight into thresholds that may relate to radial growth–climate instabilities. Using MARS, we were able to identify knots and non-monotonic relationships between radial growth and climate predictors that may be indicators of ecological thresholds. This combination of dendroclimatic methods provides valuable insight into the complex nonlinear responses that both subalpine fir and Engelmann spruce have been growing under in the past centuries.  相似文献   

11.
Question: How does competition between quaking aspen (Populus tremuloides) and white fir (Abies concolor) affect growth and spatial pattern of each species? Location: The northern Sierra Nevada, California, USA. Methods: In paired plots in mixed aspen‐ (n=3) or white fir‐dominated (n=2) stands, we mapped trees and saplings and recorded DBH, height, species, and condition and took increment cores. We tallied seedlings by species. Tree ring widths were used as a measure of basal area change over the last decade, and canopy openness was identified using hemispherical photographs. Linear mixed models were used to relate neighborhood indices of competition, stand, and tree‐level variables to diameter increment. Spatial patterns of stems were identified using the Neighborhood Density Function. Results: White fir radial growth was higher in aspen‐ than white fir‐dominated plots. Individual‐level variables were more important for white fir than for aspen growth, while variables representing competitive neighborhood were important only for aspen. The forest canopy was more open in aspen‐ than white fir‐dominated stands, but ample aspen seedlings were observed in all stands. Canopy stems of aspen and white fir were randomly distributed, but saplings and small trees were clumped. Aspen saplings were repelled by canopy aspen stems. Conclusions: Variation in canopy openness explained more stand–stand variation in white fir than aspen growth, but high light levels were correlated with recruitment of aspen seedlings to the sapling class. Radial growth of aspen was predicted by indices of neighborhood competition but not radial growth of white fir, indicating that spacing and stem arrangement was more important for aspen than white fir growth. Fire suppression has removed a major disturbance mechanism that promoted aspen persistence and reduced competition from encroaching conifers, and current forests favor species that regenerate best by advance regeneration (white fir).  相似文献   

12.
Forest structural heterogeneity due to species composition, spatial relationships and tree size are widely studied patterns in forest systems, but their impacts on tree function are not as well documented. The objective of this study was to examine how stand composition, tree proximity relationships and tree size influence the leaf functional traits of aspen, an early successional species, and subalpine fir, a climax species. We measured foliar nutrients, nonstructural carbohydrates (aspen only), defense chemistry and xylem water potential of aspen and subalpine fir trees in three size classes growing in close proximity or independently from other trees under three stand conditions: aspen dominant, aspen-conifer mixed, and conifer dominant stands. Close proximity of subalpine fir to aspen reduced aspen’s storage of starch in foliar tissue by 17% suggesting that competition between these species may have small effects on carbon metabolism in aspen leaves. Simple sugar (glucose + sucrose) concentrations in aspen leaves were slightly higher in larger aspen trees than smaller trees. However, no differences were found in stem water potential, foliar concentrations of nitrogen, phosphorus, or secondary defense chemicals of aspen or subalpine fir across the gradients of stand composition, tree proximity or tree size. These results suggest that mechanisms of coexistence allow both aspen and subalpine fir to maintain leaf function across a wide range of stand structural characteristics. For aspen, resource sharing through its clonal root system and high resource storage capacity may partially contribute to its functional stability in mixed aspen-conifer stands.  相似文献   

13.
R. Leemans 《Plant Ecology》1991,93(2):157-165
The spatial pattern of seedlings, saplings and canopy trees was studied in two spruce (Picea abies (L.) Karst.) forests in central Sweden. Canopy and forest structure were determined in five 0.25 ha plots. Life stage classes were distinguished on the basis of age and size distributions. Ripley's K-function (1977) was used to analyze the spatial patterns within each class. A random distribution of seedlings gave way to a more aggregated pattern on a small scale during the establishment phase. Saplings and sub-canopy trees were strongly aggregated and canopy trees were again randomly distributed within the plots. The proportion of individuals growing in gaps was used as an index of association between the spatial pattern in saplings and sub-canopy trees and the occurrence of small (50–350 m2) canopy gaps. Under the null hypothesis of independence the expected value of this statistic would equal the canopy gap ratio for the stand. Monte Carlo simulation of this statistic, using fixed sapling positions and randomly repositioned canopy gaps, confirmed the importance of canopy gaps for the final success of establishment of spruce. The association of understorey trees with gaps suggest that small gaps are typically closed by recruitment of new saplings from a sapling bank rather than by the release of larger suppressed trees.  相似文献   

14.
Associations among the few tree species in the North American boreal landscape are the result of complex interactions between climate, biota, and historical disturbances during the Holocene. The closed-crown boreal forest of eastern North America is subdivided into two ecological regions having distinct tree species associations; the balsam fir zone and the black spruce zone, south and north of 49°N, respectively. Subalpine old-growth stands dominated by trees species typical of the balsam fir forest flora (either balsam fir or white spruce) are found on high plateaus, some of which are isolated within the black spruce zone. Here we identified the ecological processes responsible for the distinct forest associations in the subalpine belt across the eastern boreal landscape. Extensive radiocarbon dating, species composition, and size structure analyses indicated contrasted origin and dynamics of the subalpine forests between the two ecological regions. In the black spruce zone, the subalpine belt is a mosaic of post-fire white spruce or balsam fir stands coexisting at similar elevation on the high plateaus. With increasing time without wildfire, the subalpine forests become structurally similar to the balsam fir forest of the fir zone. These results concur with the hypothesis that the subalpine forests of this area are protected remnants of an historical northern expansion of the fir zone. Its replacement by the fire-prone black spruce forest flora was caused by recurrent fires. In the subalpine belt of the fir zone, no fire was recorded for several millennia. Harsh climate at high altitude is the primary factor explaining white spruce dominance over balsam fir forming a distinct subalpine white spruce belt above the balsam fir dominated forest.  相似文献   

15.
We compared the functional type composition of trees ≥10 cm dbh in eight secondary forest monitoring plots with logged and unlogged mature forest plots in lowland wet forests of Northeastern Costa Rica. Five plant functional types were delimited based on diameter growth rates and canopy height of 293 tree species. Mature forests had significantly higher relative abundance of understory trees and slow-growing canopy/emergent trees, but lower relative abundance of fast-growing canopy/emergent trees than secondary forests. Fast-growing subcanopy and canopy trees reached peak densities early in succession. Density of fast-growing canopy/emergent trees increased during the first 20 yr of succession, whereas basal area continued to increase beyond 40 yr. We also assigned canopy tree species to one of three colonization groups, based on the presence of seedlings, saplings, and trees in four secondary forest plots. Among 93 species evaluated, 68 percent were classified as regenerating pioneers (both trees and regeneration present), whereas only 6 percent were classified as nonregenerating pioneers (trees only) and 26 percent as forest colonizers (regeneration only). Slow-growing trees composed 72 percent of the seedling and sapling regeneration for forest colonizers, whereas fast-growing trees composed 63 percent of the seedlings and saplings of regenerating pioneers. Tree stature and growth rates capture much of the functional variation that appears to drive successional dynamics. Results further suggest strong linkages between functional types defined based on adult height and growth rates of large trees and abundance of seedling and sapling regeneration during secondary succession.
Abstract in Spanish is available at http://www.blackwell-synergy.com/loi/btp  相似文献   

16.
《Annals of botany》1997,79(3):251-257
Six non-linear growth functions were fitted to tree height–diameter data of ten conifer species collected in the inland Northwest of the United States. The data sets represented a wide range of tree sizes, especially large-sized trees. According to the model statistics, the six growth functions fitted the data equally well, but resulted in different asymptote estimates. The model prediction performance was evaluated using Monte Carlo cross-validation or data splitting for 25-cm diameter classes. All six growth functions yielded similar mean prediction errors for small- and middle-sized trees. For large-sized trees [e.g. DBH (diameter at breast height)>100 cm], however, five of the six growth functions (except the Gompertz function) overestimated tree heights for western white pine, western larch, Douglas-fir, subalpine fir, and ponderosa pine, but underestimated tree heights for western hemlock and Engelmann spruce. Among these five functions, the Korf/Lundqvist and Exponential functions produced larger overestimations. The Schnute, Weibull, and Richards functions were superior in prediction performance to others. The Gompertz function seemed always to underestimate tree heights for large-sized trees.  相似文献   

17.
亚高山云冷杉混交林树木生长释放与干扰分析   总被引:9,自引:2,他引:9  
对云南碧塔海亚高山云冷杉林内4个样地冠层树木的生长压制和释放的历史,用树木年轮分析方法进行了重建,然后根据生长释放频率推测林冠干扰强度(每10年冠层树木的死亡百分率)。4个林分(1个中龄林,3个成过熟林)生长释放的平均百分率为48%~92%。中龄林内,平均生长释放频率为71%/10a,成过熟林则为74%~95%/10a,在油麦吊云杉〔Piceabrachytylavar.complanata(Mast.)ChengexRehd.〕占优势的林分和大果红杉(Larixpotaninivar.macrocarpaLaw)油麦吊云杉混交林分内,估测的林冠干扰强度分别为48%/10a和59%/10a。  相似文献   

18.
Old-growth deciduous forests in western Europe, for the most part, consist of small tracts that often may be atypical due to human disturbance, poor soil productivity or inaccessibility. In addition, very little information on tree age distributions, structural heterogeneity and tree spatial patterns appears to be available for west-European forests. Characterization of the structural features of tree populations in these old-growth stands can provide the basis to design conservation plans and also inform on how present forests might look in the absence of human interference. Four old-growth stands in a deciduous forest in the Cantabrian lowlands, northern Spain, were surveyed to determine forest structure and spatial patterns. Live and dead trees were identified, measured and mapped, and live trees were cored for age estimation. Structural heterogeneity was analyzed by means of the spatial autocorrelation of tree diameter, height and age, and the uni- and bivariate spatial patterns of trees were analyzed. The dominant species, Fagus sylvatica and Quercus robur, showed reverse-J shaped size distributions but discontinuous age distributions, with maximum ages of 255–270 yr. Tree ages suggested that the forest was largely modified by past changes in forest-use, especially by temporal variation in grazing intensity. Spatial autocorrelation revealed that former parkland stands were heterogeneous with respect to tree height only, while high forest stands were composed of patches of even-aged and even-sized trees. Young trees were clumped at varying distances and establishment occurred preferentially in canopy gaps, except for Ilex aquifolium that mainly occurred beneath mature Quercus trees. Surviving trees became less intensely clumped in the dominant species, and more strongly clumped in understorey ones, which may have been due to the effects of intraspecific competition and of canopy trees on tree survival, respectively. The spatial associations between species varied within the forest, probably as a consequence of specific establishment preferences and competitive interactions.  相似文献   

19.
 岷江冷杉(Abies faxoniana)是青藏高原东缘亚高山顶极森林植被的优势种之一,主要分布于岷江、大渡河和白龙江的上游地区。该文研究了岷江冷杉天然原始群落的种群结构和空间分布格局。样方大小为100 m ×60 m。测定了所有个体的坐标及其胸径、高度和冠幅。将岷江冷杉按大小级分为5级,即幼苗:H(高度)<0.33 m; 幼树: H≥0.33 m, 且 DBH(胸径)<2.5 cm; 小树: 2.5 cm≤DBH<7.5 cm; 中树: 7.5 cm≤DBH <22.5 cm和大树: DBH≥22.5 cm。采用了Morisita 指数 (Iδ)、方差均值比 (V/m), 聚块度指标(m*/m)和空间点格局分析方法 (SPPA) (采用了Ripley二次分析法)4种方法分析岷江冷杉的空间分布格局。结果表明: 1) 岷江冷杉种群结构稳定。因为其年龄结构表现为增长型, 幼苗幼树储备丰富,密度分别为2 217·hm-2和2 683·hm-2,可见岷江冷杉天然更新良好,进而通过其“移动镶嵌循环”更新维持其种群的稳定性。在大小级结构图中的一些缺刻和年龄结构图中的“断代”现象,是干扰的时空异质性在采样的时间和空间断面上的反映。 2) 幼苗、幼树和小树在所有的研究尺度(从 1 m×1m 到 30 m×30 m)下都呈聚集分布。但中树和大树基本上呈随机分布。3) 聚集强度随尺度的变化而变化。上述的前3种方法表明,聚集强度随尺度的增加而减弱。但是,空间点格局分析法表明,岷江冷杉幼苗、幼树和小树的聚集强度首先随尺度的增加而增强,达到一定高峰后,随尺度的增加而减弱。 4) 岷江冷杉的空间分布格局是它与其自然环境长期作用的结果,同时也反映了其种群天然更新的格局和机制。 5) 4种分析方法对格局的判别基本一致, 但空间点格局分析法更能反映出格局强度随尺度的变化的关系,是值得推荐的一种分析空间分布格局的方法。使用空间点格局分析法的限制主要在于其计算和采样比较复杂。另外,由于Ripley 二次分析法对于“空白”的探测不敏感,需要进一步做一些方法上的改进。  相似文献   

20.
In forests, the vulnerable seedling stage is largely influenced by the canopy, which modifies the surrounding environment. Consequently, any alteration in the characteristics of the canopy, such as those promoted by forest dieback, might impact regeneration dynamics. Our work analyzes the interaction between canopy neighbors and seedlings in Mediterranean forests affected by the decline of their dominant species (Quercus suber). Our objective was to understand how the impacts of neighbor trees and shrubs on recruitment could affect future dynamics of these declining forests. Seeds of the three dominant tree species (Quercus suber, Olea europaea and Quercus canariensis) were sown in six sites during two consecutive years. Using a spatially-explicit, neighborhood approach we developed models that explained the observed spatial variation in seedling emergence, survival, growth and photochemical efficiency as a function of the size, identity, health, abundance and distribution of adult trees and shrubs in the neighborhood. We found strong neighborhood effects for all the performance estimators, particularly seedling emergence and survival. Tree neighbors positively affected emergence, independently of species identity or health. Alternatively, seedling survival was much lower in neighborhoods dominated by defoliated and dead Q. suber trees than in neighborhoods dominated by healthy trees. For the two oak species, these negative effects were consistent over the three years of the experimental seedlings. These results indicate that ongoing changes in species’ relative abundance and canopy trees’ health might alter the successional trajectories of Mediterranean oak-forests through neighbor-specific impacts on seedlings. The recruitment failure of dominant late-successional oaks in the gaps opened after Q. suber death would indirectly favor the establishment of other coexisting woody species, such as drought-tolerant shrubs. This could lead current forests to shift into open systems with lower tree cover. Adult canopy decline would therefore represent an additional factor threatening the recruitment of Quercus forests worldwide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号